Contents

List of Contributors XI Preface XV A Personal Foreword XVII

Part One Hit Finding and Profiling for Protein Kinases: Assay Development and Screening, Libraries 1

v

1	In Vitro Characterization of Small-Molecule Kinase Inhibitors 3
	Doris Hafenbradl, Matthias Baumann, and Lars Neumann
1.1	Introduction 3
1.2	Optimization of a Biochemical Kinase Assay 4
1.2.1	Step 1: Identification of a Substrate and Controlling of the Linearity
	between Signal and Kinase Concentration 4
1.2.2	Step 2: Assay Wall and Optimization of the Reaction Buffer 6
1.2.3	Step 3: The Michaelis–Menten Constant $K_{\rm m}$ and the ATP
	Concentration 10
1.2.4	Step 4: Signal Linearity throughout the Reaction Time
	and Dependence on the Kinase Concentration 12
1.2.5	Step 5: Assay Validation by Measurement of the IC ₅₀
	of Reference Inhibitors 15
1.3	Measuring the Binding Affinity and Residence Time
	of Unusual Kinase Inhibitors 15
1.3.1	Washout Experiments 18
1.3.2	Surface Plasmon Resonance 19
1.3.3	Classical Methods with Fluorescent Probes 21
1.3.4	Preincubation of Target and Inhibitor 22
1.3.5	Reporter Displacement Assay 22
1.3.6	Implications for Drug Discovery 25
1.4	Addressing ADME Issues of Protein Kinase Inhibitors in Early
	Drug Discovery 26

VI Contents

1.4.1	Introduction 26
1.4.2	Experimental Approaches to Drug Absorption 30
1.4.2.1	Measuring Solubility 30
1.4.2.2	Measuring Lipophilicity and Ionization 30
1.4.2.3	Measuring Permeability 31
1.4.2.4	Transporter Assays Addressing P-gp Interaction 33
1.4.3	Experimental Approaches to Drug Metabolism 34
1.4.3.1	Background and Concepts 34
1.4.3.2	Measuring Metabolic Stability 37
1.4.3.3	Measuring CYP450 Inhibition 39
	References 39
2	Screening for Kinase Inhibitors: From Biochemical to Cellular Assays 45 Jan Eickhoff and Axel Choidas
2.1	Introduction 45
2.1.1	Kinase Inhibitors for Dissection of Signaling Pathways 46
2.1.2	Cellular Kinase Assays for Drug Discovery Applications 46
2.2	Factors that Influence Cellular Efficacy of Kinase Inhibitors 47
2.2.1	Competition from ATP 47
2.2.2	Substrate Phosphorylation Levels 51
2.2.3	Ultrasensitivity of Kinase Signaling Cascades 51
2.2.4	Cell Permeability 52
2.2.5	Cellular Kinase Concentrations 53
2.2.6	Effects of Inhibitors Not Related to Substrate
	Phosphorylation 54
2.3	Assays for Measurement of Cellular Kinase Activity 55
2.3.1	Antibody-Based Detection 56
2.3.2	High-Content Screening 59
2.3.3	Use of Genetically Engineered Cell Lines 60
2.3.4	Genetically Encoded Biosensors 61
2.3.5	Label-Free Technologies 62
2.3.6	Analysis of Kinase Family Selectivity 62
2.3.7	SILAC 62
2.3.8	Affinity Chromatography with Immobilized Kinase Inhibitors 63
2.4	Outlook 63
	References 64
3	Dissecting Phosphorylation Networks: The Use of Analogue-Sensitive
	Kinases and More Specific Kinase Inhibitors as Tools 69
	Matthias Rabiller, Jeffrey R. Simard and Daniel Rauh
3.1	Introduction 69
3.2	Chemical Genetics 71
3.2.1	Engineering ASKA Ligand–Kinase Pairs 71
3.3	The Application of ASKA Technology in Molecular Biology 76
3.3.1	Identification of Kinase Substrates 76

Contents VII

- Studies on Kinase Inhibition 76 3.3.2
- 3.3.3 Alternative Approaches to Specifically Targeting Kinases of Interest 78
- 3.4 Conclusions and Outlook 80 References 81
- Part Two Medicinal Chemistry 85
- 4 Rational Drug Design of Kinase Inhibitors for Signal **Transduction Therapy** 87 György Kéri, László Őrfi, and Gábor Németh
- The Concept of Rational Drug Design 88 4.1
- 4.2 3D Structure-Based Drug Design 89
- Ligand-Based Drug Design 92 4.3
- 4.3.1 Active Analogue Approach 92
- 4.3.2 3D Quantitative Structure-Activity Relationships 92
- 4.4 Target Selection and Validation 93
- Personalized Therapy with Kinase Inhibitors 96 4.5
- Target Fishing: Kinase Inhibitor-Based Affinity Chromatography 97 4.5.1 The NCLTM Technology and Extended Pharmacophore Modeling 4.6
 - (Prediction-Oriented OSAR) 99
- 4.7 Non-ATP Binding Site-Directed or Allosteric Kinase Inhibitors 101
- 4.8 The Master Keys for Multiple Target Kinase Inhibitors 102
- Application of *KinaTor*TM for the Second-Generation Kinase 4.8.1 Inhibitors 105
- 4.9 Conclusions 107 References 109
- 5 Kinase Inhibitors in Signal Transduction Therapy 115 György Kéri, László Őrfi, and Gábor Németh
- 5.1 VEGFR (Vascular Endothelial Growth Factor Receptor) 115
- 5.2 Flt3 (FMS-Like Tyrosine Kinase 3) 116
- 5.3 Bcr-Abl (Breakpoint Cluster Region-Abelson Murine Leukemia Viral Oncogene Homologue) 118
- 5.4 EGFR (Epidermal Growth Factor Receptor) 118
- 5.5 IGFR (Insulin-Like Growth Factor Receptor) 120
- FGFR (Fibroblast Growth Factor Receptor) 120 5.6
- 5.7 PDGFR (Platelet-Derived Growth Factor Receptor) 121 5.8 c-Kit 121
- 5.9 Met (Mesenchymal-Epithelial Transition Factor) 122
- 5.10 Src 123
- p38 MAPKs (Mitogen-Activated Protein Kinases) 123 5.11
- 5.12 ERK1/2 124
- JNK (c-Jun N-Terminal Kinase, MAPK8) 5.13 126
- PKC (Protein Kinase C) 126 5.14
- 5.15 CDKs (Cyclin-Dependent Kinases) 127

VIII Contents

5.16	Auroras 127
5.17	Akt/PKB (Protein Kinase B) 129
5.18	Phosphoinositide 3-Kinases 129
5.19	Syk (Spleen Tyrosine Kinase) 130
5.20	JAK (Janus Kinase) 130
5.21	Kinase Inhibitors in Inflammation and Infectious Diseases 131
5.21.1	Inflammation 131
5.21.2	Infection 132
	References 134
6	Design Principles of Deep Pocket-Targeting Protein
	Kinase Inhibitors 145
	Alexander C. Backes, Gerhard Müller, and Peter C. Sennhenn
6.1	Introduction 145
6.2	Classification of Protein Kinase Inhibitors 147
6.3	Type II Inhibitors 150
6.4	Common Features of Type II Inhibitors 154
6.5	Design Strategies for Type II Inhibitors 155
6.5.1	F2B Approach 160
6.5.2	B2F Approach 166
6.5.3	B2B Approach 169
6.5.4	Hybrid (F2B + B2F) Approach 173
6.6	Comparative Analysis of the Different Design Strategies 180
6.7	Conclusions and Outlook 187
	References 190
7	From Discovery to Clinic: Aurora Kinase Inhibitors as Novel
	Treatments for Cancer 195
	Nicola Heron
7.1	Introduction 195
7.2	Biological Roles of the Aurora Kinases 195
7.3	Aurora Kinases and Cancer 196
7.4	In Vitro Phenotype of Aurora Kinase Inhibitors 197
7.5	Aurora Kinase Inhibitors 203
7.5.1	The Discovery of AZD1152 203
7.5.1.1	Anilinoquinazolines: ZM447439 203
7.5.1.2	Next-Generation Quinazolines: Heterocyclic Analogues 204
7.5.1.3	Amino-Thiazolo and Pyrazolo Acetanilide Quinazolines 208
7.5.2	MK-0457 (VX-680) 214
7.5.3	PHA-739358 215
7.5.4	MLN8054 219
7.5.5	AT9283 220
7.6	X-Ray Crystal Structures of Aurora Kinases 221
7.7	Summary 221
	References 222

297

Part Three	e Application of Kinase Inhibitors to Therapeutic Indication Areas 229
8	Discovery and Design of Protein Kinase Inhibitors:
-	Targeting the Cell cycle in Oncology 231
	Mokdad Mezna, George Kontopidis, and Campbell McInnes
8.1	Protein Kinase Inhibitors in Anticancer Drug
	Development 231
8.2	Structure-Guided Design of Small-Molecule Inhibitors
	of the Cyclin-Dependent Kinases 233
8.3	Catalytic Site Inhibitors 234
8.4	ATP Site Specificity 236
8.5	Alternate Strategies for Inhibiting CDKs 239
8.6	Cyclin Groove Inhibitors (CGI) 240
8.7	Inhibition of CDK–Cyclin Association 242
8.8	Recent Developments in the Discovery and the Development
	of Aurora Kinase Inhibitors 242
8.9	Development of Aurora Kinase Inhibitors through Screening
	and Structure-Guided Design 244
8.10	Aurora Kinase Inhibitors in Clinical Trials 248
8.11	Progress in the Identification of Potent and Selective Polo-Like
	Kinase Inhibitors 250
8.12	Development of Small-Molecule Inhibitors of PLK1 Kinase
	Activity 252
8.13	Discovery of Benzthiazole PLK1 Inhibitors 254
8.14	Recent Structural Studies of the Plk1 Kinase Domain 255
8.15	Additional Small-Molecule PLK1 Inhibitors Reported 256
8.16	The Polo-Box Domain 257
8.17	Future Developments 259
	References 259
9	Medicinal Chemistry Approaches for the Inhibition
	of the p38 MAPK Pathway 271
	Stefan Laufer L, Simona Margutti, Dowinik Hauser
9.1	Introduction 271
9.2	p38 MAP Kinase Basics 271
9.3	p38 Activity and Inhibition 275
9.4	First-Generation Inhibitors 278
9.5	Pyridinyl-Imidazole Inhibitor: SB203580 278
9.6	N-Substituted Imidazole Inhibitors 282
9.7	N,N'-Diarylurea-Based Inhibitors: BIRB796 286
9.8	Structurally Diverse Clinical Candidates 288
9.9	Medicinal Chemistry Approach on VX-745-Like Compounds
9.10	Conclusion and Perspective for the Future 301

References 302

X Contents

10	Cellular Protein Kinases as Antiviral Targets 305
	Luis M. Schang
10.1	Introduction 305
10.2	Antiviral Activities of the Pharmacological Cyclin-Dependent
	Kinase Inhibitors 310
10.2.1	Relevant Properties of CDKs and PCIs 310
10.2.2	Antiviral Activities of PCIs 327
10.2.2.1	Antiviral Activities of PCIs against Herpesviruses 327
10.2.2.2	Antiviral Activities of PCIs against HIV 332
10.2.2.3	Antiviral Activities of PCIs against Other Viruses 335
10.2.3	PCIs Can be Used in Combination Therapies 336
10.2.4	PCIs Inhibit Viral Pathogenesis 337
10.3	Antiviral Activities of Inhibitors of Other Cellular Protein Kinases 338
10.4	Conclusion 339
	References 341
11	Prospects for TB Therapeutics Targeting Mycobacterium tuberculosis
	Phosphosignaling Networks 349
	Yossef Av-Gay and Tom Alber
11.1	Introduction 349
11.2	Rationale for Ser/Thr Protein Kinases and Protein Phosphatases
	as Drug Targets 350
11.3	Drug Target Validation by Genetic Inactivation 351
11.4	STPK Mechanisms, Substrates, and Functions 352
11.5	M. tuberculosis STPK Inhibitors 355
11.6	Conclusions and Prospects 359
	References 359

Index 365