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4.1

Introduction

Tunability of various physical and chemical properties of materials by varying the

size in the region of nanometers has opened up many new directions in several

fields of current research and modern technologies [1, 2]. In particular, the study

of systematic changes in the electronic structure of solids as a function of size in

this nanometric regime has been intensively investigated in recent times (see for

example Refs. [3–6]). Sustained efforts in this field have established interesting

applications such as UV protection films [7], fluorescent sensors in biological

applications [8], photocurrent generation in various devices [9], optical switches

[10], catalytic reactions [11], nanotweezers [12] and other optoelectronic devices

[13]. One of the major aspects necessary for the actual realization of these appli-

cations is the ability to synthesize nanocrystals of the required size with a con-

trolled size distribution. The growing demand to obtain such nanocrystals is met

largely by the solution route synthesis of nanocrystals [14, 15], due to its ease

of implementation and high degree of flexibility. The main difficulty with this

method is that the dependences of the average size and the size distribution of

the generated particles on parameters of the reaction are not understood in detail

and, therefore, the optimal reaction conditions are arrived at essentially in an em-

pirical and intuitive manner [16]. The understanding of coarsening processes that

lead to growth of the minority phase within a majority phase by combining

smaller particles is important both scientifically and for technological considera-

tions [17–21]. In recent times, there has been a renewed interest in understand-

ing the growth process of a solid phase within another solid in the nanometric

regime. Interestingly, the kinetics of the growth of a solid from a solution, which

is the most popular chemical method to produce a wide variety of systems with

dimensions in the nanometer region, has been relatively less investigated [22–

26]. However, there is a popular belief that the growth in solution occurs via a

diffusion limited Ostwald ripening process [14, 15].
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In this chapter, we briefly discuss the theory of nucleation. We then review the

various theoretical aspects of the different processes that influence the growth

rate. Following the discussion of the theoretical framework, we review experimen-

tal progress made in investigating the growth of various nanocrystals.

4.2

Theoretical Aspects

The growth of nanocrystals in solution involves two important processes, the

nucleation followed by the growth of the nanocrystals. We discuss these two pro-

cesses in the following two subsections.

4.2.1

Theory of Nucleation

La Mer and coworkers [27] studied extensively nucleation and growth in sulfur

sols, from which they developed an understanding of the mechanism for the for-

mation of colloids or nanocrystals from a homogeneous, supersaturated medium.

Their mechanism suggested that a synthesis of the colloid should be designed in

such a way that the concentration increases rapidly, rising above the saturation

concentration for a brief period, when a short burst of nucleation occurs with

the formation of a large number of nuclei in a short space of time. These particles

grow rapidly and lower the concentration below the nucleation level whilst allow-

ing the particles to grow further at a rate determined by the slowest step in the

growth process, thus separating the nucleation and growth in time. La Mer’s

mechanism is depicted schematically by means of the simple diagram shown in

Fig. 4.1. The requirements for monodispersity, as evident from La Mer’s diagram,

are a high rate of nucleation leading to the burst of nuclei formation in a short

period, an initial fast rate of growth of these nuclei to reduce the concentration

below the nucleation concentration rapidly and an eventual slow rate of growth

leading to a long growth period compared to the nucleation period. They also de-

rived the rates of growth of sols prepared by the above-mentioned dilution

method. The growth rates obtained were reproduced from previous theoretical

considerations which allowed the estimation of the value of the diffusion coeffi-

cient of sulfur. It was also claimed that the application of this method to the

estimation of diffusion coefficients was valid for any colloidal system that was

characterized by a small particle size distribution at all stages of its growth. Fur-

ther, a qualitative explanation was offered for the necessary conditions under

which mono-dispersed colloids might be prepared by both the dilution and acid

decomposition of sodium thiosulfate methods. This mechanism of La Mer was

later widely applied in attempts to prepare various nearly-monodisperse particles

in homogeneous solutions [28], yet success was achieved only after tedious trial-

and-error attempts to tune the major parameters such as the concentration of

reactants. So far it has not been possible to have a generalized approach to the
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synthesis of different systems by following the necessary conditions of La Mer

[29]. Generalizations between preparations have been few and it is now believed

that La Mer’s mechanism is rigorously appropriate only for the system for which

it was developed, that is sulfur sols, and it may not have significance as a general

approach to a wide variety of systems. It was later observed that La Mer’s condi-

tion for nucleation is neither a necessary nor sufficient condition for monodis-

persity but that the specific growth mechanism also plays an important role in

deciding the size and the size distribution.

Regardless of the rigorous validity of La Mer’s prediction in the context of di-

verse systems, the key idea of separating the nucleation stage and growth process

in time is often used to obtain nearly monodisperse particles. In most of the cases

in recent times, synthesis has been carried out by mixing the reactants together,

often by injecting one of the components into the remaining ones, in a very short

time. This is to ensure that the entire nucleation takes place in that short time,

followed by a much slower growth process, thereby attempting to separate the

two stages temporally. In the next subsection, we discuss the various aspects of

the mechanism of the growth of nanocrystals from solution.

4.2.2

Mechanism of Growth

Nucleation occurs over some time with constant monomer concentration. Eventu-

ally surface growth of clusters begins to occur which depletes the monomer sup-

ply. When the monomer concentration falls below the critical level for nucleation

(critical supersaturation level), nucleation ends. A general analysis of the growth

Fig. 4.1 Schematic diagram illustrating La Mer’s condition for nucleation.
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process is then important to understand nanocrystal synthesis. In general, the

surface to volume ratio in smaller particles is quite high. As a result of the large

surface area present, it is observed that surface excess energy becomes more

important in very small particles, constituting a non-negligible percentage of the

total energy. Hence, for a solution that is initially not in thermodynamic equilib-

rium, a mechanism that allows the formation of larger particles at the cost of

smaller particles reduces the surface energy and hence plays a key role in the

growth of nanocrystals. A colloidal particle grows by a sequence of monomer dif-

fusion towards the surface followed by reaction of the monomers at the surface of

the nanocrystal. Coarsening effects, controlled either by mass transport or diffu-

sion, are often termed the Ostwald ripening process. This diffusion limited Ost-

wald ripening process is the most predominant growth mechanism and was first

quantified by Lifshitz and Slyozov [30], followed by a related work by Wagner

[31], known as the LSW theory.

The diffusion process is dominated by the surface energy of the nanoparticle.

The interfacial energy is the energy associated with an interface due to differ-

ences between the chemical potential of atoms in an interfacial region and atoms

in neighboring bulk phases. For a solid species present at a solid/liquid interface,

the chemical potential of a particle increases with decreasing particle size, the

equilibrium solute concentration for a small particle is much higher than for a

large particle, as described by the Gibbs–Thompson equation. The resulting con-

centration gradients lead to transport of the solute from the small particles to the

larger particles. The equilibrium concentration of the nanocrystal in the liquid

phase is dependent on the local curvature of the solid phase. Differences in the

local equilibrium concentrations, due to variations in curvature, set up concentra-

tion gradients and provide the driving force for the growth of larger particles at

the expense of smaller particles [32].

Now, assume that the average radius of the particles is r. The bulk liquid phase

is considered to have a uniform supersaturated monomer concentration, cb, while
the monomer concentration at the particle interface, ci and the solubility of the

particle with a radius r is given by cr. The flux of monomers, J, passing through

a spherical surface with radius x within the diffusion layer, is given by Fick’s first

law as

J ¼ 4px2D dC=dx ð4:1Þ

At steady state, where J is constant over the diffusion layer x, the above equation

can be integrated approximately to obtain

J ¼ 4pDrðr þ dÞ
d

ðcb � ciÞ ð4:2Þ

where, d is the thickness of the diffusion layer.

This flux can be equated to the consumption rate of the monomer species at

the surface of the particle. That is,
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J ¼ 4pr 2kdðci � crÞ ð4:3Þ

where kd is the rate constant of a simple first order deposition reaction. In solu-

tion, it is difficult to measure ci and hence it is necessary to eliminate that vari-

able from the two equations. Assuming that dr=dt ¼ JVm=4pr2, we get

dr

dt
¼

D

r
1þ r

d

� �
Vmðcb � crÞ

1þ D

kdr 1þ r

d

� � ð4:4Þ

The terms cb and cr are related to the particle radius, r, by the Gibbs–

Thompson equation given by the expression

cr ¼ cy exp
2sVm

rRT

� �
A cy 1þ 2sVm

rRT

� �
ð4:5Þ

where cy is the concentration of a flat particle, s is the interfacial energy, Vm is

the molar volume and R is the universal gas constant. The approximate expres-

sion on the right is derived by retaining only the first two terms in the expansion

of the exponential function under the assumption of a small value of the argu-

ment, 2sVm=rRT .
Similarly, cb can be written as

cb ¼ cy exp
2sVm

rbRT

� �
A cy 1þ 2sVm

rbRT

� �
ð4:6Þ

Since diffusion layer thicknesses are typically of the order of microns, in the

case of nanocrystals we assume that rf d. Substituting Eqs. (4.5) and (4.6) into

Eq. (4.4) we obtain the equation

dr

dt
¼ 2sV 2

mcy
RTð1=Dþ 1=kdrÞ

ð1=rb � 1=rÞ
r

ð4:7Þ

We shall now explore the different behaviors of growth arising from this differ-

ential equation in various limits.

4.2.2.1 Diffusion Limited Growth: Lifshitz–Slyozov–Wagner (LSW) Theory and

Post-LSW Theory

Diffusion limited growth: When the diffusion is the slowest step in the growth

process, characterized by Df kdr in Eq. (4.7), the particle growth is essentially

controlled by the diffusion of the monomers to the surface. In this limit, Eq.

(4.7) reduces to the form,
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dr

dt
¼ 2sDV 2

mcy
RT

ðr=rb � 1Þ
r2

¼ KDðr=rb � 1Þ=r 2 ð4:8Þ

where KD, given by 2sDV 2
mcy=RT, is a constant. If the total mass of the system is

explicitly kept conserved, the LSW theory showed that the ratio r=rb is a constant.
Making this assumption in Eq. (4.8), we see that Eq. (4.8) reduces to the form

dr

dt
¼ KD

�const=r 2 ð4:9Þ

that can be easily solved to obtain the dependence of the particle size on time. It

is given by

r 3 � r 30 ¼ Kt ð4:10Þ

where r0 is the average radius of the particle at time t ¼ 0. K is given by the

expression

K ¼ 8sDV 2
mcy

9RT
ð4:11Þ

where D, the diffusion constant of the system at any given temperature, is given

by the equation, D ¼ D0 expð�Ea=kbTÞ.
LSW theory: The original idea of a growth mechanism driven by the reduction

of the surface energy was proposed by Ostwald in 1901 [33]. It is interesting to

note that a quantitative theory based on these ideas was derived [30, 31] nearly

50 years after Ostwald’s discovery of the phenomenon. The discovery of the LSW

theory marked one of the major advances in the theory of Ostwald ripening. The

LSW theory, considering a diffusion limited growth, but following a different and

more rigorous method than that described earlier, was able to make quantitative

predictions on the long-time behavior of the coarsening process.

The LSW approach is based on the following basic assumptions.
� This theory examines the growth of spherical particles in a

supersaturated medium.
� Particles are assumed to grow or shrink only in relation to

the mean field concentration set at infinity.
� The total mass of the solute is conserved.
� The size distribution of the growing phase under the

assumption of being spherical is characterized only by a

radius distribution in terms of a continuous function, valid in

the limit of a sufficiently large number of particles in the

system to justify such a continuum description.
� Processes such as nucleation and aggregation that introduce

new particles are negligible.
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Using these assumptions, they arrived at a universal asymptotic solution. First,

the concept of a critical radius, rb, was introduced, which separated the smaller

sized particles ðr < rbÞ, shrinking in size, from the larger particles ðr > rbÞ that
became larger with time. When the radius r is found to be equal to rb, the growth
is found to be zero. In the asymptotic limit, it was shown that the ratio of the

mean radius, r, of the system of particles to the critical radius, rb, is a constant.

It is interesting to note that the asymptotic state of the system is predicted to be

independent of the initial conditions. This was obtained as a direct consequence

of the mass conservation of the solute on the asymptotic solution of the continu-

ity equation and the kinetic equation. These authors further showed that the time

evolution of distribution of radii of the particles at any given time has the follow-

ing functional form,

DðxÞ ¼ kx2
3

3þ x

� �7=3 1:5

1:5� x

� �11=3
exp

�x

1:5� x

� �
ð4:12Þ

where, x ¼ x=r, x is the radius of various particles and r the average mean radius

and k depends only on time t by the relation k ¼ kc=ð1þ t=tDÞ4=3. tD is the time

constant given by the expression

tD ¼ 9r 30RT

64sDCyV 2
m

ð4:13Þ

We have illustrated a typical form of the distribution function, DðxÞ, in Fig. 4.2.

This functional form shows a typical characteristic asymmetry at the higher parti-

cle diameter side cutting off sharply when the radius is 1.5 times the average ra-

dius. Further, integrating Eq. (4.12), they obtained an expression for the average

radius, r, of the particle at time t, given by r 3 � r 30 ¼ Kt, similar to Eq. (4.10).

Post-LSW theories: The coarsening phenomenon has been experimentally in-

vestigated in diverse systems, including detailed studies involving precipitate for-

Fig. 4.2 Typical line shape of the size distribution of a purely diffusion-

controlled reaction as predicted by the LSW theory.
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mation in alloys, like Co in CuaCo alloy [34] and Ni in NiaFe alloys [35]. It was

observed that while the temporal power law for r, (i.e., r 3 z t) was confirmed by

these experiments [36], the temporal evolution of the size distribution did not

agree with that of the experimental results. The experiments, in general, showed

a broader and more symmetric distribution. Further experiments also showed

that there exists a dependence of the rate constant K on the volume fraction [37],

where the volume fraction is defined as the ratio of the volume of the particular

phase to that of the total volume of the system. While the LSW theory is a pio-

neering work in this field, it does not consider the effects of the finite volume

fraction of the coarsening phase. We now take a look at the post-LSW theories,

taking into account the finite volume fraction of the growing phase. Moreover,

the LSW theory assumes that their rate equation is valid at a very low volume

fraction, f, of the coarsening phase, such that the coarsening rate is independent

of the surroundings. This unspecified low volume fraction, being much lower

than realistic values of f encountered in typical experiments, led to disagree-

ments between experimental results and theoretical predictions. These disagree-

ments were found to be due the high strength of the diffusional interactions

between neighboring particles that arose from the long-range coulomb interac-

tion surrounding the particles. This can be taken into account by statistically aver-

aging the diffusional interactions of the particle with its surroundings.

In order to improve the theoretical description beyond the LSW description,

several groups addressed theoretically some of the above-mentioned shortcom-

ings of the original theory. The prominent ones among them include the works

by Brailsford and Wynblatt [38], Voorhees and Glickman [39], Marqusee and

Ross [40] and Tokuyama and Kawasaki [41]. It is surprising to note that each of

the groups have used identical microscopic equations to perform the statistical

averaging of the growth rate and arrive at qualitatively different results; this ap-

parently intriguing situation arises from using different methods of averaging,

such as chemical rate theory, computer simulation techniques, a multiple scatter-

ing method or a scaling expansion technique. However, all these theories agree

on some of the points. For example, the temporal power law reported in the

LSW theory is not dependent on the volume fraction, f, validating this aspect of

LSW theory. On the other hand, the particle size distribution function becomes

broader and more symmetric than the LSW distribution with an increase in the

volume fraction. The rate constant, K, rises rapidly at low volume fractions and

is followed by a slower increase at higher volume fractions. The predictions of

the different theoretical works mentioned above are almost identical till a volume

fraction of 0.1, unlike the predictions of LSW theory that did not show any depen-

dence of the rate constant K on the volume fraction. However, these theories do

not agree with each other on several other important aspects. For example, the

dependence of the rate constant K on the volume fraction f was predicted to fol-

low KðfÞ � Kð0Þ@ fð1=2Þ in Ref. [40] but KðfÞ � Kð0Þ@ fð1=3Þ in Ref. [39].

The above discussion shows that while the LSW theory represented a consider-

able advance in describing the diffusion-controlled Ostwald ripening quantita-

tively, it is an oversimplified approach in many respects in comparison to the
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complex and diverse situations encountered in actual practice. Though later

works made significant progress by accounting for some of the concerns arising

from the drastic assumptions in the LSW theory, these still left unanswered a

large number of questions about the size distribution in the diffusion-controlled

growth. For example, it is not known what particle size distribution results from

nucleation followed by the growth process and if this influences the system’s

approach to the asymptotic state. Moreover, at f0 0, diffusional interactions be-

tween particles are present and thus the spatial distribution of the particles be-

comes important. However, all the theories described earlier assume random spa-

tial distribution of particles and the role of spatial correlations between particles

is largely ignored; it is not yet fully understood how these assumptions may affect

the description of the growth kinetics.

4.2.2.2 Reaction-limited Growth

So far, we have only considered the diffusion-limited regime, characterized by

Df kdr in Eq. (4.7). Besides the diffusion process, that is accounted for in the

LSW theory, another important process in the growth of any particle is the reac-

tion at the surface where the units of diffusing particles are assimilated into the

growing nanocrystal. We now turn to this opposite limit of reaction-limited

growth.

If kdrfD in Eq. (4.7), then the growth rate is limited by the surface reaction of

the monomers. Then the rate law for the average radius of growing nanocrystals

can be reduced from Eq. (4.7) to the form given by

dr

dt
¼ 2skdV 2

mcy
RT

ðr=rb � 1Þ
r

¼ KRðr=rb � 1Þ=r ð4:14Þ

If the conservation of mass is valid, similar to the diffusion limited case, the

ratio of the average radius to the critical radius ðr=rbÞ is observed to be constant

[32, 66]. Hence the above differential equation in the case of simple first order

reaction can be integrated under this assumption to give rise to the equation of

the form

r 2AKRt ð4:15Þ

Thus, it can be seen that the mean particle size grows as a function of the

square root of time. The size distribution in the case of the reaction controlled

Ostwald ripening was established long back by Wagner [31] and is expected to fol-

low the equation of the form

DðxÞ ¼ kRx
2

2� x

� �5

exp
�3x

2� x

� �
ð4:16Þ

where, x ¼ x=r and kR depends on time t by the relation kR ¼ k 0=ð1þ t=tRÞ2. tR
is the time constant given by the expression
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tR ¼ r 2b0RT

skdCyV 2
m

ð4:17Þ

The typical form of the distribution function in the case of reaction controlled

kinetics is shown in Fig. 4.3. The above expression is valid for radii less than two

times the critical radius rb after which the distribution goes to zero. In contrast,

in the diffusion limited case, the distribution function was found to go to zero at

1.5 times the critical radius. It is observed that the size distribution in the reac-

tion limited growth is broader and more symmetrical than that obtained from

the diffusion-controlled growth (Fig. 4.2 and Eq. (4.12)).

4.2.2.3 Mixed Diffusion–Reaction Control

While in the preceding two sections, we have discussed the two limiting cases, in

practice it is to be expected that both diffusion and surface reaction will con-

tribute to the growth process in real experimental conditions, rendering the ap-

plicability of the limiting cases uncertain and of doubtful relevance in general.

Specifically, several recent reports [42, 44, 66] have stressed that the growth in

a variety of realistic systems does not belong to either of the two limits, namely

the diffusion- or the reaction-limited regimes, but is controlled by a combination

of diffusion and reaction at the surface.

It has been shown by LSW theory that, when the mass is conserved, the ratio

r=rb is a constant and equal to one in the diffusion-limited case [30]. Later, it was

observed that, in the reaction-limited case, when the mass is kept conserved, r=rb
is a constant and equal to 8/9 [45]. Recently it was shown [42, 66] that if the con-

ditions in limiting cases can be extended to the intermediate case, in other words

if r=rb is assumed to be a constant, K 0, Eq. (4.7) takes the form

dr

dt
¼ 2K 0sV 2

mcy
RTr2ð1=Dþ 1=kdrÞ

ð4:18Þ

Fig. 4.3 Typical line shape of the size distribution of a purely reaction-

controlled reaction as predicted by Wagner.
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This equation can be simplified and written in the following form

r 2 dr

D�const
þ r dr

kd
�const

¼ dt ð4:19Þ

which can be easily integrated to obtain

t ¼ Ar 3 þ Br2 þ C ð4:20Þ

where A ¼ RT=2DK 0sV 2
mcy and B ¼ RT=2kdK 0V 2

mcy and C is a constant. Thus,

this expression, while separating the diffusion and the reaction terms, provides

us with an analytical solution for the transient growth regime under the assump-

tions mentioned above. These expressions were found to explain satisfactorily

some of the experimental observations [66] discussed in a later section.

Talapin et al. [44] have further suggested that the growth of nanocrystals could

not be satisfactorily explained by approximating the Gibbs–Thompson equation

(Eqs. (4.5) and (4.6)) to just the first two terms of the exponential expansion. We

note that the size of the growing crystal, r, appears in the denominator of the ar-

gument for the exponential function in Eq. (4.5). This implies that the argument

becomes increasingly larger for decreasing r, thereby making the finite polyno-

mial expansion of the exponential function increasingly inaccurate. Thus, it is

necessary to go beyond such an approximate expression, as used earlier (see Eq.

(4.5)), particularly in the case of nanocrystal growth. Hence retaining the expo-

nential term in the Gibbs–Thompson equation and assuming rf d in Eq. (4.4)

they obtain the equation

dr �

dt
¼ S� expð1=r �Þ

r � þ K exp½a=r �� ð4:21Þ

where r � is the dimensionless average radius given by

r � ¼ RT

2sVm
r ð4:22Þ

The other parameters include the rate constant, K, monomer oversaturation pa-

rameter, S, and the dimensionless time t. They are given by the equations,

t ¼ R2T 2Dcy
4s2Vm

t ð4:23Þ

K ¼ RT

2sVm

D

kd
ð4:24Þ

S ¼ cb=cy ð4:25Þ

In arriving at the above equations, the volume fractions were kept lower than

10�3, so that the corrections due to the diffusional interactions between neighbor-
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ing particles were not necessary. Monte-Carlo simulations were performed by cal-

culating the remaining monomer concentration and the monomer oversaturation

S in each cycle and substituting in Eq. (4.21) to calculate the growth of the next

step. Different statistical parameters like oversaturation of monomers, nanocrys-

tal concentration, average particle size, standard deviation in the size distribution

were monitored at each step. These calculations included the nucleation step in

the growth dynamics and assumed that the nucleation and growth processes

were completely separated in time. Though detailed kinetics of nucleation is not

known experimentally in real systems, these calculations suggested that the influ-

ence of initial conditions on the growth of nanocrystals was negligibly small as

long as the rate of nucleation was much higher than the growth rate. This part

of the result is in agreement with that of the LSW theory predicting a unique

shape of the particle size distribution independent of the initial conditions of nu-

cleation. In the case of the growth of a single nanocrystal, some amount of the

monomer is consumed in the reaction. For growths with a finite volume of solu-

tion, the bulk concentration of monomer and the value of the oversaturation S
decrease gradually. This gives rise to a shift in the critical radius towards larger

sizes and the growth rate decreases.

In the case of nanocrystal ensembles with a diffusion-controlled growth, this

approach predicts that an initially symmetric normal radius distribution, as well

as the standard deviation, evolves in time toward the asymmetric negatively

signed one. Initial conditions have significant influence on the size distribution

only in a short transient period and only minor changes were observable at later

stages of growth. When the reaction at the surface is much slower than the

diffusion process, thereby becoming the rate determining step, the particle size

distribution is found to be systematically broader than observed for diffusion-

controlled growth. In the diffusion-controlled growth, in the early period, it is ob-

served that the growth rate is much higher than predicted by the LSW theory. The

narrowest size distribution is achieved when the particle growth is influenced

more by the diffusion process than the reaction at the surface. They also estab-

lished conditions for the evolution of ensembles leading to either ‘‘focusing’’ or

‘‘defocusing’’ of the particle size distribution. It was observed that the size distri-

bution of the nanocrystal in the early stages of growth underwent a strong focus-

sing effect if the particles had high initial oversaturation parameters, in other

words, a large excess of the monomers. The excess of monomer affects strongly

the evolution of the size distribution during the initial stages of nanocrystal

growth. A fast increase in r accompanied by a strong narrowing in the size distri-

bution is observed, followed by subsequent broadening without almost any

change in r. However, the value of r and the standard deviation depend on the ini-

tial monomer concentration. The nanocrystals have initially positive growth rates

and smaller nanocrystals grow faster than the larger ones. The number of par-

ticles remains nearly constant during the stage of ‘‘focusing’’ of the size distribu-

tion. During the focusing stage the size distribution remains nearly symmetric,

and it is well described by a normal distribution. The defocusing is accompanied

by a transition from symmetric to asymmetric stationary size distribution. During

150 4 Growth of Nanocrystals in Solution



the focusing stage the oversaturation drops to some equilibrium value, and the

number of nanocrystals starts to decrease due to the dissolution of the smallest

particles.

4.3

Experimental Investigations

Having discussed the theoretical framework, we now review in this section the

experimental situation in investigating the growth kinetics of various nanocrys-

tals. Though the potential of solution phase synthesis of metals and metal oxide

nanocrystals has long been realized, there were few mechanistic studies on these

systems till about a decade ago. However, in this past decade, there has been a

surge of interest [14, 15, 46–55, 66] in understanding the growth mechanism in

nanocrystals. As already mentioned, the growth of nanocrystals is believed to take

place predominantly via diffusion-limited coarsening, known as ‘‘Ostwald ripen-

ing’’. This has been reported so far for the cases of TiO2 [46], InAs and CdSe [14]

and ZnO [47] nanocrystal growth. Typically in any such experiment, the average

size of the growing nanocrystal is monitored by measuring for example, the aver-

age diameter, d, of spherical particles as a function of the time, t and then analyz-

ing whether d3 is proportional to t in accordance with the prediction of the LSW

theory (see Eq. (4.10)). The average size of nanocrystals can be measured either

directly employing microscopic techniques or indirectly by monitoring a size-

dependent physical property, for example absorption or emission energies and

then deducing the size from the measured quantity with the use of a suitable cal-

ibration curve that relates the physical property to the size of the nanocrystals. For

example, Oskam et al. [46] studied the growth kinetics of TiO2 by transmission

electron micrograph (TEM) recorded at various stages of growth, arriving at the

conclusion that the growth can be described by the d3 z t prediction of the LSW

theory.

Though TEM is the most direct tool to analyze the size and the size distribution

in nanocrystals, it is a very time consuming process and it would be impossible

to follow the size and size distribution of a fast growing particle during the syn-

thesis by this technique. Moreover, in situ monitoring of the growth of nanocrys-

tals in a solution is obviously beyond the scope of TEM. Therefore alternative

methods have been devised and employed in recent times to probe in situ growth

of nanocrystals in real time. Since the scattering of electromagnetic waves is a

pronounced function of the particle size, this phenomenon is being used increas-

ingly to study in situ growth of various nanocrystal systems. Considering the

nanometer size of these particles in the region of interest, small angle X-ray scat-

tering (SAXS), particularly using synchrotron radiation, becomes a powerful tool

to probe the growth of nanocrystals in the size regime of typically 0.5–10 nm with

a sub-second time resolution [54, 56].

Viswanatha et al. [54] used time-resolved SAXS at a third-generation synchro-

tron source to study the growth of CdS nanocrystals in the absence of any cap-
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ping agents. They studied the dependence of the average diameter of growing

nanocrystals and found it to follow the cube-root of time dependence, indicative

of an Ostwald ripening mechanism. Further, it was established that the growth

kinetics rigorously follows the LSW theory, not only in terms of the growth of

the average diameter of the nanocrystals, but also in terms of the time depen-

dence of the size distribution and the temperature dependence of the rate con-

stant, establishing a remarkable adherence to the diffusion-limited growth or

Ostwald ripening in the quantum confinement (<5 nm) regime.

Another alternate approach, based on the optical properties of nanocrystals, has

also gained recent popularity as an effective tool to investigate the growth mecha-

nism. It is well-known that the bandgap of nanocrystals in the small sized (<10

nm) regime is generally a strongly varying function of the size; this phenomenon

is often termed the quantum size effect. It has been extensively probed both

experimentally and theoretically. Based on a range of theoretical approaches to

calculate the electronic structure of nanocrystals, such as ab initio methods [57],

semi-empirical pseudo-potential methods [58, 59], and parametrized tight bind-

ing methods [60–67], it is now possible to quantitatively estimate the size of the

semiconducting nanocrystal from the shift in bandgap obtained from UV absorp-

tion data. This has led to an extensive increase in the study of growth kinetics in

recent times by monitoring the time-dependent UV absorption of in situ reaction

mixtures. Recently, it has been shown that it is also possible to estimate the size

distribution from UV absorption data [53] and also photoluminescence data [14].

This has led to a considerable advance in the study of growth kinetics in semicon-

ductor nanocrystals.

Peng et al. [14] used UV absorption to determine the size of the nanocrystals

and the width of the photoluminescence data to determine the size distribution

to study the growth of CdSe and InAs nanocrystals. They observed a focusing

and defocusing effect similar to that expected of Ostwald ripening behavior.

More recently, Qu et al. [68] developed an in situ method of measuring the UV

absorption of solutions at high temperatures and carried out real time measure-

ments with a time resolution of a few milliseconds. They showed that in the case

of CdSe the growth consists of a prolonged formation of relatively small particles

(nucleation) followed by a focusing of the size distribution when the distribution

changed from an asymmetric line shape to a symmetric one. This stage was fol-

lowed by a stable phase which is most likely due to the monomer concentration

in the solution being close to the solubility of the particles in the solution. The

fourth stage showed the relatively large particles in the distribution growing

even bigger while the relatively small ones in the solution disappeared. Hence

the authors suggested this stage as the main course of the Ostwald ripening

process.

Metal nanocrystals, like Au and Ag are known to show intense plasmon bands

in the visible region, which can be easily monitored by optical absorption spec-

troscopy. Recently, it has been shown by Scaffardi et al. [69] that the size of the

nanocrystal can be obtained from Mie theory [70] by analyzing the width of the

plasmon band in the case of smaller particles (<10 nm) and by analyzing the po-
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sition of the band for larger particles. This observation suggests the possibility of

studying the growth of the metal nanocrystals by monitoring the time evolution

of the spectral features of the plasmon band during the chemical reaction leading

to the growth of metal nanocrystals.

In the following sections, we critically review typical growth kinetics with illus-

trative examples from the literature. Recently it was shown that an apparently lin-

ear dependence of d3 on t, especially only in the asymptotic limit, does not rigor-

ously establish the validity of the LSW theory, although this criterion has been

used [46, 47] extensively in earlier studies of growth of such particles. In general,

dx as a function of t may appear linear within the experimental error limit for a

wide range of x-values. Therefore, it becomes necessary to verify explicitly the ex-

pected dependences of the rate constant on temperature and the concentrations

of the reactants, which provide more sensitive and critical testing grounds for

the growth mechanism. More detailed studies on these systems suggest that, in

most cases, the growth kinetics cannot be explained within the framework of dif-

fusion-limited Ostwald ripening. We discuss in detail one example of the growth

of metal nanocrystals, using Au as a test case [72], and one example of semicon-

ducting nanocrystals, using ZnO [48, 53, 55, 66] as an illustration; these studies

show that the growth kinetics often violates the over-simplified predictions of a

simple diffusion-limited growth model, in contrast to the popularly held belief of

the validity of diffusion-limited Ostwald ripening of nanocrystals in such cases.

4.3.1

Au Nanocrystals

Interest in the colloidal metal particles dates back to the time of Michael Faraday

who recognized that the different colors of gold sols could be indicative of the dif-

ferent sizes or states of aggregation of the particles. An aspect of importance in

the context of metal particles is the phenomenon of nucleation and growth in

the nanometer regime. As early as 1951, a similar study was carried out by Turke-

vich et al. [71] on colloidal gold kinetics of gold sols in the micron length scales.

In recent times Seshadri et al. [72] have studied the growth kinetics of gold in the

nanometric regime quite extensively using transmission electron microscopy; we

discuss this work in detail here to illustrate the complex growth mechanism of

metallic nanocrystals. They studied the growth kinetics by investigating the parti-

cle size distribution at various times. It was observed that the growth was initially

quick, slowing down at longer times. A plot of the mean diameter as a function of

t1=3 was found to be nearly a straight line, as expected in the case of Ostwald rip-

ening. However, in contrast to the prediction of LSW theory in the context of the

diffusion-limited Ostwald ripening process, the size distribution was nearly sym-

metric and it was found that it could be described well by a Gaussian profile, as

shown in Fig. 4.4. While LSW and other theories of growth predict an asymmetric

size distribution function (see Eqs. (4.12) and (4.16) and Figs. 4.2 and 4.3), at-

tempts to use asymmetric profiles were not successful in describing the experi-

mental results. It is possible to arrive at a more symmetric size distribution
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within the LSW theory, but this happens only at high enough volume fractions.

Considering that the volume fractions in these specific studies were below 10�4,

an exceptionally high volume fraction cannot be invoked to explain the experi-

mentally observed symmetric size distribution. This report suggests that the

growth process should be essentially stochastic and implies that the nucleation

and growth is well separated. Further, it is observed that the average diameter

and the standard deviation show the same time dependence. Normalized inten-

sity as a function of x=r collapses into a single curve, thereby suggesting that it

is a stochastic process. It was concluded that the growth was activated, since the

growth kinetics showed a temperature dependence. This report provides a new

growth law to fit the observed particle size distribution and its time dependence.

However, further investigation is required to understand the growth mechanism

completely in such cases.

4.3.2

ZnO Nanocrystals

Growth kinetics in the case of ZnO nanocrystals is one of the earliest [47] as well

as the most extensively investigated systems [48–50, 52, 53, 55, 66, 73]. However,

the study of the growth kinetics of ZnO nanocrystals from solutions has been

fraught with contradictory claims till recently. It has been known for a long time

that ZnO can be synthesized using zinc acetate (Zn(OAc)2) and a base such as

NaOH. However, the intriguing aspect in the preparation of the samples has

been the observation that the presence of a small or even trace amount of water

in the synthesis of ZnO nanocrystals influences strongly the size of the nanocrys-

tals [74, 75]. In order to understand the extraordinary sensitivity of ZnO nano-

crystal size to the presence of any trace amount of water, we first review the

growth kinetics of ZnO in the absence of any base and only in the presence of

Fig. 4.4 Typical variation of the particle size distribution at various time

intervals. The solid lines show the Gaussian fits to the experimental

data. (Adapted from Ref. [72].)
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precisely defined quantities of water. One of the first reports of the growth kinet-

ics of ZnO using water as a reactant was put forth recently by Hu et al. [55]. They

studied the growth kinetics of ZnO by measuring the time-resolved UV absorp-

tion spectra and by analyzing the shift in the band edge using the effective mass

approximation (EMA) [76]. However, it has long been shown that EMA overesti-

mates the size of the nanocrystal and hence is not a very reliable tool to obtain the

size of nanocrystals. Here we discuss the work carried out more recently in our

own group, circumventing the earlier shortcomings [66].

A typical set of optical absorption spectra for a given concentration of reactants

and at a fixed temperature (Fig. 4.5) shows a clear increase in the absorption in-

tensity with increasing time. This suggests an increase in ZnO concentration

with time. More significantly, there is a systematic shift in the absorption edge

to lower energies with increasing time, indicating a steady growth of larger par-

ticles. The average diameter, d, of the nanocrystals was estimated from the depen-

dence of the bandgap on particle size, based on a realistic tight binding modeling

of first principle electronic structure calculations for ZnO [66], which is known to

provide a realistic variation in the bandgap energy with size, unlike the earlier

proposed EMA. We show typical variations of the cube of the diameter, d, vs. the
time, t for several temperatures in Fig. 4.6(a). Since the size information from the

shift in the absorption edge is derived indirectly via the dependence of the elec-

tronic structure on the size of the nanocrystals, the sizes obtained from the anal-

ysis of the absorption spectra were verified at a few specific points in time by

monitoring the TEM intermittently.

Though the d3 vs. t behavior deviates from the expected linearity based on the

LSW theory (see Eq. (4.10)) in the small time regime, it indeed follows a linear

relation at higher time-scales remarkably well, shown by thick solid lines, as if

suggesting a dominantly diffusion-limited growth in the long time limit. How-

ever, it has also been noted that these results show acceptable linear behavior

within experimental uncertainties for x-values ranging from 2.3 to 4, as illus-

Fig. 4.5 UV absorption curves obtained at equal intervals of time for a

typical reaction carried out at 318 K with 100 mM of water. (Adapted

from Ref. [66].)
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trated by a plot of d4 vs. t for the same set of dðtÞ used for Fig. 4.7, indicating the

difficulty in establishing the mechanism of growth kinetics only on the basis of

the value of the exponent in dx z t plots. In order to probe the growth mecha-

nism more rigorously, it is necessary to go beyond the simple verification of the

d3 vs. t plot being linear or not. It should be noted here that the slope ðKÞ of

the linear plot of d3 vs. t has a well-defined dependence on the temperature, T,
via the dependence of the diffusion constant, D, on T (see Eq. (4.11)). One can

easily obtain the slopes, K, from the linear plots in Fig. 4.6(a) at different temper-

atures for various concentrations of the reactants, namely water in this case.

Least-squared error fits of the K value to the form described in Eq. (4.11) show

that though the observed dependence of K on T is reasonably well described by

this functional form at higher concentration of water, the fit is far from satisfac-

tory for lower water concentration, as shown in Fig. 4.6(b). Even more signifi-

cantly, the activation energy, Ea, obtained from the best-fit curves and plotted

Fig. 4.6 (a) Variation of the cube of diameter of ZnO nanocrystals

shown as a function of time for different temperatures at a fixed water

concentration (233 mM). (b) The variation of the slopes of the linear

part as a function of temperature for different water concentrations. The

solid lines show the fits obtained from the function of the form given in

Eq. (4.11). The inset shows the variation of the activation energies as a

function of concentration of water. (Adapted from Ref. [66].)
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(open circles) in the inset of Fig. 4.6(b) clearly shows a pronounced dependence

on the concentration of water. This is clearly an unphysical situation, since the

activation energy associated with the diffusion is clearly a function of the solvent

and cannot depend on the solute concentration in the dilute limit (typically < 10

mmol of the reactant). This clearly suggests that a purely diffusion-controlled

mechanism cannot explain the observed growth laws, in spite of the apparently

linear behavior of the d3 vs. t plots.
In the case of the present reaction of zinc acetate with water to form ZnO nano-

crystals, the Zn2þ ions are obtained by the complete dissociation of zinc acetate

into Zn2þ and OAc� ions. The hydroxyl ions for the reaction are obtained from

the dissociation of water. Ideally the nanocrystals of ZnO are assumed to com-

prise tetrahedrally coordinated Zn and O atoms and only the surface Zn atoms

are terminated with a hydroxyl ion instead of the O ion. Small ZnO clusters are

nucleated at time t ¼ 0. The growth of the clusters occurs by the dehydration of

terminating OH� ion using the freely available dissociated OH� ion in the so-

lution. It is followed by the capturing of the Zn2þ ions available in the solu-

tion and brought near the surface of the cluster by the process of diffusion.

The growth of the nanocrystal is thus further continued by the Zn2þ ion cap-

turing the OH� ion and so on. Hence the Zn2þ ions and the OH� ions in

solution may be considered as the pseudo-monomers of the growth process.

In this present model the availability of the OH� ions is governed by the dis-

sociation of water. This is, however, controlled by the dissociation constant of

water and hence the reaction cannot be assumed to be instantaneous. The pres-

ence of a prolonged reaction suggests that there should be an increase in the

concentration of ZnO nanocrystals, at least for the lower concentrations of water.

Further, it should be noted that the dissociation constant of water increases by a

couple of orders of magnitude with increasing temperature providing a large

number of OH� ions at higher temperatures and thus increasing the rate of the

Fig. 4.7 Variation of the fourth power of the diameter of ZnO nano-

crystals shown as a function of time for different temperatures at a

fixed water concentration (233 mM).
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reaction drastically. Thus the reaction mechanism to form ZnO can be written as

H2O $ Hþ þOH�, Zn2þ þ 2OH� $ ZnðOHÞ2 $ ZnOþH2O.

A colloidal particle grows by a sequence of monomer diffusion towards the sur-

face due to the concentration gradients set up by the differences in local curva-

tures and then the reaction of the monomers on the surface. Since the absorb-

ance in the UV absorption spectrum increases with time (Fig. 4.5), it is clear that

the reaction forming ZnO take place over time scales comparable to that of the

growth of the nanocrystals, especially at lower temperatures and lower concentra-

tions of water, suggesting that the nucleation is not separated from the growth.

The reaction mechanism suggests that both the diffusion of Zn2þ ions and the

rate at which the reactions take place at the surface have to be taken into consid-

eration in the modeling of the growth process. Clearly then the growth in these

nanocrystals belong to the transient regime of growth, discussed in the earlier

section. Analyzing the reaction mechanism, using Eq. (4.7), it can be seen that

the reaction term is relatively more important for small d, which is consistent

with our observation (Fig. 4.6(a)) of more marked deviations from a purely

diffusion-controlled growth at early times or the initial stages of the growth,

when the nanocrystals are evidently the smallest in size. Replacing average radius

r by the average diameter d in Eq. (4.20), we obtain the relation, t ¼ Bd3 þ Cd2 þ
const, with B ¼ KT expðEa=kBTÞ and Kz 1=ðD0gV 2

mcyÞ. The coefficient C is of

the form CzT=kdgV 2
mcy. Using this expression relating d and t in the transient

regime of growth, the experimentally observed variation dðtÞ can be fitted for dif-

ferent temperatures, as shown in Fig. 4.8 by thick solid lines through experimen-

tal data obtained at different temperatures. The remarkable goodness of fits over

Fig. 4.8 Variation of the diameter of ZnO nanocrystals shown as a

function of time for different temperatures at a fixed water concentra-

tion (100 mM). (Adapted from Ref. [66].)
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the entire time regime, in contrast to those in Fig. 4.6(a), provides a conclusive

validation of this description for the growth of ZnO nanocrystals. Further, the

values of B for different temperatures and different concentrations of water can

be extracted from the fits. The expected temperature dependence of the coeffi-

cient B was carried out and the activation energy, Ea, obtained from the least

square fits to BðTÞ, can be plotted as a function of water concentration. While

the results for the activation energy obtained earlier assuming only a diffusion-

controlled growth (shown in the inset of Fig. 4.6(b)) exhibited a pronounced

dependence on the water concentration, the new estimates of Ea using the tran-

sient growth model recovers a physically acceptable scenario of concentration-

independent activation energy, 0:74G 0:01 eV. This firmly establishes the pro-

posed growth mechanism.

We note here that the linear dependence of d3 on t has often been used in the

past literature to conclude about the growth model in a wide variety of systems,

such as TiO2 [46], CdSe [14], and ZnO [55]. However, in view of the results dis-

cussed here, it is clear that the cubic dependence of diameter on time alone is not

enough to determine the mechanism of growth for nanocrystals and it is neces-

sary to study the other dependences. One such example of growth studies was

performed in the group of Searson to study the growth of ZnO in the presence

of a base such as NaOH. The distinguishing feature of this case compared to the

previous example is that a strong base (NaOH) providing a very large number

of OH� ions is used to carry out the reaction in contrast to the presence of only

water, providing OH� concentration of the order of 10�7. We note here that most

of the syntheses of ZnO nanocrystals, independent of the growth studies, indeed

use such a base to carry out the reaction to form ZnO [47, 80].

The growth kinetics in the presence of a base, such as NaOH, as the reactant

has been extensively studied by Searson et al. [47, 49, 51, 55]. They have mea-

sured the in situ UV absorption spectra for the reaction carried out at different

temperatures. The bandgap thus obtained is converted to the size of the particle

using EMA. They have shown that the cube of the diameter of the particles is lin-

early dependent on the time, as expected by the LSW theory. Further, they have

obtained the values of s and Vm from literature and determine cy experimentally.

Using these values, they have calculated the value of the diffusion coefficient D
from the slopes of the linear curves. For the case of ionic diffusion, it is known

that the diffusion constant can be obtained by the Stokes–Einstein relation given

by

D ¼ kBT=6pha ð4:26Þ

where h is the viscosity of the solvent and a is the hydrodynamic radius of the

solute. The values obtained for the diffusion coefficient from the value of the

slope K were compared with that of the Stokes–Einstein diffusion model and

found to be consistent with the typical values for ions in solution at room temper-

ature and in good agreement with that obtained from the Stokes–Einstein model.
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These authors have also studied the effects of various anions like Zn(OAc)2,

ZnBr2 and Zn(ClO4)2 on the growth kinetics. They found that that the particle

growth at longer time is determined solely by diffusion in the case of Zn(OAc)2
and ZnBr2. However, in the case of Zn(ClO4)2, the radius increases more rapidly

than for coarsening. The authors suggested that aggregation could be a compet-

ing mechanism of growth to the coarsening process and is dependent on surface

chemistry resulting in either oriented or random attachment of particles. Ran-

dom aggregation usually leads to the formation of porous clusters of particles

whereas epitaxial attachment of particles leads to the formation of secondary par-

ticles with complex shapes and unique morphologies. They believe that the faster

increase in the radius in the case of Zn(ClO4)2 arises due to epitaxial aggrega-

tions, resulting in much larger particles. The rate constants were obtained for all

three different anions and plotted in the Arrhenius plot. From this plot, the acti-

vation energies were calculated to be 0.21 eV for ZnBr2, 0.35 eV for Zn(OAc)2 and

0.46 eV for Zn(ClO4)2. They also studied the effect of solvents on the kinetics by

using ethanol, propanol, butanol, pentanol and hexanol as solvents in separate

reactions. It is found that the coarsening rate constant increases not only with

increasing temperature, but also with longer solvent chain length. The effect of

solvent chain length on the rate constant is believed to arise from solvent viscos-

ity, surface energy, and the bulk solubility of ZnO in these different solvents.

These results illustrate that the solvent is an important parameter in controlling

details of the growth kinetics.

A very recent work [53] has suggested a non-monotonic dependence of growth

on the NaOH concentration, thus indicating a qualitative departure from the

Ostwald ripening behavior. This suggests that the growth mechanism in ZnO is

quite complex; while it has been extensively studied, more experiments are needed

to understand completely the growth mechanism in these nanocrystals.

4.3.3

Effect of Capping Agents on Growth Kinetics

So far, we have discussed the growth of nanocrystals in the absence of any cap-

ping agent, which, when present, inhibits the growth of nanocrystals by effec-

tively passivating their surfaces. However, the synthesis of almost all nanocrystals

is in reality carried out in the presence of a capping agent to stabilize the desired

size for a given application, thereby making the growth process complex and be-

yond the scope of LSW theory. The effect of the capping agent on the modifica-

tion of the growth kinetics is very specific to the choice of capping agent, thereby

defying any general theoretical approach; additionally very little is known about

the growth process in such a complex reaction. In particular, there is hardly any

theoretical approach to understanding such non-ideal reaction conditions. On the

other hand, it is obvious that a detailed understanding of such growth processes

is essential, if we are to employ rational syntheses rather than empirical ones.

Thus, there have been a few attempts to probe experimentally different growth

processes in the presence of a variety of passivating agents in order to understand
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the influence that each reaction parameter has on the average size and the size

distribution. We present here a few selected examples of technologically impor-

tant systems, like CdSe and ZnO, to illustrate some of the important points.

4.3.3.1 Effect of Oleic Acid on the Growth of CdSe Nanocrystals

CdSe nanocrystals have attracted the attention of many groups because of the

possibility of tuning their emission wavelength through the entire visible spec-

trum by changing their size and the high quantum efficiency of such emission.

Peng et al. [14] discovered a very facile reaction for the synthesis of high quality

CdSe nanocrystals. However, a capping agent is inherently present in the synthe-

sis, making it necessary to study the role of capping agents in such a reaction.

This was recently discussed in detail by Bullen et al. [78] for the case of oleic

acid and TOP as capping agents. As the nuclei grow, van der Waals interactions

can cause rapid coalescence of nuclei and an unrestrained particle growth. How-

ever, capping agents may be added during the synthesis to adsorb and limit

particle–particle aggregation, though such molecules may, in principle, also-

hinder monomer deposition. For example, ligands such as oleate and TOP are

chemically bonded to both the precursor and the particles that form and hence

hinder particle growth.

Bullen et al. carried out time-resolved UV absorption and fluorescence mea-

surements. From the shift in the absorption edge due to quantum confinement

effects, they obtained the sizes of the nanocrystals using the bandgap shift vs.

size calibration data presented by Yu et al. [79]. The nucleation of CdSe in hot

octadecene can provide an ideal environment for instantaneous nucleation, using

up all the monomers; therefore, a subsequent reduction in the temperature al-

lows only the growth of the particle, thus providing an ideal system to separate

out nucleation and particle growth in solution. The number of nuclei formed dur-

ing the nanocrystal synthesis and an estimation of the initial size of these nuclei

prior to growth have been studied [78]. It was found that the nuclei concentra-

tions were constant throughout the reaction, within experimental error, and that

it is a very fast process that ceases almost immediately after monomer injection.

It was observed that the rate is controlled by the reaction at the surface and a rate

equation was obtained. It was found that the rate of growth of the nanocrystal is

influenced by two effects. The surface area of each nanocrystal increases over

time tending to make the reaction rate accelerate; on the other hand, decreasing

concentrations of Cd and Se monomers cause the growth rate to slow down. As a

consequence of these two opposite trends, the radius is observed to grow almost

linearly at very early times. However, the growth rate proceeds toward saturation

in the long time regime. These results can be understood in the following way

using the chemical rate equation. The rate must obey an equation of the form

d½Cd�t
dt

¼ �kAðtÞ½Cd�tNðtÞ ð4:27Þ

where ½Cd�t is the concentration of available Cd at time t, AðtÞ is the surface area
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of each particle at time t, NðtÞ is the number of particles at time t, and k is an

interfacial rate constant that reflects the rate determining steps during deposition.

Under steady-state growth conditions both Se and Cd should deposit at equal

rates, so the particle growth can be described in terms of either species. From

the experiments it is observed that the number of particles remains constant fol-

lowing nucleation, i.e., NðtÞ ¼ N0; furthermore, assuming spherical symmetry

we get AðtÞ ¼ 4pr 2ðtÞ. Then the rate of increase in the volume of precipitated

CdSe in the entire solution is given by

dV

dt
¼ �Vm

d½Cd�t
dt

ð4:28Þ

where Vm is the molar volume of CdSe. From Eqs. (4.27) and (4.28), it is seen that

dr

dt
¼ kVmN0½Cd�t ¼ k½Vmð½Cd�0 � ½Cd�eqÞ � 4N0pr

3=3� ð4:29Þ

since the effective concentration of free Cd, ½Cd�t, is equal to the initial concentra-

tion injected ½Cd�0, less the amount already deposited, ½Cd�dep ¼ 4N0pr 3=3Vm,

less the amount remaining at equilibrium, ½Cd�eq.
At the maximum value of r, given by rmax ¼ ðY=ZÞ1=3 where Y ¼

Vmð½Cd�0 � ½Cd�eqÞ and Z ¼ 4N0p=3, all the excess Cd in solution would have

been consumed and hence, the radius was found to saturate after some time.

On fitting the data, it was found that the best fits for the rate constant were at

least 8 orders of magnitude below the diffusion-limited rate constant. This sug-

gests that the growth occurs at a far slower rate and hence smaller particles are

formed. The rate constant for growth did not change significantly with different

amounts of capping agents. These results indicated that the oleic acid is not only

an efficacious capping agent for CdSe nanocrystals in octadecene, but it markedly

influences the primary nucleation steps in two distinct ways. First, the number of

nuclei is reduced drastically as oleic acid is added since the nucleation is more

difficult in the presence of oleic acid due to its complexation with Cd; the results

also show that the initial nuclei in the presence of oleic acid are smaller than in

its absence. Secondly, the complexing agent not only reduces the rate of nuclea-

tion by reducing the active monomer concentration, but it also rapidly caps the

nuclei as they form. These two effects compete with each other. If there is too

much capping agent, nucleation can be completely hindered, ultimately leading

to indiscriminate growth of a small population of nuclei. However, because there

are fewer nuclei formed in the presence of the ligand, larger clusters were unex-

pectedly found to form with increasing concentration of oleic acid. It is also noted

that since the two processes, nucleation and particle growth, are decoupled in this

system, there are two, well-defined activation energies. This shows clearly that the

capping agents not only determine the rate of growth, but also play a major role

in determining the number and size of the nuclei formed during injection; this,

in turn, has a very pronounced influence on the subsequent growth rate.
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4.3.3.2 PVP as a Capping Agent in the Growth of ZnO Nanocrystals

Various reports in the literature [66, 80] have now established that polyvinyl pyrol-

lidone (PVP) is an effective capping agent to restrict the growth of ZnO nanocrys-

tals. The temporal evolution of the average diameter, d, as a function of time, t,
for the different ratios of Zn2þ to PVP is shown for a fixed NaOH concentrations

in Fig. 4.9 [53]. The figure shows that there is a rapid and sustained growth of

nanocrystals with time in every case, in spite of the presence of the capping

agent. It was found that it was not possible to fit any of the curves to the form

dx � dx
0 ¼ Kt, for any given value of x, even for the case without any PVP. This

suggests that the growth process observed here is qualitatively different from the

Ostwald ripening mechanism, even in the absence of any capping agent, as dis-

cussed in a previous section. The present example, involving the presence of a

capping agent [53] is even less understood and is certainly beyond the scope of

the LSW theory. In the absence of any guidelines provided by a theoretical under-

standing, it was noted that an empirical fit in terms of ðd� d0Þx ¼ Kt describes
well the experimental results in every case, as shown by the best fit results with

the solid lines overlapping the experimental data points in Fig. 4.9.

Fig. 4.9 Variation in the size of ZnO nanocrystals shown as a function

of time for different ratios of Zn2þ to PVP at a fixed concentration (0.5

mmol) of NaOH. The inset shows the UV absorption curves for a

typical system as a function of time ranging from 0 to 60 min. (Adapted

from Ref. [53].)
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Further, it was observed that the absorption edge of the products after a fixed

time of reaction appears at different energies for different concentrations of

NaOH, as shown in Fig. 4.10. It is observed to vary non-monotonically, thereby

indicating the complex dependence of the average nanocrystal size on NaOH con-

centration. Additionally, the sharpness of the absorption edge is found to vary sig-

nificantly and non-monotonically as a function of NaOH concentration. These

intriguing non-monotonic dependences of the size and size distribution on

NaOH concentration after a fixed reaction time are shown in Fig. 4.11. Fig.

4.11(a) shows the expected result that the average particle size is largest in the ab-

sence of PVP (Zn2þ to PVP ratio ¼ 5:0). A low Zn2þ to PVP ratio of 5:1 is also

found to be inefficient in passivating the nanocrystals (Fig. 4.11(b)), minimal

changes were observed compared to the uncapped system (Fig. 4.11(a)) in terms

of both size and size distribution. However, the average size of the nanocrystal

was found to decrease systematically as the PVP concentration was increased, as

shown in Fig. 4.11(c) and (d). The results shown in Fig. 4.11 reveal that the de-

pendences of d on the concentration of NaOH for all concentrations of PVP

were essentially similar.

The insets to Fig. 4.11(a) and (b) revealed a slight monotonic increase in the

relative distribution at low PVP concentration as the NaOH concentration in-

creases. Interestingly, at higher concentrations of PVP (insets to Fig. 4.11(c) and

(d)), we observed a striking decrease in the size distribution or a ‘‘narrowing’’ ef-

fect. This narrowing effect was understood in the following way. In the presence

of high concentrations of PVP and the absence or low concentration of NaOH,

the ZnO-like clusters are formed using the oxide ions from the PVP and isopro-

panol in the medium catalyzed by the slight basicity of the medium. In this case

the rate determining step of the reaction is found to be the formation of the ZnO-

like clusters and these clusters are immediately capped efficiently with PVP.

Therefore, further ripening that leads to more uniform sized clusters is strongly

suppressed at higher PVP concentration due to the effective passivation. This is

also suggested by the fact that there is hardly any growth of the nanocrystal size

Fig. 4.10 The UV absorption curves recorded for ZnO

nanocrystals with Zn2þ to PVP ratio of 5:3 as a

function of NaOH concentration varying from 0.04 to

1 mmol at fixed time of 160 min after the addition of

NaOH. (Adapted from Ref. [53].)
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with time, indicated by the overlap of the three time (0, 100 and 160 min) plots,

for the large PVP concentrations (Fig. 4.11(c) and (d)) in the low NaOH concen-

tration regime. Hence, a broad size distribution was observed in such cases. Be-

yond a certain critical concentration of NaOH, namely about 0.1 to 0.2 mmol in

Fig. 4.11(c) and (d) respectively, an evident growth of the nanocrystal size with

time was observed, suggesting that, at these higher concentrations, NaOH is ef-

fective in reacting with the small pre-formed ZnO clusters in spite of the pres-

ence of PVP, thereby leading to the growth, though at a much slower rate than

in the uncapped case. This removal of the capping agent at higher concentration

of NaOH also allows a ripening process in competition with the passivating pro-

cess by PVP, that gives rise to a higher degree of uniformity in size. Interestingly

it was also noted that the minimum in the relative deviation corresponds to the

same NaOH concentration that is required to just reach the low size regime in

the range of the higher NaOH concentration regime. If the NaOH concentration

Fig. 4.11 Variation in the size of ZnO nanocrystals plotted as a function

of NaOH concentration at times 0 min (closed circles), 100 min (half-

open circles), and 160 min (open circles) for Zn2þ to PVP ratios of (a)

5:0, (b) 5:1, (c) 5:3, and (d) 5:5. The corresponding insets show the

variation in size distribution at 160 min. (Adapted from Ref. [53].)
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is higher than this optimal value, the relative deviation becomes larger, leading to

a poorer quality of the product, though the average particle size remains approxi-

mately the same. Thus, the present study establishes the necessity to use the

optimal NaOH concentration to obtain small nanocrystals with a minimum size

distribution.

4.3.3.3 Effect of Adsorption of Thiols on ZnO Growth Kinetics

Though the effect of thiols in capping the sulfides is well-known [81], it has been

recently observed that the growth of ZnO nanocrystals can be altered by the addi-

tion of thiols. Pesika et al. [50] carried out reactions to form ZnO using zinc ace-

tate and a base such as NaOH and studied the effect of the addition of thiol on

the growth of ZnO. This was done by adding different amounts of octanethiol to

a reaction of ZnO and carrying out an in situ UV absorption study. From the ob-

served shifts in the band edge, they obtained the sizes of the nanocrystals using

EMA and found that the growth of the nanocrystals is retarded by the addition of

octanethiol. Further, it was observed that the retardation is more efficient on in-

creasing the concentration of octanethiol.

We have studied the effect of adding a large amount of thiol on the growth of

ZnO nanocrystals, when the capping agent was added after different intervals of

time; the results are shown in Fig. 4.12 as plots of d vs. t. The vertical error bars

on each data point represent the size distribution, while the average size is de-

noted by the data point itself. The data with filled circles show that the uncapped

ZnO continues to grow with time, with the average diameter of the nanocrystals

reaching up to ca. 5.5 nm after nearly 2 h. The size distribution also exhibits a

Fig. 4.12 Temporal evolution of the diameter of ZnO nanocrystals with

thiol added at different intervals of time. The size distribution is shown

as error bars in the graph.

166 4 Growth of Nanocrystals in Solution



monotonic increase in the uncapped case. The arrows on the other two sets of

data mark the time when the thiol was added to the solution. It is interesting

to note that with the addition of thiol, the growth continues for a short period of

approximately 5 min and then the growth effectively stops. Additionally, the size

distribution also does not change with time after a short time of adding the cap-

ping agent, as shown by the error bars in Fig. 4.12. Thus, it can be observed that

thiol is a very efficient capping agent for ZnO.

The above examples make it clear that though the capping agents are expected

to reduce the size and the size distribution, it is necessary to maintain the synthe-

sis condition at the optimal level in order to prevent reversal of roles in the reac-

tion. The study of the growth kinetics in the more realistic and complex cases of

capped nanocrystals provide us with a handle to understand the details of growth

under actual synthetic conditions and thereby help us to achieve the optimal

conditions.

4.4

Concluding Remarks

Solution chemistry is the most versatile and highly flexible technique to tune the

size and size distribution of nanocrystals. From a fundamental point of view, the

growth kinetics of a solid in solution constitutes a very important field of study;

however, there are relatively few such investigations reported in the literature. We

have presented in this chapter the growth of nanocrystals from solutions in terms

of some of the available theoretical models, followed by specific experimental

results as illustrative examples of different growth models. We also indicate how

such studies may open up new routes to the rational synthesis of nanocrystals.

It is observed that the growth of nanocrystals can be controlled either by diffu-

sion or by the reaction at the surface. In the diffusion-controlled regime, we have

discussed the assumptions as well as the results obtained from the LSW theory.

We have also discussed models with specific improvements over the LSW theory

in the diffusion-limited regime. We have presented the dependence of diameter

and the form of the size distribution in the reaction-limited regime. Then these

two limiting behaviors were integrated into a single model which accounts for

the regime where both diffusion and reaction at the surface are important. We

discussed the essential results obtained within this transient regime at the end

of the section dealing with various theoretical models.

While there are several studies in the literature reporting diffusion-limited Ost-

wald ripening as the mechanism of growth, we present the cases of Au nanocrys-

tals and ZnO nanocrystals, exhibiting remarkable departure from the expected

Ostwald ripening process. In the case of Au nanocrystals, it is observed that

though the diameter is found to increase as the cube-root of time, the size distri-

butions are found to be very symmetric, unlike that expected for Ostwald ripen-

ing behavior. In the case of ZnO nanocrystals synthesized even in the absence of

a base, it was found that though d3 z t is satisfied in the asymptotic limit, the
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activation energy is found to depend on the concentration of the reactant, if the

experimental data are analyzed in the usual manner within the diffusion-limited

ripening process. A better analysis suggests that ZnO growth kinetics belong to

the transient Ostwald ripening regime.

We have then explored the effects of capping agents on the growth kinetics in

three typical cases, namely the effect of oleic acid on the growth of CdSe nano-

crystals, PVP on the growth of ZnO and thiol on the growth of ZnO. In all the

cases, the capping agent is found to have multiple roles and affects the kinetics

in a complicated and unique manner that is beyond the scope of the existing

theories.
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