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T Cell Antigens in Cancer
Annette Paschen

1.1
Introduction

The immune system has the ability to discriminate between normal and
malignant cells. Studies in different animal tumor model systems demonstrate
that innate and adaptive immune cells cooperate to eliminate cancer cells [1].
Clinical observations such as the increased rate of tumor formation in immune-
compromised individuals and the spontaneous, though rare, regressions of
tumors also indicate the presence of anti-tumor activity in the human immune
system [2, 3]. Of the different cellular effectors involved in anti-tumor immunity,
cytotoxic CD8þ T lymphocytes (CTLs) are of particular interest due to their
ability to specifically and effectively kill autologous tumor cells [4–7], leading to
increased efforts by scientists and clinicians to also exploit this anti-tumor
potential for cancer immunotherapy.
How do cytotoxic CD8þ T lymphocytes distinguish between normal and malig-

nant cells? Initially, T lymphocytes screen target cells for their protein composition.
During the continual turnover of cellular proteins (antigens) small peptide fragments
are generated, which are sampled and exposed on the cell surface by major
histocompatibility complex (MHC) class I molecules. CTLs monitor these degrada-
tion products (epitopes) using their Tcell receptors (TCRs). Due tomutational events
and epigenetic alterations, tumor cells differ from normal cells in their protein
composition and degradation products. The emerging aberrant antigen epitope
repertoire presented on MHC class I molecules can be recognized by autologous
CTLs leading to the specific killing of the tumor cells [4–7].
Before acquiring cytotoxic effector function, na€ıve CD8þ T lymphocytes must be

primarily activated (T cell priming). A few studies in mouse tumor models demon-
strated that malignant cells upon migration to peripheral lymphoid organs have
the ability to directly prime antigen-specific CD8þ Tcells [8]. More frequently, T cell
priming has been described to be dependent on the activity of a specific cellular
mediator, the dendritic cell (DC). Briefly, DCs internalize tumor antigens in the
periphery,migrate to the draining lymphnodes andpresent the processed antigens to
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the resident na€ıve Tcell repertoire. In addition to this antigen stimulus, DCs provide
accessory signals (e.g. cytokines, co-stimulatory molecules) known to be of impor-
tance for the effective priming of CD8þ T cells [9].
Fragments of the sampled and processed antigens are not only exposed on MHC

class I, but also on MHC class II molecules of the DCs, the latter being recognized
by CD4þ T cells. Upon binding to specific peptide–MHC class II complexes CD4þ

T cells become activated and express the surface molecule CD40 ligand (CD40L).
Interaction of CD40L with CD40 on DCs strongly enhances their CD8þ T cell
priming capacity [10–12]. In addition to primary Tcell activation, helper CD4þ Tcells
are also required for the maintenance of antigen-specific CD8þ T cell responses
as well as for the activation of antigen-specific B cells and subsequent antibody
production [13–15]. Consequently, therapeutically effective anti-tumor immunity
may be dependent on the activation of both antigen-specific cytotoxic CD8þ T cells
and helper CD4þ T cells.

1.2
Generation of T-cell Epitopes

MHC class I molecules are composed of a b2-microglobulin subunit that non-
covalently associates with the polymorphic heavy chain containing the peptide
binding groove. Several hundreds of human heavy chain alleles are known (listed
at http//www.anthonynolan.com/HIG/index.html), albeit that specific alleles are
preferentially expressed in certain population groups (e.g. the MHC class I molecule
HLA-A�0201 is present in about 50% of Caucasians). Each individual can express a
maximumof six different alleles, and the peptide bindingmotifs have been identified
in some cases. The peptide ligands in general consist of 9 to 10 amino acids (aa),
though exceptionally long variants have also been described [16, 17]. Binding of the
peptide ligands is a prerequisite for stable surface expression of MHC class I
molecules.
The major source of MHC class I peptides are endogenous proteins degraded by

the proteasome in the cytosol. The proteasome is amulti-catalytic complex composed
of several subunits. The three subunits b1, b2, and b5, mediate its standard catalytic
activity. In response to IFN-g , this subunit composition is changed, leading to the
formation of the so-called immunoproteasome containing the catalytic subunits b1i
(LMP2), b2i (MECL-1), and b5i (LMP7). Standard and immunoproteasome are
characterized by different cleavage preferences [18]. It has been demonstrated
that some tumor antigen epitopes are dependent on the activity of the standard
proteasome in order to be efficiently generated whereas others require the
immunoproteasome [19, 20]. The proteasome generates the correct C-terminus
of themajority ofMHCclass I ligands, albeit that a fewexceptions have beendescribed
[21, 22]. Recent evidence has established a peptide splicing property of the proteasome
which leads to the generation of a CD8þ T cell epitope from two discontinuous
fragments of a long precursor peptide. By splicing peptides, the proteasome generates
additional diversity to the pool of antigenic peptides in vivo [23].
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Peptides generated in the cytosol are translocated via the transporter associated
with antigen processing (TAP) into the endoplasmic reticulum (ER) where loading
onto MHC class I molecules takes place. In principle, the proteasome can generate
peptides of the correct size that directly fit into the groove of MHC class I molecules.
However, the majority of peptides are produced as N-terminal-extended precursors
that require additional processing by cytosolic and/or ER-localized peptidases before
binding to the MHC class I groove can occur [24].
MHCclass I peptides are not exclusively generated from endogenous proteins, but

can also be derived from endocytosed exogenous antigens via different intracellular
pathways, collectively known as cross-presentation pathways [9]. Until recently,
cross-presentation was described as a specific feature of professional antigen pre-
senting cells (pAPCs), such as macrophages and especially DCs. Interestingly,
Godefroy et al. demonstrated that CTLs from a melanoma patient recognized a
cross-presented epitope on autologous tumor cells generated from an exogenous
protein after receptor-mediated internalization [25]. However, the relative contribu-
tion of this pathway to the overall generation of MHC class I peptides by tumor cells
remains to be elucidated.
Unlike MHC class I molecules, MHC class II ab heterodimers present ligands of

12 to 26 amino acids in length. ConstitutiveMHCclass II presentation is restricted to
a few cell types, mainly pAPCs as B cells, macrophages and DCs characterized by
high endocytic activity. Exogenous proteins internalized via endocytosis (phagocyto-
sis, receptor-mediated endocytosis, pinocytosis) are a major source of the peptides
presented by MHC class II molecules. Unfolding and proteolysis of the internalized
antigens aswell as loading of the fragments ontoMHCclass IImolecules occur in the
late endosomes and lysosomes of the cell [26]. However, MHC class II molecules
can also present peptides derived from endogenous proteins originating from
different cellular compartments including the cytosol. These antigens access the
endosome/lysosome by different pathways. For instance cytoplasmic proteins and
organelles can be engulfed by autophagosomes, which then fuse with lysosomes for
protein degradation and MHC class II loading [26]. Although constitutive surface
exposure of MHC class II molecules is normally restricted to pAPCs, some tumors
show in situ MHC class II expression. In the case of melanoma this expression is
associated with prolonged patient survival [27].

1.2.1
Subclasses of Tumor-associated T-cell Antigens

A report characterizing the first human tumor antigen recognized by CTLs from a
melanoma patient and designated MAGE-1 was published in 1991, while the first
CD8þ T cell epitope was described in 1992 [4, 28]. In the following years data
concerning human tumor-associated Tcell antigens and their epitopes continuously
increased (detailed information available at http://www.cancerimmunity.org/links/
databases.htm). Although the antigens are heterogenous in nature, they can be
categorized by their expression pattern as unique antigens, cancer testis antigens,
differentiation antigens, and overexpressed antigens.
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1.2.1.1 Unique Tumor Antigens
Altered proteins originating from gene mutations and fusion proteins arising from
chromosomal aberrations in tumor cells are the source of neo-antigens which are
recognized by CD4þ and CD8þ T cells [29–42]. Since the accumulation of genetic
alterations is a hallmark of cancer, it can be assumed that each tumor expresses
multiple of these unique antigens, which are truly tumor-specific and accordingly not
present in any normal tissue. Consequently, tolerance mechanisms acting on all
self-reactive Tcells do not affect the unique antigen-specific T-cell repertoire, i.e. high
affinity TCRs specifically recognizing unique tumor antigens are neither deleted
in the thymus during lymphocyte maturation nor deleted or anergized in peripheral
lymphoid and non-lymphoid tissues [43–47].
For themajority of unique antigens described so far, expression is restricted to the

tumor cells of the patients from whom they have been isolated [33, 34, 37, 38],
whereas only a few of these antigens are shared by different tumors of the same
histology. The shared expression of these antigens, such as the mutated BRAF,
K-RAS andCDKN2A, is attributable to their biological function, which is known to be
of importance for tumor formation and maintenance indicating that high antigen
stability is advantageous for the tumor [31, 35, 36]. In addition to mutations,
the activity of cryptic promoters or the partial and thus incomplete splicing of RNA
in tumor cells can provide another source of �shared unique� antigens [32, 48].
With respect to the tumor-specific expression and the recognition by high affinity T

cells, �shared unique� T cell antigens fulfill the criteria of ideal target structures for
cancer immunotherapy.However, their therapeutic targetingwould still be limited to a
very small subset of patients due to the peptide–MHC restriction. For instance,
a mutated antigen differing from the wild-type protein by a single amino acid might
only give rise to a single neo-epitope presented by only one MHC allele. Researchers
might overcome this limitation within the next years by screening cancer cells for
sharedgeneticalterations [49].Thiswill lead to thepredictionofnewpotential antigens,
whose presentation by the tumors and recognition by Tcells has then to be validated.
In the case of some malignancies, an association with viral infections has been

described. Antigens expressed by the virus provide another source of unique tumor
antigens. For instance, infections of B cells with Epstein Barr Virus (EBV) can result
in the formation of B-cell malignancies. Such tumor cells can be recognized by
Tcells directed against EBV antigens [50, 51]. Similarly, infection of cervix epithelial
cells with human papilloma virus (HPV) can induce the outgrowth of cervical
carcinoma. The viral oncoproteins, E6 and E7 expressed in tumor cells, function
as T cell antigens [52, 53].

1.2.1.2 Cancer Testis Antigens
In addition to mutations, cancer cells are characterized by epigenetic alterations that
induce expression of otherwise silenced genes. For instance, demethylation which
occurs in many tumor cells, elicits the transcription of a specific set of genes whose
products belong to the group of cancer testis antigens (CTAs) [54]. These antigens are
detectable inmany tumors of different histology, but not in normal tissues except for
MHC-negative testicular germ cells and placental trophoblasts. Due to this highly
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restricted expression pattern CTAs might also be classified as tumor-specific,
comparable to unique tumor antigens. However, medullar thymic epithelium cells
have been demonstrated to express the RNA of different CTA. Thus, the possibility
that the CTA-specific TCR repertoire is affected by thymic deletion cannot be
completely excluded [43, 44, 55].
The CTA group encompasses several antigen families including the well-known

family of MAGE antigens. So far, this family has been found to consist of nine
antigens, which are known to be recognized by specific CD4þ and CD8þ

T cells [4, 20, 28, 56–60]. Also, members of the SSX antigen family have been
demonstrated to be targets of T helper cells andCTL responses [61–63]. Another well-
characterized CTA is NY-ESO-1. This antigen was initially defined as an antibody
target structure recognized by sera from cancer patients suffering from a variety of
malignancies and was subsequently verified as an antigen that could be detected by
CD4þ and CD8þ Tcells [64–67]. Based on their highly specific and broad expression
profile, CTAs seem to be well suited to cancer therapy and thus have been targeted
in many different clinical trials on cancer immunotherapy [68].

1.2.1.3 Differentiation Antigens
These antigens are expressed in malignant and normal cells of the same lineage.
Thus, the expression of melanoma differentiation antigens (MDAs) is also detect-
able in normal melanocytes. Due to this expression pattern, central as well
as peripheral tolerance mechanisms act vigorously on antigen-specific T cells
[43–47, 55, 69] suggesting that the remaining specific T-cell repertoire is of low
affinity. However, there is evidence that even for these antigens self-tolerance is
incomplete. MDA-specific T cells of high affinity have been isolated from the
blood and tumors of melanoma patients and the adoptive transfer of ex vivo
expanded, activated autologous T cells into patients mediated regression of meta-
static tumors [70–73]. Furthermore, in vitiligo (¼ hypopigmentary skin disorder)
MDA-specific CTLs are involved in the auto-immune destruction of normal
skin melanocytes indicating a breakdown of natural tolerance. T cell-mediated
local elimination of melanocytes can also sometimes be observed in melanoma
patients [74, 75]. Several MDAs such as Melan-A/MART-1, gp100, tyrosinase,
tyrosinase-related protein 1 (TRP1) and TRP2 have been described as specific
targets of T helper cells and CTLs [5–7, 76–79]. In addition to melanoma, T cell
differentiation antigens are known to be present in othermalignancies, for example
CEA in cases of gut carcinoma and PSA in prostate carcinoma [80, 81]. Targeting
differentiation antigens in clinical trials, as has frequently been the case,
is associated with the risk of inducing autoimmunity. In cases where the normal
cells (e.g. melanocytes) are dispensable autoimmune toxicity is tolerable.

1.2.1.4 Overexpressed Antigens
In comparison tonormal cells, tumor cells downregulate the expressionof somegene
products, whereas others are strongly overexpressed. Peptides derived from several
overexpressed proteins are recognized by specific CD4þ and CD8þ T lympho-
cytes [16, 25, 82–89]. The distribution of these antigens in normal tissues is
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heterogenous, with some antigens being expressed in a few normal tissues, while
others can be detected ubiquitously. T cells responding to these antigens ignore
normal cells in vitro, most probably due to the very low level of antigen expression.
Again it can be assumed that central and peripheral mechanisms act vigorously
on the antigen-specific T cell repertoire in order to maintain self-tolerance [43–47].
This tolerance may be circumvented in the case of several hundred-fold overexpres-
sion and the subsequent increase in the presentation of a given antigen [90].
Overexpressed antigens such as Her2/neu, MUC1, PRAME, survivin, and telo-

merase not only exhibit a heterogenous distribution pattern in normal tissues, but
also show a heterogenous pattern in terms of their biological function [82–89].
In some cases this function is known to be important for the survival of cancer cells
(e.g. the anti-apoptotic activity of survivin), suggesting highly stable expression of the
antigen in tumor cells.
Within the group of overexpressed antigens the cell surface antigen,mucinMUC1

has some specific features. The glycosylation pattern of theMUC1 protein expressed
on tumor cells and normal cells is different. Interestingly, helper CD4þ T cells are
capable of recognizing glycosylated MUC1 peptide epitopes and of discriminating
different glycosylation patterns, thereby distinguishing between modified peptides
originating from cancer cells and normal cells [69, 91]. There is accumulating
evidence that peptide epitopes carrying different types of post-translational
modifications can be recognized specifically by CD4þ and CD8þ T cells [92]. Very
recently, phosphopeptides have been eluted from MHC class I molecules of tumor
cells. These modified peptides, the majority of which are derived from the aberrant
phosphorylation of signaling proteins, can be recognized by CD8þ Tcells andmight
represent new targets for cancer immunotherapy [93].
Do patients� T cells preferentially recognize antigens from any of the four

subclasses described above? Several studies have demonstrated that T lympho-
cytes isolated from one cancer patient respond to multiple tumor antigens of
different subclasses [37, 94, 95]. Lennerz et al. carried out a comprehensive
analysis on the specificity of T cells obtained from the peripheral blood of a
melanoma patient at different time points during disease progression and
demonstrated that in this individual the predominant anti-tumor immune re-
sponse was due to T cells responding to unique antigens [37]. In contrast, by
analyzing the T-cell infiltrate of a regressing melanoma metastasis Coulie and
colleagues demonstrated that the different established T cell clones specifically
recognized CTAs and MDAs [95].

1.3
Identification of T-cell Antigens and their Epitopes

In order to identify tumor-associated T-cell antigens/epitopes, researchers followed
very different strategies. Themajor approaches, of which there are several variants,
are presented in subsequent chapters in this book (for detailed information see
Chapters 3 and 4 on SEREX, and Proteomex and AMIDA respectively).
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The classical strategy employed to define antigens/epitopes is based on the use
of tumor cell lines and autologous T cells as screening tools, thus restricting its
application to only a few malignancies such as melanoma. Initially, T cells isolated
from the tumor or the peripheral blood of the cancer patient are co-cultured with
autologous tumor cells for epitope sensitization and induction of proliferation.
Subsequently, stimulated T cells are used to screen HLA-matched target cells
transfected with the tumor cDNA expression library for the presence of the antigen.
Specific killing of the transfectants indicates synthesis and processing of the tumor
antigen. The antigen-specific Tcells are then co-incubatedwith target cells expressing
only truncated antigen fragments in order to determine the epitope-containing
region. Subsequently, overlapping synthetic peptides covering the antigen fragment
of interest are loaded onto the target cell in order to define theminimal Tcell epitope.
Several members of all four subclasses of antigens were characterized using this
strategy, which is still the major approach for defining patient-specific unique CD4þ

and CD8þ T cell antigens/epitopes [4–7, 16, 25, 28–30, 32–35, 37–39].
Alternatively, peptides eluted from MHC molecules and subsequently character-

ized by liquid chromatography in combination with mass spectroscopy, can be
employed to define potential T-cell epitopes and their corresponding antigen sources.
In several studies peptides were eluted from MHC class I molecules of tumor
cells [58, 93, 96], and in another approach ligands were isolated from MHC class II
molecules of dendritic cells pulsed with tumor lysate [97]. In any case, the immuno-
genicity of the identified MHC ligands has to be proven by sensitizing (priming)
T cells against the corresponding synthetic peptides in vitro and the expression
profile of the corresponding antigen source in normal and malignant cells has to be
determined.
More recently, researchers exploited antibodies from the sera of cancer patients as

a tool for the identification of potential B and Tcell antigens. According to the SEREX
technology antibodies are used to screen tumor-derived cDNA expression libraries
for target proteins. These proteins should also be recognized by helper Tcells, since
antibody production by plasma cells is dependent on the helper function of antigen-
specific CD4þ T cells [64, 98]. In another more rational approach potential T-cell
targets are selected based on their gene, RNA and/or protein expression profile in
tumor cells assuming that specifically expressed and overexpressed tumor proteins
should function as T-cell antigens [49, 99]. In any case, T-cell recognition of the
candidate proteins either after selection by serological techniques or based on their
expression profile, must be demonstrated.
In order to prove the recognition of potential antigens by T cells, the reverse

immunology approach can be applied. First, the protein of interest is screened by
predictive computer algorithms for peptides that might bind to a specific MHC
molecule. Predicted candidate sequences are synthesized and analyzed for their
MHC binding ability. High affinity binders are then loaded onto DCs for in vitro
priming of autologous T cells. Finally, peptide-reactive T cells are employed to
demonstrate the generation and presentation of the corresponding epitope either
by tumor cells expressing the target antigen endogenously (in the case of CD8þ

T cells) or by antigen-loaded pAPCs (in the case of CD4þ T cells) [99].
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Although many tumor-associated antigens and epitopes were defined using the
reverse immunology strategy, amajor disadvantage of this approach is that, following
extensive Tcell culture, only a few predicted peptides can be verified as true epitopes.
To partially overcome this limitation, different strategies for peptide pre-selection
prior to in vitro T-cell sensitization were developed. In vitro digestion of polypeptides
encompassing the potential epitope using purified proteasomes canbe undertaken to
narrow down the spectrum of predicted candidate peptides [86, 100]. Furthermore,
mice transgenic for HLA class I and II molecules can be employed for pre-selection
of candidate sequences. Peptides recognized by murine T cells in response to
vaccination are chosen for subsequent in vitro sensitization of humanT lymphocytes,
this procedure has been applied to peptides derived from the MAGE-A4 and
SAGE (CD8þ T cell epitopes) as well as TRP-2 and gp100 (CD4þ T cell epitopes)
antigens [60, 79, 101, 102].
Of the different approaches described above, combinations are currently applied to

define patients� individual tumor-associated T-cell antigen repertoire [103]. Although
techniques and experimental strategies are continuously improving, definition of
tumor antigens and epitopes, especially comprehensive personalized analyses, is still
a challenging, however mandatory task.

1.3.1
T-cell Antigens for Cancer Immunotherapy – How are Candidates Selected?

The identification of thefirst tumor-associated antigens and their epitopes in the early
1990s initiated a new area in clinical cancer immunotherapy. In principle two
treatment concepts can be distinguished: (1) antigen-specific vaccination (active
immunotherapy) in order to induce and boost the anti-tumor activity of specific
CD4þ andCD8þ Tcells within the tumor host and (2) adoptive T-cell therapy (passive
immunotherapy) for elimination of cancer cells by antigen-specific, ex vivo expanded
and adoptively transferred autologous CTLs.
Over the past 15 years specific immunotherapy (in the case of solid tumors) has

mainly been applied to melanoma patients receiving different types of vaccines [68],
consisting of synthetic peptide epitopes and recombinant tumor antigens combined
with adjuvants or of recombinant viral vectors as well as antigen-loaded DCs.
Unfortunately, therapeutic effects were only detectable in very few individuals, and
similar observations were also reported in adoptive T-cell transfer studies with
specificity for the gp100 antigen [68, 104]. However, it has recently become very
clear that in order to be effective T cell-based therapy should be used with strategies
that overcome immune suppression induced by the tumor. Via an inhibitory network
of different mechanisms the tumor counteracts an effective anti-tumor immune
response: malignant cells release immune inhibitory factors such as PGE-2, IL-10,
and TGF-b. Furthermore, the tumor microenvironment is enriched with immune-
suppressive cells, e.g. regulatory CD4þCD25þ T cells and myeloid suppressor
cells [1, 105]. Thus immune suppression must be reversed, as was demonstrated
impressively in recent clinical trials on adoptive T cell therapy: 50% of melanoma
patients showed objective therapeutic responses when treated with autologous
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in vitro expanded tumor-reactive Tcells after non-myeloablative chemotherapy, which
eliminates immune-suppressive cells and in addition stimulates the supportive
activity of innate immune cells [71, 73, 106]. However the removal of immune
barriers strongly increases the risk of inducing fatal autoimmunity. Consequently, T-
cell antigens for cancer immunotherapy need to be selected very carefully by taking
the following criteria into consideration:

1. Specificity of antigen expression: antigens/epitopes should only be targeted if
induction of severe autoimmune responses by antigen-specific T cells can be
excluded.

2. Tcell affinity: antigens/epitopes should only be targeted if high affinity T cells are
known to exist in the patient. Preclinical studies have demonstrated that CTLs
with high affinity for their specific peptide–MHC complexes are superior in
eradicating tumor cells [107]. Interestingly, the affinity of a TCR for its peptide–
MHC complex can be enhanced by amino acid substitutions in the peptide
sequence. Such altered MHC ligands in contrast to the native epitope, strongly
activate specific T cells that can cross-react with the wild-type sequence exposed
on tumor cells [108], though a certain risk of inducing non-cross-reactive T cells
cannot be excluded. On the other hand, even the low affinity tumor-specific T-cell
repertoire of cancer patients might be exploited for adoptive immunotherapy, in
cases where the T cells have been genetically engineered in vitro to express high
affinity tumor antigen-specific TCRs [109].

3. Stability of the peptide–MHC complex: a recent preclinical in vivo study clearly
demonstrated that the poor immunogenicity of a self-tumor antigen is not
necessarily the consequence of central and peripheral tolerance mechanisms
acting on the specific T-cell repertoire, but can be due to the low affinity of the
antigen epitope for its specific MHC class I molecule [110]. Again amino acid
substitutions can improve the binding of the peptide ligand to theMHCmolecule.
Such peptide analogs are currently under intense clinical investigation in vacci-
nation therapies [111], but again the risk of inducing suboptimal Tcells (see above)
has to be considered [112].

4. Antigen stability, processing, and expression level: based on the cancer immuno-
editing theory defined by Schreiber and colleagues, the immune systemwill select
tumor cells that by different mechanism resist T-cell attack [1, 113]. In accordance
with this model, loss of antigen expression in human tumors has been
described [105, 113]. In order to impede the generation of antigen loss variants
it has been suggested that antigens which are important for the oncogenic
process should be targeted; alternatively, multiple antigens should be selected for
therapy.
The generation of antigen epitopes is controlled by the activity of the

proteasome in addition to cytosolic and ER-localized peptidases [18, 21, 24].
Tumor cells differ in terms of the expression of specific catalytic and regulatory
proteasome subunits and peptidases, resulting in the presentation of a divergent
epitope repertoire [114, 115]. Thus, specific tumor antigen epitopes should only
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be targeted if cancer cells are known to present the epitopes effectively,
otherwise even T cells of high therapeutic potential cannot act on their target
cells [116, 117].

Ideally the antigen of interest should be expressed at high level in the tumor
cells. As indicated by recent preclinical in vivo studies, high expression of the tumor
antigen will allow T cells to kill cancer cells and in addition, cells in the tumor
stroma that internalize and cross-present the tumor antigen, leading to an effective
elimination of well-established tumors [118].

1.4
Conclusions

So far, more than 100 tumor-associated T-cell antigens have been characterized, the
majority of which was identified by employing T cells and tumor cells from
melanoma patients as screening tools. Several of these antigens are shared by
tumors of different histology. However, since each tumor entity is characterized by
a specific signature of genetic and epigenetic alterations, it has to be assumed that its
unique antigen pattern still needs to be defined. In future clinical trials antigen-
specific immunotherapy should be combined with strategies to overcome tumor-
induced immune suppression. Whether under conditions of reduced immune
inhibition the specificity of Tcells directed against self-antigens (CTA, differentiation
antigens, overexpressed antigens) is sufficiently selective to prevent fatal autoim-
mune disease, still needs to be determined in well-designed clinical studies. On the
other hand, complete remission of solid tumors in advanced patients, though rare,
can be achieved by �simple� vaccination [68]. Understanding the molecular and
cellular mechanisms behind this process might pave the way for inducing effective
tumor immunity without creating severe autoimmunity.
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