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Electropolymerized Films of π-Conjugated Polymers.
A Tool for Surface Functionalization: a Brief
Historical Evolution and Recent Trends
Gérard Bidan

1.1
Introduction

Electrodeposition of conducting polymer films at the surface of an electrode has
opened a field at the convergence between two rich domains: electrochemistry of
modified electrode [1–3] and conjugated systems [4]. Consequently, applications of
modified electrodes in electrocatalysis, electrochromism, energy storage, electro-
analysis, and sensors have been enriched by the specific properties of intrinsically
conducting polymers (ICPs), for example, electrochemically tunable doping and de-
doping (equivalent to adjustable redox states), polymeric matrix affording electrical
wiring, use as immobilized redox mediators, and the capacity to induce new func-
tionalities by the use of specific gratings. Reciprocally, electrochemistry has opened
up the route to easy-to-handle polymer films in a manner similar to the way that
polyacetylene, (CH)x , prepared as a film by a modification of the Natta reaction [5],
resulted in the discovery, in 1977, of the doping effect as presented in the seminal
paper of Shirakawa and coworkers [6]. In addition, this cross-fertilization enlarged
the panel of new ICP-based materials, such as electrogenerated composites [7],
and strengthened or brought in new applications such as energy conversion and
storage (Chapter 11); electrotriggered drug delivery [8]; soft actuators (Chapter 11);
chemical, bio-, and gas sensors (Chapters 8–10); biocompatible films [9]; and
artificial muscles (Chapter 12).

Considering the intense and widespread research activities in these fields,
the aim of this historical survey is not to cover the entire field of the various
electropolymerization facets detailed in the following chapters, but to give an
overview of the successive contributions to and acquisition of knowledge.

The electropolymerization reported here is restricted to oxidative condensation;
as a matter of fact, it should be mentioned that as early as in 1983, Fauvarque
[10] reported the synthesis of poly(p-phenylene) film by electroreduction-assisted
catalysis by Ni(0) complex. In the first part, electropolymerization is described in the
context of π-conjugated polymers. Four generations have been distinguished in this
saga: the ‘‘era of physicists,’’ the ‘‘era of electrochemists,’’ the ‘‘era of polymerists,’’
and the ‘‘era of molecular electronics.’’ This division appears a little artificial, since
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the progress in each of these eras resulted from mutual enrichment between these
scientific communities; however, this book provides an enlightening presentation
of each determining step of the evolution. The ‘‘era of electrochemists’’ starts with
the early use of electropolymerization in the 1980s. The second part presents the
major milestones reached by the process of electropolymerization in the light of the
functionalization of surfaces for the electrodeposition of increasingly sophisticated
conjugated architectures endowed with specific functionalities from sensors to
active photovoltaic layers. Recent trends in the use of the electropolymerization
concerning the elaboration of nanowires or nanotubes of ICPs for sensors or
molecular electronics, nanostructured materials (interpenetrated networks with
ICPs, carbon nanotubes/ICPs combination, etc.) are not presented here.

It is emphasized that the compilation of bibliographic data has been a very
difficult task, since it is pointless to duplicate all the references that are given in the
other chapters; so the selection here is a mix of citations of pioneering teams with
key contributions made in the 1980s–1990s, easily accessible reviews, and recent
representative publications on the new trends in the field.

1.2
Electropolymerization: Epistemological Analysis within the ICP Saga

It is possible to distinguish four generations in the still active saga of ICPs.
The first generation, the ‘‘era of physicists,’’ corresponds to their historical

identification as synthetic or organic metals, and parallel to the development of
mixed valence crystals in the family of TTF-TCNQ [11, 12], the domain of
electroconductive polymers appeared driven by the interest of physicists in the
semiconducting/conducting or even supraconducting conductivity transition. Poly-
sulfurnitride, (SN)x , was investigated in the early 1960s and the metallic properties
were studied in the 1970s [13], with a superconducting transition below 0.3 K
evidenced in 1975 [14], and the ‘‘doping effect’’ of halogens reported in 1977
[15]. Similarly, (CH)x , the first chemically unsophisticated representative of the
π-conjugated structure, that is, with alternative C–C single and double bonds, was
extensively investigated after the discovery of halogen doping in 1977 [6]. It must
be emphasized at this point that the preparation of (CH)x as an easy-to-handle
film [16, 17] instead of a pressed pellet of powder considerably boosted the field
and allowed to carry out electrochemical doping on (CH)x films as electrodes [18].
The chemical modification of poly(p-phenylene) [19] by AsF5 or alkali metals was
reported soon after in 1979.

The second generation of ICPs, the ‘‘era of electrochemists,’’ began with the
electropolymerization of aromatic heterocycles and derivatives. In addition to the
‘‘easy-to-handle effect’’ previously illustrated by (CH)x , electropolymerization is
based on a new concept of oxidative condensation through the generation of radical
cations (Chapter 2). Early work in 1916 [20] and 1937 [21] on chemically prepared
‘‘neri di pirrolo’’ had not been aware of the electronic properties of these powders
of poly(oxipyrrole). Chemical oxidation of aniline, reported by Buvet and coworkers
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in 1968 [22, 23], and of pyrrole, reported by Hautière Christofini in 1973 [24],
was recognized to provide electrically conductive materials. Electropolymerization
allowed handling polypyrrole [25, 26], polyaniline [27–29], and poly(p-phenylene)
[30] films, resulting in completely new polymers films, some of the better known
being the polythiophene [31, 32], polyfluorene [33], and polycarbazole [34] classes.
Consequently, in early 1980s, the electrochemist community was drawn to use
electrochemistry not only as a tool to prepare ICP films [35] but also as a methodol-
ogy (Chapter 3) to investigate the doping/dedoping process electrochemically tuned
with the associated movements of ionic dopants and the concomitant evolution
of the electronic structure using electron spin resonance (ESR) spectroscopy [36],
UV–vis [37] and surface IR [38] spectrophotometries, ellipsometry [39–41], quartz
crystal microbalance (QCM) [42], and mirage effect [43], coupled with voltamper-
ometric methods. In addition to the use of ICPs as substitutes for metals, new
ICP applications, traditionally falling into the field of electrochemistry such as elec-
trocatalysis [44, 45], sensors [46–51], biosensors (Chapters 8–10), energy storage
(e.g., batteries [52–56] and supercapacitors [57, 58]) (Chapter 11), anticorrosion
deposits onto metals [59–61] and semiconductors [62–65], and electrochromism
[66–69], were rapidly developed. However, the concept of functionalization was
the key breakthrough [45, 70–73]. It is possible to deposit a polymer film in-
cluding functional moieties into the polymeric backbone in just one step. The
tremendous progress in research on sensors and biosensors (Chapters 8–10)
originates with the study of sensitive layers based on (bio)functionalized ICP
films.

The third generation, the ‘‘era of polymerists,’’ emerged from the inputs of
chemists, particularly the macromolecularists, to the ICP domains. The intrinsic
advantage of electropolymerization – a straightforward deposition of a redox and
an electroconducting film of an electrocontrollable thickness, with tunable interfa-
cial properties for numerous electrochemical applications – is counterbalanced by
the complete insolubility of the deposit. Thus, the determination of classical char-
acterization parameters for polymers such as the average chain length, dispersion,
crystallinity, and the handling by spin or dip coating for large-scale applications are
both impeded. Chemists have played an important role in the development of new
routes in chemical synthesis, providing structurally well-defined conducting poly-
mers. In the large family of ICPs, polythiophenes have been by far the more studied,
and as early as in 1980, Yamamoto [74] reported the Ni-catalyzed condensation of
2,5-dibromothiophene. Three main properties have been tuned via structural and
chemical modifications: the gap, the solubility, and the conductivity. The existence
of low-gap thiophene-based ICPs [75, 76] such as poly(isothianathene) was reported
in 1984 by Wudl [77], polyfused heterocycles such as poly(thienothiophene) was
reported by Taliani in 1986 [78, 79], and poly(dithienylethylene) and related sys-
tems by Roncali [80] in 1997. Poly(ethylenedioxithiophene) (PEDOT), reported by
Heinze et al. in 1994 [81] and Reynolds et al. in 1996 [82] and considered as one
of the most stable ICPs, is now commercially available and is used in numer-
ous applications. Soluble poly(3-alkylthiophenes) (P3-ATs) were first reported by
Elsenbaumer in 1986 [83]. Regioregularity with the so-called McCullough method
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[84] reported in 1993 in the P3-ATs family has been the cornerstone for the
development of applications in organic electronics (vide infra). While classical poly-
merizations by oxidative coupling using Fe(III) salts provides polymers with 3,4- and
2,5-linkage defects, low molecular weights, and weak conductivities (in the range
of 0.1–1 S cm−1), the metal-catalyzed C–C coupling of heterocycles (e.g., Suzuki-,
Sonogashira-, and Stille-type reactions) allows to improve their conductivities by
more than 2 orders of magnitude [85]. In addition to processable ICP-based materi-
als [86], the above-mentioned chemical methods were also used for the step-by-step
synthesis of well-defined length oligothiophene [87]. Considerable progress has
been made from the simple sexithiophene reported in 1989 by Garnier et al. [88]
to the sophisticated oligothiophene-based nanoarchitectures reported in the recent
remarkable review by Bäuerle et al. [89].

The fourth generation covers the wide domain of organic electronics in its
extended acceptation and can be considered as a ‘‘renaissance’’ of the ICP do-
main of applications by the fruitful cross-fertilization between synthetic chemistry
and electronics. It is contemporary to the third generation, and mainly concerns
organic light-emitting diodes (OLEDs), ICP-based photovoltaic devices, organic
thin film transistors (OTFTs), and molecular electronics. After the first report
by Garnier on OTFTs based on sexithiophene [88] in 1989, a significant step
in 1990 was the description by Friend and coworkers of the electroluminescent
device based on poly(p-phenylene vinylene) (PPV), placed between an indium
tin oxide (ITO) and an Al electrode [90]. Polymer light-emitting diodes were ex-
tended to different classes [91] of conjugated polymers such as poly(carbazole)s,
poly(fluorene)s, PPVs, and poly(thiophene)s. The reverse phenomenon of pho-
tovoltaic cells based on ICPs [92] was soon reported, with the next decisive
step resulting in the ultrafast photoinduced electron transfer from ICPs to
the C60 fullerene, developed independently by Sariciftci et al. [93] and Yoshino
et al. [94] in 1992. These fields are well detailed in the second volume of the
third edition of the Handbook of Conducting Polymers, edited by Skotheim T A,
Reynolds in 2007. Interestingly, we will see in the second part of the following
that, in spite of the leading processes of dip or spin coatings to implement
ICPs in electronic devices, electropolymerization is still being developed as an
alternative method for the fine control of thickness for numerous applications
[95–97].

1.3
Electropolymerization: from Pristine Heterocyclic to Sophisticated Functional
and Conjugated Architectures

Having, very briefly, traced almost 30 years of scientific venture on ICPs, which
have replaced electropolymerization as one of the most important inputs, this
section examines more specifically the evolution of this methodology (Figure 1.1)
in the context of functionalization of surfaces.
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Doping and pending
group functionalizations

1980 1990 2000 2010

Pristine and fused heterocycles

Metallated conjugated architectures,
hybrid and alternated polycycles

(«in chain» functionalization)
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Nanostructured ICPs:
nanowires and nanotubes,
IPN*, inverse opals, etc.

Figure 1.1 Some key milestones in the evolution of elec-
tropolymerized heterocycles in the saga of ICPs. These
successive main steps are not independent but mutually
enriched. *IPN, Interpenetrated network.

1.3.1
Electropolymerization of Pristine Aromatic Heterocycles

The first electropolymerization experiment reported in 1968 by Dall’oxlio [25] on
pyrrole in water medium was not the trigger event; as a matter of fact, except
for aniline in acidic media, pristine pyrrole, and, as reported later, for thiophene
and derivatives in micellar medium [98–100], few heterocycles are soluble and
able to electropolymerize in aqueous media. The first determining event was the
electropolymerization in an organic medium of pyrrole (0.06 M) in acetonitrile (1%
aqueous) containing 0.1 M Et4NBF4, reported in the seminal article of Diaz et al.
in 1979 [101] from works carried out at IBM San Jose [102]. The route was then
opened for the screening of electrochemical synthesis of conducting polymers by
anodic oxidative condensation of aromatic heterocycles. Over the next 10 years,
electropolymerization of polythiophene [103, 104], poly(p-phenylene), polynaph-
thalene, polyanthracene, polypyrene, polyindole, polyazulene [103], polyfluorene,
and polycarbazole [34, 105–107] was reported and reviewed in detail by Simonet
and Rault-Berthelot [108]. Many more sophisticated units are still being reported
[109]. A special mention must be made of the electropolymerization of thiophene
(from among thiophene, azulene, and furan) by Tourillon and Garnier in 1982 [31],
since this family, including thiophene-fused cycles [54, 78, 79], has been the most
flourishing of the ICP domain. PEDOT, pioneered by Heinze [80] and then by
Reynolds [82], still appears as the leading material, including alkyl derivatives [110].
Polyaniline, which was first chemically synthesized and considered as early as in
1968 by Buvet and coworkers [22, 23] as a semiconductor whose redox properties
can be tuned by the pH, was electrosynthesized by Diaz et al. in 1980 [27], and
then ‘‘rediscovered’’ around 1985 in the light of the new concepts of conjugated
structures; among leading teams we may cite MacDiarmid [111], Geniés [28, 112],
and Bard [29]. After a brilliant start, owing to the attractive potential applications
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in energy storage with the pioneering paper by MacDiarmid and coworkers in
1984 [113], polyaniline (Pani) appeared to find greater use in solution-processable
applications [114], since as soon as the phenyl cycle is substituted, the electropoly-
merization is strongly disturbed [115, 116]. A renewing of Pani applications, such
as supercapacitors, benefits from the recent use of ionic liquids in addition to the
contribution of nanoscience concepts to produce nanostructures.

An important step toward the functionalization of surfaces was the inclusion
of a functional dopant during electrodeposition. Applications of these pristine
polyheterocycles were limited to the exploitation of their redox properties (batteries
and supercapacitors) and related modulations in conductivity (electrochemical
transistors), color (electrochromism), and volume changes (actuators).

Functionalization by the inclusion of specific dopants (Figure 1.2) soon appeared
as a straightforward route pioneered by Skotheim in 1985 [124] and Shimidzu
in 1987 [117], since no specific chemistry on the heterocycle is required – only
the choice of a functional anionic (Figure 1.2a) or cationic (Figure 1.2c) (for
self-doped ICPs) species. The inclusion of the functional dopant present in the
electrolyte during electropolymerization was preferred to the exchange of ‘‘classical’’
nonfunctional dopants (perchlorate, chloride, tetrafluoroborate, etc.) after the elec-
trodeposition just by dipping in a solution containing the functional dopant. In
fact, the reverse reaction, that is, the retrodiffusion of the functional dopant in a
renewed solution cannot be avoided, even though it had been exploited in a certain
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Figure 1.2 Functionalization by doping.
(a) The function is introduced during the
electrodeposition using a specific dopant
A− entrapped into the polymeric backbone.
(b) When the dopant is small, the anionic
dopants A− are mobile and mainly expelled
during the dedoping by electroreduction.
(c) Provided that the anionic dopants (bulky
groups, i.e., � ≥ 10 Å, entangled ionomeric
chains, grafted dopants) are immobilized

(the wavy line symbolizes this immobiliza-
tion), the dedoping results mainly in the
entrance of a cationic ‘‘pseudodopant’’ C+

and vice versa during doping. The arrows
of electronic transfers and ionic movements
(from left to right) correspond to the de-
doping and must be inverted for the reverse
doping reaction. These processes have been
exploited for the electrocontrolled delivering
of charged drugs.
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manner for the electrocontrolled release of species (Figure 1.2b) [118–120]. A
fruitful method to increase the ratio of dopants versus monomeric units consisted
in the grafting of an additional positive charge on the pyrrole unit via an alkylam-
monium substituent [121]. This was exploited for the incorporation of enzyme via
a solid-state electropolymerization [122]. The inclusion of a specific dopant was
demonstrated as an efficient method to incorporate electrochromes [71, 117] and
photosensitizers [71, 117]. Sulfonated metalloporphyrins or metallophtalocyanines
[123–126], polyoxometallates [127, 128], enzymes [129–131], and single-stranded
DNA [132, 133] were inserted in an ICP matrix mainly to induce electrocatalytic
and biorecognition properties. On the other hand, use of a bulky dopant (i.e., with a
diameter more than 5–6 Å) during electrodeposition allows an almost irreversible
trapping in the polymeric matrix due to the entanglement of the polymeric chains
around the dopant. The shape of the dopant is also a determining factor and
for linear dopants, such as alkylsulfonates, the retention starts from chain length
of C10 [134]. In this case, other holding factors such as hydrophobicity of the
dopant chain must be considered. When the anionic dopant is immobilized, the
dedoping results in the insertion of a cation to insure the electroneutrality [135]
(Figure 1.2c). This cationic pseudodoping is also performed when the anionic
dopant, usually sulfonate, is directly grafted on the conjugated polymer skeleton
(self-doped polymers [136–142]) or is a pending group of an ionomeric polymer
such as Nafion [136, 143, 144] or polystyrene sulfonate [145, 146]. Such interpen-
etrated polymeric networks [70] were investigated for applications in batteries [71,
117], water deionization [71, 117], and electrochemical delivery of drugs [118–120].
This last example was pioneered by Miller for the electrodelivery of dopamine
[147]. Bidan and Kaneto introduced doping-specific cavities such as sulfonated
cyclodextrines [148] or calixarenes [149] in polypyrrole for the selective trapping of
drugs and ions.

1.3.2
Electropolymerization of Substituted Heterocycles

The concept of functionalization by covalent grafting seems to be very familiar by
now. In the one-step approach (Figure 1.3a), the monomeric unit is presubstituted
by a functional group. Provided some rules are followed, the electropolymerized
films exhibit new functionalities while keeping the attributes of ICPs. Instead
of prefunctionalization of the starting monomer, more generic methods have
been developed based on a two-step approach (Figure 1.3b). Classically, an ac-
tive group (e.g., amino [150], carboxylic [151], or affinity groups [152, 153]) is
grafted by prefunctionalization; then, after electrodeposition via a coupling re-
action (e.g., a peptide link), a bond is formed with a specie in solution (e.g.,
amino–protein). This postfunctionalization of the film mainly affects its surface;
this is a limitation in ionic complexation for applications of the modified electrode
in electroanalysis and electrocatalysis. On the other hand, this approach is effec-
tive and efficient with bulky groups (enzymes, DNA [154, 155]); the active layer
acts as a functional interface for biorecognition in biosensors (Chapters 8–10).
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Figure 1.3 Functionalization by cova-
lent grafting via a pending function.
(a) One-step functionalization of ICPs by
covalent grafting of the function, via a spac-
ing arm, at the 3-position to the precursor
monomer, then submitted to electropoly-
merization. For pyrrole, the N-substitution
has also been fully exploited. (b) Two-step
functionalization: Step 1, a generic cou-
pling group R1 is end-grafted as performed

in the one-step strategy (a) and Step 2,
after electrodeposition the modified elec-
trode is functionalized by a heterogenic
coupling reaction via a reactive group R2

classically the R1 –R2 coupling reaction is
a peptide condensation, an affinity recogni-
tion (biotine–avidine, single-stranded DNA
hybridization, antibody–antigen) or, more
recently, click chemistry.

The two-step approach was recently renewed by using click chemistry. Li et al.
opened the route to a general method for a modified electrode based on ‘‘click-
able’’ polypyrrole [156]: two types of N-substituted pyrrole with azide and terminal
alkyne were synthesized and functionalized by complementary redox or bioactive
elements.

One-step functionalization by grafting of conducting polymers (Figure 1.3a)
has been widely reviewed [45, 70–73]. The history of this process is briefly
described here: in 1982, Diaz et al. reported on poly(N-alkylpyrrole) [157] and
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on p-phenyl-substituted poly(N-phenylpyrrole) [158]. Then, in 1985, Skotheim
and coworkers reported the first redox-active pending function illustrated by the
N-(p-nitrophenyl) group [159]. An important improvement was made with the
grafting of functional molecules using an aliphatic spacing arm. In fact, the use of
an alkyl chain spacer arm leads to a more tunable product than that by a phenyl
spacer arm. The length of this alkyl arm can be tailored in a manner so as to
control the steric hindrance. In the N-substituted polypyrrole series, a C6 spacing
arm appears to be a good compromise between a too short C3 that decreases
the electropolymerizability by steric hindrance interaction and a C11 length that
moves away the conjugated chains and reduces electronic accessibility [160, 161].
However, the steric hindrance induced by short spacer can be reduced by linking
two pyrrole units [160]. In 1984, Bidan and coworkers reported the grafting of the
viologen (4,4′-bipyridinium) system [162, 163] and poly(pyridinyl) complexes of
ruthenium [164]. This class of polypyrrole–Ru complexes was investigated in detail
for their electrocatalytic properties by Deronzier et al. [165]. Various substituents,
such as the ferrocene group [166], nitroxide functions [167] and anthraquinone
groups [168], the camphor chiral unit [169], porphyrin [170], phenothiazine [171],
enzyme [172], calixarene [173] and fluorene [174], biotine [152, 153, 175], and
single-stranded DNA [176, 177] were soon grafted at the nitrogen – there is no
limitation to the substituents that can be used. The basic chemistry to perform
N-substitution is counterbalanced by a loss in conductivity by 5–7 orders of mag-
nitude. This is not really a limitation in electronic transfer for electrodes modified
by a thin film of micrometer thickness; however, for a better transduction of
recognition event, grafting in 3-position appeared more attractive in spite of the
need to implement a more elaborated chemistry. The 3-substitution was applied
on pyrrole by Audebert et al. [178] and on thiophene derivatives by Garnier and
Lemaire [179] simultaneously in 1989. This, particularly in the thiophene class,
opened a route to another field of research. The structural effect of the func-
tionalization in 3-position was rationalized, and a ‘‘functionalization space’’ was
defined in terms of three parameters: the length of the spacer, the intrachain
distortion, and the interchain distance [180–182]. A wide range of functionaliza-
tions of pyrrole and thiophene at the 3-position was developed mainly for sensor
applications. Among these functions, the following can also be cited: alkyl chains,
fluoroalkyl chains, oligo(oxyethylene) chains [179], chiral and redox groups, and
anionic species (self-doped polymers) crown ether [183–185] reviewed by Ron-
cali [186] and by Swager [187]; boronic ester [188]; and peptides [189] (Chapters
8–11).Unlike polypyrrole or polythiophene derivatives, the poor functionalization
of Pani has been pointed out. This poor electropolymerizability of aniline deriva-
tives could be got around by an inverse approach; functional molecules bearing a
phenyl or naphthalene group were amino-substituted to promote the electrocou-
pling. In this manner, amino derivatives of porphyrines [190, 191], anthraquinone
[192], and naphthol [193] were polymerized. In some cases, substitution by a
hydroxyl group also promotes the electropolymerization of aromatic molecules
and allows to reach conjugated structures such as those from juglone monomer
[194].
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1.3.3
Electropolymerization as a Tool to Elaborate Functional Conjugated Architectures

An important step forward was achieved by moving from ‘‘simple’’ functionaliza-
tion with active pending group to preorganized conjugated architectures.

Electropolymerization of ICPs can be exploited to form or freeze certain molec-
ular shapes. Sauvage, Bidan and coworkers have taken advantage of the relative
rigidity of the polymeric matrix to incorporate preformed complexing cavities into
polypyrrole by grafting at the N- [161] or 3-position [195]. In the first approach,
the spacer between the metallic complex and the pyrrole units was still a sin-
gle alkyl chain. However, the presence of four pyrrolic monomers allowed to
maintain the phenanthroline ligands interlocked in a pseudocatenane assembly
even after demetallation. More sophisticated molecular units such as rotaxanes
were electrodeposited, and it was possible to electrochemically induce gliding
motion inside the polypyrrole matrix [196]. Recently, Ikeda et al. have prepared
polythiophene polyrotaxane by electrochemical polymerization [197], including the
Stoddart viologene ring; however, there is no evidence of gliding of the ring during
cyclic voltammetry. It should be noted that in these cited works the metal com-
plexes and polypyrrole matrix behave almost independently in terms of electronic
interactions.

The goal of the direct transduction of a chemical event in an electrical signal for
sensing was achieved by grafting or doping a receptor into the ICP matrix.

Provided that the recognition event results in the trapping of a charged or
bulky analyte (the guest) such as alkali ions, single-stranded DNA, proteins,
and so on, the electrostatic or steric hindrance interaction with the ICP chain
conformation modifies the electroactivity of the ICP-electrodeposited film. This
ICP-receptor-couple acts as an electrochemical transducer for sensing. This opened
a route to a large number of sensor applications (Chapters 10 and 11). As illustrating
examples, in the vast literature, the coupling with crown ether, DNA, or enzyme
was investigated and reviewed the most; see, for instance, the works of Bryce [198],
Swager [199], Bidan [176, 200], Cosnier [201], Wallace [202], Mirsky [203], Bobacka
[204], Josowicz [205], and Singh [206].

A step toward chemtronic materials, that is, the direct interaction, via molecular
orbital overlap, of a function with the conjugated chain was achieved by moving
from the concept of a pending group to the one of an intercalated group.

Now, the concept of end-terminated polymerizing groups (Figure 1.4), based on
the use of thiophene [207] and EDOT [208, 209] units as the external heterocyclic
rings, is currently used to promote the one-step electrodeposition of molecules
unable to electropolymerize alone [210].

Among them, a new class of conjugated materials with novel electronic and
electrochemical characteristics was obtained by the hybridization of ICPs with
transition metal complexes [211–213]. The cooperative behavior between a large
number of photonic and electronic properties of metallic centers and the con-
jugated matrix can be achieved by forcing the π-conjugation to go through a
metallic center or by an electronic coupling via the metal–ligand orbitals. In
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Figure 1.4 Functionalization by the strat-
egy of the end-terminated polymerizing
groups. The function is inserted between two
electropolymerization-promoting heterocycles.
In this manner, it is possible to electropoly-
merize central blocks with specific properties,

whereas, on their own, they exhibit poor
electropolymerizability. This ‘‘in chain’’ ap-
proach is preferred to the pending-group
one for applications exploiting the electronic
delocalization of the tricyclic units, such as
OPVs and molecular electronics.

the first approach, the conjugated chain is interrupted by the metal [214–216]
and is not considered here as representative of hybrid compounds. The first hy-
bridization was pioneered by Yamamoto from polypyridine [217] complexed by
ruthenium. However, these chemically prepared materials were almost insolu-
ble and the postpolymerization metallation is difficult. A step forward – mutual
metal-conjugated chain interaction – was achieved by Wrighton et al. in 1994 using
electropolymerization of 5,5′-(2-thienyl)-2,2′-bithiazole, followed by metallation of
the bithiazolyl units by Re(CO)3(CH3CN). Oxidation of the conjugated backbone
to the conducting state causes a decrease in electron density at the Re metallic
center evidenced par IR spectroscopy [218]. Zotti et al. [219] tried to compare
the efficiency of electron transfer between metal sites by electron hopping or
via conjugated linkage using a polythiophene backbone with pending ferrocene
unit bound either by an alkyl or by a vinyl spacer. However, their results are
ambiguous. To avoid the difficulty of postmetallation of the polymer, the direct
electropolymerization of a Ru complex of 5,5′-bis(2′′-bithiophene)-2,2′-bipyridine
was reported by Swager et al.; however, interconnection between the Ru centers and
the conjugated poly(bipyridine–bithiophene) chain was not clearly evidenced [220].
A key step had been achieved with the anodic polymerization of metal-directed
preassembly of rotaxane unit end terminated by two EDOT or thiophene units
reported by Swager et al. in 1997 [221] and then by Sauvage et al. in 1998 [222].
In situ conductivity measurements on interdigitated electrodes coupled with cyclic
voltammetry had showed that the redox conductivity of the copper-metallated
polymer is strongly amplified compared to the demetallated one [223]. These
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metallo-pseudopolyrotaxanes can exhibit remarkably high conductivities when the
redox potential matches the oxidation potential of the π-system, such as in copper
complexes associated with polythiophene and derivatives. This is well illustrated
by the variation in conductivity reported by Swager in the sophisticated structure
of the three-strand conducting ladder polymers using a two-step electropolymer-
ization process of metallorotaxanes [224]. During the same period of time, similar
approaches to enhance the communication between metal centers and conju-
gated backbones were developed on other structures of transition-metal-containing
conjugated polymers prepared by electropolymerization. Reynolds et al. reported
the tuning of the electrochromic properties of polythiophene link to salen-type
metal complexes [225]. Audebert et al. had electropolymerized anil- and salen-type
complexes, which exhibit enhanced charge transport when a conjugated backbone
is electroassembled [226]. Wolf et al. [227] studied polythiophene cross-linked via
different Pd complexes and the groups of Pickup et al. [228] and Shabara et al. [229]
presented electropolymerized thiophene derivatives containing dithiolene Ni, Pd,
or Au complexes.

1.4
Conclusion

The elaboration of increasingly sophisticated conjugated architectures such as
insulated molecular wires reviewed in 2007 by Anderson et al. [230] involves
an important part of chemical coupling [87, 231] compared to anodic coupling.
Nevertheless, it should be noted that the building up of conjugated polymer
networks cross-linked by organometallic bridges reviewed in 2005 by Weder
[232] accounted for a large panel of electrogenerated structures. Recently, chi-
ral polysalen–thiophene chromium complex was electrosynthesized and used to
promote asymmetric reactions [233]; electropolymerization of carbine ended by
bithiophene units was reported by Cowley et al. [234].

The determining role of conducting polymers as active materials in organic pho-
tovoltaics (OPVs) was boosted by the chemical coupling synthesis of new polymers
[235] or oligomers [236]. However, here too, the use of electrochemistry for the elec-
trodeposition of active layer in OPV cells is still widely exploited. The benefit of this
strategy is the well-controlled thickness at a nanometer scale of the electrodeposited
film. Double-cable polymers of poly(thiophenes) containing pendant C60 –fullerene
groups was electrogenerated [237–240]. Polycarbazole derivatives appear among the
more promising polymers for OPVs. Their direct electropolymerization is difficult;
however, electrocopolymerization [241] or derivatization-enhanced solubilization
[242] allows their electrodeposition. Recently, the application of the end-terminated
polymerizing heterocycle strategy has involved the synthesis of a central C60-linked
carbazole ended by EDOT units [243].

Although the mechanism of anodic electropolymerization of conducting
polymers [244, 245] (Chapter 2) such as polypyrrole [246–248] has been well
investigated, there are still gray areas with regard to the relationship between
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the morphologies (dense, open structure, fibrillar) and the conditions of
electropolymerization, for example, solvent (aqueous, organic) and potential
(value, potentiostatic, cyclic potential sweep). The recent use of ionic liquids [249,
250] for the electrosynthesis of ICPs has boosted the renewal of electrochemical
applications, which suffered from a lack of stability toward electrochemical
cycling such as batteries, supercapacitors [251], artificial muscles [252], or sensors
[253, 254]. In addition, the one-step elaboration (without template) of ICP-based
nanostructures [255] such as nanowires [256–258] is also exploited in similar
applications [259].

Therefore, the electropolymerization of conjugated structures will definitely
continue to be an important tool of functionalization and elaboration of nanoobjects
as well as an active field of researches for many years.
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Rozé, C. (1995) Anodic oxidation of the
1-(pyrrol-1-yl)-5-(fluoren-9-yl)-3-oxapen-
tane: synthesis of a conducting
poly(pyrrole-fluorene). J. Electroanal.
Chem., 388, 187–193.

175. Cosnier, S. (2000) Biosensors based
on immobilization of biomolecules by
electrogenerated polymer films. Appl.
Biochem. Biotechnol., 89, 127–137, and
references therein.

176. Bidan, G., Billon, B., Galasso, K.,
Livache, T., Mathis, G., Roget, A.,
Torres-Rodriguez, L.-M., and Vieil, E.
(2000) Electropolymerization as a ver-
satile route for immobilizing biological
species onto surface. Appl. Biochem.
Biotechnol., 89, 183–193, and references
therein.

177. Bidan, G. (1992) Electroconducting
conjugated polymers: new sensitive
matrices to build up chemical or elec-
trochemical sensors. A review. Sens.
Actuators, B, 6, 45–56, and references
therein.

178. Audebert, P. and Andrieux, C. (1989)
First electrochemical study of a
modified electrode obtained from a
3-functionalized pyrrole derivative.
J. Electroanal. Chem., 261, 443–448.

179. Lemaire, M., Garreau, R., Roncali, J.,
Delabouglise, D., Korri-Youssoufi,
H., and Garnier, F. (1989) Design of
poly(thiophene) containing oxyalkyl

substituents. New J. Chem., 13,
863–871.

180. Roncali, J., Garreau, R., Yassar, A.,
Marque, P., Garnier, F., and Lemaire,
M. (1987) Effects of steric factors on
the electrosynthesis and properties of
conducting poly(3-alkylthiophenes).
J. Phys. Chem., 91, 6706–6714.

181. Roncali, J., Garreau, R., Delabouglise,
D., Garnier, F., and Lemaire, M.
(1989) A molecular approach of
poly(thiophene) functionalisation.
Synth. Met., 28, C341–C348.
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