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Rheology of Disperse Systems
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1.1
Introduction

The rheology of disperse systems is an important processing parameter. Being able
to characterize and manipulate the flow behavior of dispersions one can ensure
their optimal performance. Waterborne automotive coatings, for example, should
exhibit a distinct low-shear viscosity necessary to provide good leveling but to avoid
sagging at the same time. Then, a strong degree of shear thinning is needed to
guarantee good pump- and sprayability. The rheological properties of dispersions,
especially at high solids content, are complex and strongly dependent on the
applied forces and flow kinematics. Adding particles does not simply increase the
viscosity of the liquid as a result of the hydrodynamic disturbance of the flow; it
also can be a reason for deviation from Newtonian behavior, including shear rate
dependent viscosity, elasticity, and time-dependent rheological behavior or even the
occurrence of an apparent yield stress. In colloidal systems particle interactions play
a crucial role. Depending on whether attractive or repulsive interactions dominate,
the particles can form different structures that determine the rheological behavior
of the material. In the case of attractive particle interactions loose flocs with fractal
structure can be formed, immobilizing part of the continuous phase. This leads
to a larger effective particle volume fraction and, correspondingly, to an increase
in viscosity. Above a critical volume fraction a sample-spanning network forms,
which results in a highly elastic, gel-like behavior, and an apparent yield stress.
Shear-induced breakup and recovery of floc structure leads to thixotropic behavior.
Electrostatic or steric repulsion between particles defines an excluded volume that
is not accessible by other particles. This corresponds to an increase in effective
volume fraction and accordingly to an increase in viscosity. Crystalline or gel-like
states occur at particle concentrations lower than the maximum packing fraction.

Characterization of the microstructure and flow properties of dispersions is
essential for understanding and controlling their rheological behavior. In this
chapter we first introduce methods and techniques for standard rheological tests
and then characterize the rheology of hard sphere, repulsive, and attractive particles.
The effect of particle size distribution on the rheology of highly concentrated
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dispersions and the shear thickening phenomenon will be discussed with respect
to the influence of colloidal interactions on these phenomena. Finally, typical
features of emulsion rheology will be discussed with special emphasis on the
distinct differences between dispersion and emulsion rheology.

1.2
Basics of Rheology

According to its definition, rheology is the science of the deformation and flow of
matter. The rheological behavior of materials can be regarded as being between two
extremes: Newtonian viscous fluids, typically liquids consisting of small molecules,
and Hookean elastic solids, like, for example, rubber. However, most real materials
exhibit mechanical behavior with both viscous and elastic characteristics. Such
materials are termed viscoelastic. Before considering the more complex viscoelastic
behavior, let us first elucidate the flow properties of ideally viscous and ideally
elastic materials.

Isaac Newton first introduced the notion of viscosity as a constant of proportion-
ality between the force per unit area (shear stress) required to produce a steady
simple shear flow and the resulting velocity gradient in the direction perpendicular
to the flow direction (shear rate):

σ = ηγ̇ (1.1)

where σ = F/A is the shear stress, η the viscosity, and the γ̇ = v/h is the shear rate.
Here A is the surface area of the sheared fluid volume on which the shear force
F is acting and h is the height of the volume element over which the fluid layer
velocity v varies from its minimum to its maximum value. A fluid that obeys this
linear relation is called Newtonian, which means that its viscosity is independent
of shear rate for the shear rates applied. Glycerin, water, and mineral oils are
typical examples of Newtonian liquids. Newtonian behavior is also characterized by
constant viscosity with respect to the time of shearing and an immediate relaxation
of the shear stress after cessation of flow. Furthermore, the viscosities measured
in different flow kinematics are always proportional to one another.

Materials such as dispersions, emulsions, and polymer solutions often exhibit
flow properties distinctly different from Newtonian behavior and the viscosity
decreases or increases with increasing shear rate, which is referred to a shear
thinning and shear thickening, respectively. Figure 1.1a,b shows the general shape
of the curves representing the variation of viscosity as a function of shear rate and
the corresponding graphs of shear stress as a function of shear rate.

Materials with a yield stress behave as solids at rest and start to flow only when
the applied external forces overcome the internal structural forces. Soft matter,
such as, for example, dispersions or emulsions, does not exhibit a yield stress in
this strict sense. Instead, these materials often show a drastic change of viscosity by
orders of magnitude within a narrow shear stress range and this is usually termed
an ‘‘apparent’’ yield stress (Figure 1.2a,b). Dispersions with attractive interactions,
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Figure 1.1 Typical flow curves for Newtonian, shear thinning and shear thickening (dila-
tant) fluids: (a) shear stress as a function of shear rate; (b) viscosity as a function of shear
rate.
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Figure 1.2 Flow curve of a material with an apparent yield stress σ y: (a) shear stress as a
function of shear rate; (b) viscosity as a function of shear stress.

such as emulsions and foams, clay suspensions, and ketchup, are typical examples
of materials with an apparent yield stress. Note that there are various methods for
yield stress determination and the measured value may differ depending on the
method and instrument used.

The flow history of a material should also be taken into account when making
predictions of the flow behavior. Two important phenomena related to the time-
dependent flow behavior are thixotropy and rheopexy. For materials showing
thixotropic behavior the viscosity gradually decreases with time under constant
shear rate or shear stress followed by a gradual structural recovery when the
stress is removed. The thixotropic behavior can be identified by measuring the
shear stress as a function of increasing and decreasing shear rate. Figure 1.3
shows a hysteresis typical for a thixotropic fluid. Examples of thixotropic materials
include coating formulations, ketchup, and concentrated dispersions in the two-
phase region (Section 1.4.1.1). The term rheopexy is defined as shear-thickening
followed by a gradual structural recovery when the shearing is stopped. Tadros
pointed out that rheopexy should not be confused with anti-thixotropy, which is the
time dependent shear thickening [1]. However, rheopectic materials are not very
common and will not be discussed here.



10 1 Rheology of Disperse Systems

Shear rate

Shear stress

Figure 1.3 Flow curve of a thixotropic material.

So far we have considered the flow behavior of viscous fluids in terms of Newton’s
law and a nonlinear change of viscosity with applied stress that can occur either
instantaneously or over a long period of time. At the other extreme is the ideal
elastic behavior of solids, which can be described by Hooke’s law of elasticity:

σ = Gγ (1.2)

where γ is the shear deformation (also termed strain) and G is the shear modulus
characterizing the rigidity of a material. The shear modulus of an ideal elastic solid
is independent of the shear stress and duration of the shear load. As soon as a
deformation is applied a constant corresponding stress occurs instantaneously. In
viscoelastic materials stress relaxes gradually over time at constant deformation
and eventually vanishes for viscoelastic liquids. When the stress relaxation is pro-
portional to the strain we are talking about the so-called linear viscoelastic regime.
Above a critical strain the apparent shear modulus becomes strain dependent.
This is the so-called nonlinear viscoelastic regime. The linear viscoelastic material
properties are in general very sensitive to microstructural changes and interactions
in complex fluids.

A dynamic test or small amplitude oscillatory shear (SAOS) test is the most
widely used rheological measurement to investigate the linear viscoelastic behavior
of a fluid, since it has a superior accuracy compared to step strain or step stress
experiments. When a sinusoidal oscillatory shear strain is applied with amplitude
γ 0 and angular frequency ω the deformation γ (t) can be written as:

γ (t) = γ0 sin(ωt) (1.3)

where t denotes the time. The shear rate is the time derivative of the shear strain
and then reads as follows:

γ̇ (t) = dγ (t)

dt
= γ0ω cos(ωt) (1.4)

A linear viscoelastic fluid responds with a sinusoidal course of shear stress σ (t)
with amplitude σ 0 and angular frequency ω, but is phase shifted by an angle δ

compared to the imposed strain:

σ (t) = σ0 sin(ωt + δ) (1.5)
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Depending on material behavior, the phase shift angle δ occurs between 0◦ and
90◦. For ideal elastic materials the phase shift disappears, that is, δ = 0, while for
ideal viscous liquids δ = 90◦. The shear modulus can be written in complex form:

G∗(ω) = G′(ω) + iG′′(ω) (1.6)

with the storage modulus G′ and loss modulus G′′. G′ is a measure of the energy
stored by the material during a cycle of deformation and represents the elastic
behavior of the material, while G′′ is a measure of the energy dissipated or lost as
heat during the shear cycle and represents the viscous behavior of the material.
The terms G′ and G′′ can be expressed as sine and cosine function of the phase
shift angle δ:

G′(ω) = σ0

γ0
cos δ (1.7)

G′′(ω) = σ0

γ0
sin δ (1.8)

Hence the tangent of the phase shift δ represents the ratio of loss and storage
modulus:

tan δ = G′′(ω)

G′(ω)
(1.9)

Analogous to the complex shear modulus we can define a complex viscosity η*:

η∗(ω) = σ (t)

γ̇ (t)
= η′(ω) + iη′′(ω) (1.10)

with:

η′(ω) = G′′(ω)

ω
and η′′(ω) = G′(ω)

ω
(1.11)

The viscoelastic properties of a fluid can be characterized by oscillatory measure-
ments, performing amplitude- and frequency-sweep. The oscillatory test of an
unknown sample should begin with an amplitude sweep, that is, variation of the
amplitude at constant frequency. Up to a limiting strain γ c the structure of the
tested fluid remains stable and G′ as well as G′′ is independent of the strain
amplitude. The linear viscoelastic range may depend on the angular frequency ω;
often, γ c decreases weakly with increasing frequency.

Frequency sweeps are used to examine the time-dependent material response.
For this purpose the frequency is varied using constant amplitude within the linear
viscoelastic range. At an appropriately high angular frequency ω, that is, short-term
behavior, the samples show an increased rigidity and hence G′ > G′′. At lower
frequencies (long-term behavior) stress can relax via long-range reorganization
of the microstructure and the viscous behavior dominates and, correspondingly,
G′′ > G′.
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1.3
Experimental Methods of Rheology

Rheometers can be categorized according to the flow type in which material prop-
erties are investigated: simple shear and extensional flow. Shear rheometers can
be divided into rotational rheometers, in which the shear is generated between
fixed and moving solid surfaces, and pressure driven like the capillary rheometer,
in which the shear is generated by a pressure difference along the channel through
which the material flows. Extensional rheometers are far less developed than shear
rheometers because of the difficulties in generating homogeneous extensional
flows, especially for liquids with low viscosity. Many different experimental tech-
niques have been developed to characterize the elongational properties of fluids
and predict their processing and application behavior, including converging chan-
nel flow [2], opposed jets [3], filament stretching [4], and capillary breakup [5, 6]
techniques. However, knowledge about the extensional rheology of complex fluids
like dispersions and emulsions is still very limited.

1.3.1
Rotational Rheometry

Rotational instruments are used to characterize materials in steady or oscillatory
shear flow. Basically there are two different modes of flow: controlled shear rate
and controlled shear stress. Three types of measuring systems are commonly used
in modern rotational rheometry, namely, concentric cylinder, parallel plate, and
cone-and-plate. Typical shear rates that can be measured with rotational rheometers
are in the range 10−3 to 103 s−1.

1.3.1.1 Concentric Cylinder Measuring System
As shown in Figure 1.4a, a cylinder measuring system consists of an outer cylinder
(cup) and an inner cylinder (bob). There are two modes of operation depending
on whether the cup or the bob is rotating. The Searle method corresponds to a

Ra

Ri

Rp

ω, Md

ω, Md

Rp

ω, Md

L

H
r

r

h (r)ϕ

(a) (b) (c)

Figure 1.4 Schematic representation of (a) concentric cylinder, (b) parallel-plate, and (c)
cone-and-plate measuring system.
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rotating bob and stationary cup, while in the Couette mode the cup is set in motion
and the bob is fixed. The gap between the two concentric cylinders should be small
enough so that the sample confined in the gap experiences a constant shear rate.
This requirement is fulfilled and the gap is classified as ‘‘narrow’’ when the ratio
of the inner to the outer cylinder radius is greater than 0.97.

When the bob is rotating at an angular velocity ω the shear rate is given by:

γ̇ = 2ω
R2

a

R2
a − R2

i

(1.12)

where Ri and Ra are the radii of the bob and the cup, respectively. If the torque
measured on the bob is Md, the shear stress σ in the sample is given by:

σ = Md

2πR2
i L

(1.13)

where L is the effective immersed length of the bob.
Having the shear rate γ̇ and shear stress σ , the sample viscosity η can be

calculated according to Equation 1.1 For these calculations we ignore any end
effects, which are actually likely to occur as a result of the different shearing
conditions in the liquid covering the ends of the cylinders. To minimize the end
effect the ratio of the length L to the gap between cylinders is maintained at greater
than 100 and the shape of the bottom of the bob is designed as a cone with an
angle α, which is chosen so that the shear rate in the bottom area matches that in
the narrow gap between the concentric cylinders.

The concentric cylinder measuring system is especially suitable for low-viscous
liquids, since it can be designed to offer a large shear area and at high shear
rates the sample is not expelled from the gap. Other advantages of this geometry
are that sample evaporation is of minor relevance since the surface area is small
compared to the sample volume, the temperature can be easily controlled due to
the large contact area, and even if suspensions exhibit sedimentation and particle
concentration varies along the vertical direction the measured viscosity is a good
approximation of the true value.

1.3.1.2 Parallel-Plate Measuring System
The parallel plate geometry is shown in Figure 1.4b. The sample, confined within
the gap of height H between the two parallel plates, is sheared by the rotation of one
of the plates at angular velocity ω. Thereby, the circumferential velocity v depends
on the distance from the plate at rest h and the distance r from the rotational axis:

v(r, h) = rω
h

H
(1.14)

and thus:

γ̇ (r) = v

h
= rω

H
(1.15)

The shear rate γ̇ at constant ω is not constant within the gap. Typically, the
calculations and analysis of rheological results in parallel-plate measuring systems
are related to the maximum shear rate value at the rim of the plate (r = Rp). The
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shear rate can be varied over a wide range by changing the gap height H and the
angular velocity ω.

The shear stress σ is a function of the shear rate γ̇ , which is not constant within
the gap. Thus, to relate the shear stress to the total torque an expression for the
σ (γ̇ ) dependence is necessary. For Newtonian liquids the shear stress depends
linearly on the shear rate and can be expressed as follows:

σ (R) = 2Md

πR3
p

(1.16)

This expression is called the apparent shear stress. For non-Newtonian fluids
Giesekus and Langer [7] developed a simple approximate single point method to
correct the shear rate data, based on the idea that the true and apparent shear stress
must be equal at some position near the wall. It was found that this occurs at the
position where r/Rp = 0.76 and this holds for a wide range of liquids.

The parallel-plate measuring system allows for measurements of suspensions
with large particles by using large gap heights. On the other hand, by operating at
small gaps the viscosity can be obtained at relatively high shear rates. Small gaps
also allow for a reduction of errors due to edge effects and secondary flows. Wall
slip effects can be corrected by performing measurements at different gap heights.
Rough plates are often used to minimize wall slip effects. Note that for sedimenting
suspensions the viscosity is systematically underestimated since the upper rotating
plate moves on a fluid layer with reduced particle loading.

1.3.1.3 Cone-and-Plate Measuring System
A cone-and-plate geometry is shown schematically in Figure 1.4c. The sample is
contained between a rotating flat cone and a stationary plate. Note that the apex of
the cone is cut off to avoid friction between the rotating cone and the lower plate.
The gap angle ϕ is usually between 0.3◦ and 6◦ and the cone radius Rp is between
10 and 30 mm. The gap h increases linearly with the distance r from the rotation
axis:

h(r) = r tan ϕ (1.17)

The circumferential velocity v also increases with increasing distance r:

v(r) = rω (1.18)

Hence the shear rate is constant within the entire gap and does not depend on the
radius r:

γ̇ = dv(r)

dh(r)
= ω

tan ϕ
≈ ω

ϕ
(1.19)

The shear stress is related to the torque Md on the cone:

σ = 3Md

2πR3
p

(1.20)

A great advantage of the cone-and-plate geometry is that the shear rate remains
constant und thus provides homogenous shear conditions in the entire shear gap.
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The limited maximum particle size of the investigated sample, difficulties with
avoiding solvent evaporation, and temperature gradients in the sample as well
as concentration gradients due to sedimentation are typical disadvantages of the
cone-and-plate measuring system.

1.3.2
Capillary Rheometer

Figure 1.5 shows a schematic diagram of a piston driven capillary rheometer. A
piston drives the sample to flow at constant flow rate from a reservoir through
a straight capillary tube of length L. Generally, capillaries with circular (radius
R) or rectangular (width B and height H) cross-sections are used. The measured
pressure drop 	p along the capillary and the flow rate Q are used to evaluate the
shear stress, shear rate, and, correspondingly, viscosity of the sample.

Pressure driven flows through a capillary have a maximum velocity at the center
and maximum shear rate at the wall of the capillary, that is, the deformation is
essentially inhomogeneous. Assuming Newtonian behavior and fully developed,
incompressible, laminar, steady flow, the apparent wall shear stress σ a in a circular
capillary with radius R is related to the pressure drop 	p by:

σa = 	pR

2L
(1.21)

and the apparent or Newtonian shear rate at the wall can be calculated on the basis
of measured flow rate according to:

γ̇a = 4Q

πR3
(1.22)

Therefore, we can evaluate the viscosity in terms of an apparent viscosity based on
Newton’s postulate (Equation 1.1).

To obtain the true shear rate in the case of non-Newtonian fluids the
Weissenberg–Rabinowitch correction [8] for non-parabolic velocity profiles should

Sample
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transducer
Δp

Capillary
L, R

Q

Figure 1.5 Schematic representation of a controlled flow rate capillary rheometer.
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be taken into account. A simpler method to determine the true shear rate has been
developed by Giesekus and Langer [7] as well as Schümmer and Worthoff [9].
Their single point method is based on the idea that the true and apparent shear
rate must be equivalent at a certain radial position near the wall and thus the true
shear rate γ̇ is given simply by:

γ̇ = 0.83γ̇a (1.23)

Note that this approximation does no differ significantly from the Weissenberg–
Rabinowitch correction for weakly shear thinning fluids.

Other possible sources of error in capillary flow experiments are entrance effects,
slippage at the capillary wall, and viscous heating effects. Furthermore, the pressure
drop 	p is difficult to measure directly in the capillary. Therefore, it is usually
detected by a transducer mounted above the entrance of the capillary. Hence, the
measured pressure includes not only the pressure loss due to the laminar flow in
the die but also the entrance pressure loss due to rearrangement of the streamlines
at the entrance and the exit of the capillary. Bagley [10] proposed a correction
that accounts for these additional pressure losses but for practical purposes it is
sufficient to use a single capillary die with sufficiently large L/R ratio, typically
L/R ≥ 60 [8].

For highly concentrated suspensions wall slip effects, due to shear induced parti-
cle migration (only for very large particles), and specific particle–wall interactions
have to be considered. If the slip velocity is directly proportional to the applied stress
it is possible to correct the apparent wall shear rate according to the procedure
developed by Mooney [11], which compares the flow curves determined with dies
of different radii but similar L/R.

The major advantage of the capillary rheometer is that the flow properties of
fluids can be characterized under high shear conditions (up to γ̇ = 106 s−1) and
process-relevant temperatures (up to 400 ◦C). Another advantage is that the capillary
flow is closed and has no free surface so that edge effects, solvent evaporation, and
other problems that trouble rotational rheometry can be avoided.

1.4
Rheology of Colloidal Suspensions

The flow behavior of colloidal (often also termed Brownian) dispersions is controlled
by the balance between hydrodynamic and thermodynamic interactions as well as
Brownian particle motion. Thermodynamic interactions mainly include electro-
static and steric repulsion and van der Waals attraction. The relative importance of
individual forces can be assessed on the basis of dimensionless groups, which can
be used to scale rheological data. In this section we first consider dispersions of
Brownian hard sphere particles and elucidate the effect of particle volume fraction,
size, and shape of particles on dispersion rheology. Then, we take into account the
effect of repulsive and attractive interactions on the microstructure of suspensions
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and its corresponding rheological response. Special attention will be paid to the
rheological behavior of concentrated dispersions.

1.4.1
Hard Spheres

Hard-sphere dispersions are idealized model systems where no thermodynamic
or colloidal particle–particle interactions are present unless these particles come
into contact. In that sense, they represent the first step from ideal gases towards
real fluids. Even such simple systems can show complex rheological behavior. The
parameters controlling dispersion rheology will be discussed below.

1.4.1.1 Viscosity of Suspensions of Spheres in Newtonian Media
Hard-sphere dispersions exist in the liquid, crystalline, or glassy state depending on
the particle volume fraction similar to the temperature-dependent phase transition
of atomic or molecular systems. Figure 1.6 demonstrates schematically the hard-
sphere phase diagram in terms of particle volume fraction φ, constructed by means
of light diffraction measurements [12]. At a low volume fraction φ particles can
diffuse freely and there is no long-range ordering in particle position, that is,
the dispersion is in the fluid state, while with increasing concentration above
φ = 0.50 crystalline and liquid phases coexist in equilibrium and the fraction of
crystalline phase increases until the sample is fully crystalline at φ = 0.55. With
further increasing particle volume fraction, crystallization becomes slower due to
reduced particle mobility. At a critical volume fraction φ = 0.58 particle mobility is
so strongly reduced that no ordered structure can be formed and the dispersion
remains in the disordered glassy (immobile) state. Crystalline ordering only occurs
if all particles are of equal size, otherwise disordered gel-like structures form at
φ > 0.5.

The phase states of hard sphere dispersions are reflected in their characteris-
tic flow curves. Figure 1.7 demonstrates the general features of the shear rate
dependence of viscosity at various particle concentrations. At volume fractions
up to φ = 0.50 the dispersion is in the liquid state and a low-shear Newtonian
plateau is observed for the viscosity. The low-shear viscosity, as well as the shear
thinning, increases with increasing particle volume fraction φ. In the two-phase
region colloidal hard-sphere dispersions may show thixotropic behavior (see the
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Figure 1.6 Hard-sphere phase-diagram constructed from light diffraction measurements
[12].
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Figure 1.7 Viscosity versus shear rate for hard sphere dispersions at various volume frac-
tions φ. The downward and upward arrows indicate the viscosity measurement with increas-
ing and consequent decreasing shear rate, respectively.

curves in Figure 1.7 at φ = 0.52), due to the shear induced destruction and subse-
quent recovery of sample structure, associated with coexisting liquid and crystalline
domains. The degree of thixotropy, if any, depends on the measuring conditions.
For a particle volume fraction of φ ≥ 0.55 dispersions are in the crystalline or
gel-like state and show shear thinning behavior in the whole shear rate range
investigated. On the other hand, thixotropy vanishes since no long-range particle
rearrangements are possible due to the dense particle packing.

Viscosity in the low shear Newtonian plateau, referred to as zero-shear viscosity
η0, depends only on the total volume occupied by the particles and is independent
of particle size. The solvent viscosity ηs always acts as a constant pre-factor,
and in the following we will focus on the relative viscosity ηr = η/ηs. Various
models describing the volume fraction dependence of the zero-shear viscosity
have been proposed. The classical model of Einstein [13, 14] for infinitely dilute,
non-interacting hard spheres showed that single particles increase the viscosity of
the dispersion medium as a linear function of the volume fraction φ according to
the equation:

ηr = (1 + 2.5φ) (1.24)

The Einstein equation applies to φ < 0.01, assuring that the flow around a particle
does not influence the velocity field of any other particle. At higher particle con-
centration the hydrodynamic interactions between particles become important and
higher-order terms in φ have to be considered. The effect of two-sphere hydrody-
namic interactions on the suspension viscosity was calculated by Batchelor [15]:

ηr = 1 + 2.5φ + 6.2φ2 (1.25)

This equation is validated to φ < 0.1. For higher particle concentrations
multi-particle interactions become imperative and a prediction of viscosity from
first principles is still lacking. Numerous phenomenological equations have been
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introduced to correlate the viscosity of concentrated dispersions to the particle
volume fraction. Krieger and Dougherty [16] proposed a semi-empirical equation
for the concentration dependence of the viscosity:

ηr =
(

1 − φ

φmax

)−2.5φmax

(1.26)

where φmax is the maximum packing fraction or the volume fraction at which
the zero shear viscosity diverges. This equation reduces to the Einstein relation
(Equation 1.24) at low particle concentration. Quemada [17] suggested another
phenomenological model to predict the ηr(φ) dependence:

ηr =
(

1 − φ

φmax

)−2

(1.27)

This model suits best as φ → φmax. Figure 1.8 shows the volume fraction
dependence of relative viscosity, according to the models described above.

The absolute value for the maximum packing fraction φmax is determined by
the packing geometry, which depends on the particle shape and particle size
distribution but not on particle size. The volume fraction at maximum packing
has been calculated by theoretical models and different φmax values have been
found depending on the type of packing. The φmax value for hard spheres is
often taken as 0.64 [18], which is the value associated with random close packing.
However, experiments on colloidal hard sphere dispersions have shown that zero-
shear viscosity diverges at the volume fraction of the colloidal glass transition
φg = 0.58 [19–22]. Above φg, particle diffusion is restricted to small ‘‘cages’’ formed
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Figure 1.8 Schematic representation of the volume fraction dependence of relative viscosity
ηr according to the Einstein, Batchelor, Krieger–Dougherty, and Quemada models.
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by the nearest neighbors; correspondingly, the long-time self-diffusion coefficient
decreases to zero and the viscosity diverges. The latter two quantities are related to
each other by the generalized Stokes–Einstein equation:

D = kBT

6πη(φ)a
(1.28)

Let us now consider the shear rate dependence of dispersion viscosity in the
liquid state. The transition from low shear to high shear plateau referred to as the
shear-thinning region depends on the balance between Brownian and hydrodynamic
forces. The Péclet number Pe is a useful dimensionless quantity to express the
relative importance of these two contributions:

Pe = 6πa3η

kBT
γ̇ = a2

D0
γ̇ (1.29)

where a is the particle size, kBT is the thermal energy, and D0 = D (φ → 0) is the
diffusion coefficient.

The Péclet number is often called the dimensionless shear rate; equivalently, the
dimensionless shear stress σ r can be expressed as follows:

σr = a3σ

kBT
(1.30)

The shear thinning region occurs around a characteristic Péclet number Pe ≈ 1 at
which Brownian and hydrodynamic forces are of similar relevance, which strongly
depends on the particle size a. A variation of particle size results in a shift of the
viscosity/shear rate curve on the γ̇ -axis with a shift factor proportional to the
particle radius cubed. Hence a plot of ηr as a function of Péclet number or
the dimensionless shear stress σ r should superimpose for hard sphere colloids
of different particle size at a given φ. This is illustrated in Figure 1.9a,b using
the example of poly(methyl methacrylate) spheres of different size, dispersed in
silicone oil , η0,r and η∞,r denote the low and high shear limiting values of the
relative viscosity.[23].

Figure 1.10a demonstrates schematically the effect of solvent viscosity ηs on the
viscosity of hard-sphere dispersions. The Pe number fully accounts for the effect
of viscosity of dispersion medium on the shear rate dependence of viscosity and
can be used to scale the data onto a master curve (Figure 1.10b) if again the relative
viscosity ηr = η/ηs.

1.4.1.2 Non-spherical Particles
Particles can deviate from the spherical form by either being axisymmetric or by
having an irregular shape. Typically, particles are approximated by prolate or oblate
spheroids (Figure 1.11) with a specified axis ratio rp:

rp = a

b
(1.31)

where a corresponds to the length of the semi-major axis and b to the length
of the semi-minor axis. Some examples of spheroids are shown in Figure 1.11.



1.4 Rheology of Colloidal Suspensions 21

10−2 10−1 100 101 102
0

10

15

20

25

30

η∞ , r

η r

η0, r

Decreasing particle size

γ / s−1 (a)

10−3 10−2 10−1 100 101 102 103
0

10

5

15

20

25

30

η r

Pe

φ = 0.45

85 nm

310 nm
141 nm

(b)

Figure 1.9 Effect of particle size on the
shear rate dependence of relative viscosity.
(a) Schematic representation of the flow
curves of hard sphere dispersion, shifted
to high shear rates as the particle size

decreases; (b) relative viscosity ηr as a func-
tion of Péclet number Pe for sterically sta-
bilized poly(methyl methacrylate) particles
of different size. Redrawn from Choi and
Krieger [23].
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Figure 1.10 Effect of solvent viscosity on the shear rate dependence of relative viscosity.
(a) Schematic representation of the flow curves for hard spheres dispersed in solvents with
different viscosity; (b) relative viscosity ηr versus Pe number for polystyrene monodispersed
spheres in different media. Redrawn from the paper by Krieger [24].
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Figure 1.11 Prolate or oblate shaped particles and corresponding examples of typical parti-
cles. Taken from Macosko [8]. Copyright © 1994 John Wiley & Sons.

The rheology of suspensions of non-spherical particles is greatly influenced by
particle orientation with respect to the flow. The orientation in flowing suspensions
is governed by the balance between hydrodynamic forces, which tend to align
particles with flow, and Brownian motion randomizing the orientation. The relative
importance of each is given by a rotational Péclet number Perot:

Perot = τrotγ̇ (1.32)

For disk-like particles with radius b, the rotational relaxation time τ rot is:

τ−1
rot = 3kBT

32ηsb
3

(1.33)

and for rod-like particles with length 2a such that rp 	 1:

τ−1
rot = 3kBT(ln 2rp − 0.5)

8πηsa
3

(1.34)

At low shear rates for small particles and low fluid viscosity Perot → 0 and the
randomizing effect of Brownian motion dominates. For Perot > 1 the hydrodynamic
forces become enough strong to align the particles with the flow and the suspension
shows a considerable shear thinning behavior.
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Figure 1.12 Intrinsic viscosity [η] as a function of rotational Péclet number Perot, calculated
for diluted suspensions of (a) disc- and (b) rod-like particles of various aspect ratios [25].
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Figure 1.12a,b shows numerical results for the intrinsic viscosity [η] as a function
of Perot for dilute suspensions of disk- and rod-like particles at different aspect
ratios [25]. The intrinsic viscosity [η] is a dimensionless quantity defined as:

[η] = lim
φ→0

η − ηs

φηs
(1.35)

It can be seen from Figure 1.12a,b that the zero-shear intrinsic viscosity increases
with increasing aspect ratio rp, which is due to the effective enlargement of
the volume inaccessible for other particles. Elongated particles in highly diluted
suspensions can rotate freely about their center of gravity and thus occupy a
spherical volume with a diameter corresponding to the long dimension of the
spheroid. Therefore, particle interactions become relevant beyond a critical volume
fraction φ* 
φmax at which these spheres start to interpenetrate. Hence, parti-
cle asymmetry has a strong effect on the concentration dependence of relative
viscosity.

In colloidal as well as non-colloidal suspensions axisymmetric particles could be
packed more densely than spheres, but the divergence of the zero shear viscosity
occurs at lower volume fraction, which decreases with increasing aspect ratio rp

(Figure 1.13).
For anisotropic particles random orientation leads to a higher barrier against

flow at low shear rates, that is, to an increase in zero-shear viscosity. However,
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Figure 1.13 Relative viscosity ηr versus particle volume fraction φ for non-colloidal glass
fiber suspension of various aspect ratios rp [26]. Taken from Barnes et al. [27].



24 1 Rheology of Disperse Systems

under shear, these elongated particles can orient in the direction of flow, resulting
in a lower high shear viscosity than for spherical particles with equivalent size.

1.4.2
Influence of Colloidal Interactions on Rheology

1.4.2.1 Repulsive Particles
So far we have considered suspensions of hard spheres for which the colloidal
or thermodynamic interactions did not play a role. In practice, dispersions are
stabilized by repulsive surface forces in order to prevent aggregation. Colloidal
interactions such as electrostatic or steric repulsion keep particles far enough apart
so that they cannot be attracted by the short-range van der Waals attraction force.
This corresponds to an excluded volume that is inaccessible to other particles. The
effective volume fraction of the dispersion φeff can be expressed as follows:

φeff = φ
(aeff

a

)3
(1.36)

where aeff is the effective particle radius defined as half the distance to which two
particle centers can approach each other under the action of colloidal forces. Many
rheological features are analogous to those of hard sphere dispersions and can be
quantitatively described by mapping the real system onto a hard sphere system
with φ =φeff. The effective increase of the volume occupied by the particles causes
an increase in the zero-shear viscosity as well as a shift of the liquid to crystalline
phase transition and the colloidal glass transition to lower volume fractions φ.
Note that hard sphere mapping is only valid if the range of repulsive interactions
is small compared to the particle radius, which is true for typical commercially or
technically relevant dispersions, especially at high particle loading.

Derjaguin–Landau–Verwey–Overbeek (DLVO) theory provides a good descrip-
tion of the interactions among electrostatically stabilized colloidal particles (see
Chapter 2 in Volume 1 [28]). The strength of the repulsion is given by the surface
charge or surface potential and the range of interaction by the so-called Debye
length κ−1, which is inversely proportional to the square-root of the ion concen-
tration in the liquid phase. Since the effective volume fraction φeff increases with
increasing κ−1, the viscosity of charge-stabilized dispersions depends strongly on
the ionic strength of the dispersion medium and diverges at lower volume fraction
than predicted for hard spheres. The concentration dependence of the zero-shear
viscosity for monodispersed charged polystyrene (PS) latices of different ionic
strength and particle size is shown in Figure 1.14a,b [29]. The data on the left-hand
side show that the relative zero-shear viscosity η0,r = η0/ηs diverges at a volume
fraction φmax,exp well below that for hard spheres and this experimental maximum
volume fraction φmax,exp decreases with decreasing ionic strength of the system.

Particle size is also an important parameter that influences φeff. Decreasing the
particle radius a, at a constant volume fraction φ and constant ionic strength,
corresponds to an increase of φeff and, thus, for smaller particles the zero-shear
viscosity diverges at a lower particle volume fraction φmax,exp [29], when keeping all
other conditions the same. The hard sphere mapping concept fully accounts for
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Figure 1.14 (a) Relative zero-shear vis-
cosity η0,r versus particle volume frac-
tion φ for monodisperse polystyrene par-
ticles (PS200), 200 nm in diameter, dis-
persed in water with concentrations of

potassium chloride [KCl]; (b) master curve
for all the data including the polystyrene
dispersions at different salt concentra-
tion and particle size: 120, 200, and
310 nm [29].

the effects of particle size and ionic strength on the volume fraction dependence
of viscosity. The zero-shear viscosity data can be collapsed onto a universal master
curve by rescaling the volume fraction by φ/φmax,exp (Figure 1.14b). Furthermore,
the Quemada (Equation 1.27) and Krieger–Dougherty (Equation 1.26) equations
developed for hard sphere dispersions provide a good description of the zero-shear
viscosity data for electrostatically interacting systems if φ is replaced by φeff.

Electrostatic interactions have a strong impact on the phase behavior of colloidal
dispersions and hence on their flow properties. The hard sphere mapping concept
can also be applied to categorize different characteristic signatures of the flow
curves corresponding to different phase states. Figure 1.15 demonstrates the
viscosity as a function of shear rate for an electrostatically stabilized PS/acrylate
dispersion at various particle concentrations. Here the phase states typical for
hard sphere dispersions (schematically shown in Figure 1.7) can be recognized
but shifted to lower particle volume fractions. For repulsively interacting systems
the phase diagram may be mapped onto that of a hard-sphere system using the
effective radius concept. Accordingly, the transition volume fractions are lower
than that for hard-sphere dispersion. In the example presented here, for instance,
φ = 0.44 =φlc,exp corresponds to the liquid/crystalline phase transition occurring
at φ = 0.50 =φlc,HS for hard spheres. Thus all volume fractions in this case can be
rescaled as φeff:

φeff = φ

(
φlc,HS

φlc,exp

)
(1.37)
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The liquid/crystalline phase transition volume fraction φlc decreases as the range
of repulsive interaction increases.

The particle size can also influence the phase behavior of colloidal dispersions.
Increasing the particle radius a at constant φ and a constant range of the repulsive
colloidal interactions corresponds to a decreasing φeff. Thus, dispersions with the
same φ but different a may exist in different phases. This has a strong impact on
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Figure 1.16 Viscosity as a function of increasing (filled symbols) and decreasing (open
symbols) shear rate for polystyrene/acrylate dispersions with different particle radii mea-
sured at fixed particle volume fraction.
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the shear rate dependent viscosity. Figure 1.16 demonstrates the phase transition
from the crystalline to the two-phase region upon an increase of particle size of an
electrostatically stabilized PS/acrylate dispersion at fixed volume fraction φ = 0.48.
At sufficiently high shear rates hydrodynamic interactions become dominant and
can overcome the electrostatic repulsive forces so that particles approach each
other closer and aeff decreases until the electrostatic contribution is completely
suppressed and the particles behave as hard spheres. As a consequence, the
viscosity becomes independent of particle size and the flow curves superimpose.

Charged stabilized dispersions show a strong shear thinning behavior until
the viscosity is close to that expected for hard spheres, that is, independent of
particle size and ionic strength. This is true for the high shear viscosity η∞ as
well as the high frequency viscosity η′

∞. Note that these quantities correspond
to different microstructures and η∞ is always larger than η′

∞. The Cox–Merz
rule η(γ̇ ) = |η∗(ω)| for γ̇ = ω, which is widely applicable for polymer melts and
solutions, can be applied to dispersion rheology only at low ω and/or φ.

Figure 1.17 shows the frequency dependence of the elastic modulus G′ and
viscous modulus G′′ for electrostatically stabilized suspensions at three different
particle volume fractions. At low volume fraction in the liquid state G′′ ≈ω

dominates over G′ ≈ω2, as expected for viscoelastic liquids. In the two-phase
region G′ and G′′ are essentially equal and increase weakly according to G* ≈ ωα

(power law exponent α < 1). In the highly concentrated gel-like or crystalline state
G′ 	 G′′ and both moduli are more or less independent of frequency ω.

Let us now consider the rheology of sterically stabilized dispersions. Particle
repulsion in sterically stabilized dispersions results from the interactions between
polymer chains or surfactant molecules adsorbed or grafted onto the particle
surface. The formation of a hairy surface layer gives rise to an increase in the
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Figure 1.17 G′ and G′ ′ as a function of angular frequency ω for a concentrated electrostat-
ically stabilized dispersion at volume fractions around the phase transition region. The filled
symbols denote G′, open symbols G′′.
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hydrodynamic particle radius and a dispersions zero-shear viscosity, in a similar
way to the case of charged particles. Hence, the rheological behavior of such
systems is similar to that of hard spheres with aeff ≈ a + L. In particular, if
the particle radius a is small the stabilizing layer can contribute significantly to
the effective volume φeff =φ(1 + L/a)3; and thus give rise to a strong viscosity
increase. When using polyelectrolytes or ionic stabilizers with weak functional
acid groups, the thickness of the stabilizer layer L depends on the ionic strength
and pH of the dispersion medium, which determine the degree of dissociation
and range of electrostatic interactions among the functional acid groups. The
steric repulsion provided by this surface layer, which is activated and tuned by
short-range electrostatic interactions, is called electrosteric stabilization and is an
important mechanism for stabilization of commercial polymer dispersions. As was
the case for charged particles, electrosterically stabilized dispersions show universal
scaling independent of ionic strength, pH, or core particle size, but here the data
have to be rescaled versus φeff not only for the zero-shear viscosity η0 but also
for the high shear viscosity η∞ and high frequency viscosity η′

∞. However, the
hairy particles show the same η′

∞ as predicted for hard sphere dispersions up to
φeff = 0.5. Beyond this effective volume fraction strong deviations are observed due
to the permeability and interpenetration of the stabilizing layers [30].

1.4.2.2 Attractive Particles
Attractive particle interactions either result in large compact aggregates, which
rapidly phase separate, or in loose aggregates with fractal structure. Only the latter
case is relevant from a rheological point of view. Loose aggregates immobilize
water, leading to a larger effective volume fraction φeff and thus to an increase
in the zero-shear viscosity. When the shear rate is increased the flocs gradually
breakdown and/or align in the flow direction, resulting in a viscosity reduction.
Aggregate break-up in dilute dispersions can be estimated by the balance between
hydrodynamic forces FH = 6πηsa

2γ̇ and the van der Waals force FvdW = aAH/12h2

(where AH is the Hamaker constant and h interparticle separation distance). Hence,
in the colloidal domain (a < 1 μm) very large shear rates are required to break-up
the aggregates into primary particles.

The fractal structure of aggregates is characterized by the fractal dimension Df,
which characterizes the mass density of the flocs and is controlled by the aggregation
mechanism. The lower the Df value, the more open the aggregate structure is.
Reaction limited- and flow-induced aggregation lead to denser structures, while
diffusion limited aggregation results in low Df values, as confirmed by computer
simulation and scattering experiments [31–33]. Above a critical volume fraction
fractal aggregates can interconnect, forming a sample-spanning network, which
results in a highly elastic gel-like behavior (G′ > G′′) and an apparent yield stress.
The rest structure ruptures at a critical stress level and viscosity progressively
decreases with increasing applied stress. The shear induced breakdown and
recovery of flocs may require a finite amount of time, resulting in thixotropic
behavior.

Different flocculation mechanisms in disperse systems can be recognized:
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• Flocculation of charged particles can be caused by increasing the ionic strength and
or lowering the surface charge. Particles can then aggregate in the primary or the
secondary minimum of the potential energy. The latter gives rise to fairly weak
aggregates and a shear force can easily separate the particles again.

• Flocculation of sterically stabilized particles depends on the thickness of the stabi-
lizing layer. Particles aggregate, when the stabilizing layer is not thick enough
to screen the van der Waals attraction; as a rule of thumb, the thickness of
the stabilizing layer should be L ≈ a/10. This layer thickness strongly depends
on the solvent quality of the continuous phase, and may often be widely tuned
by variation of temperature. Systems with an upper or lower critical solution
temperature are described in the literature.

• Depletion flocculation results from the osmotic pressure induced by the addition
of non-adsorbing polymers. Attractive interactions in this case are easily tunable
by size and concentration of added polymer.

• Bridging flocculation occurs on dissolving high-molecular weight polymers with
a strong affinity to particle surface that attach to at least two particles. Strong
bridging-flocculated gels may be formed at high particle volume fraction when
the particle surface separation is small. Typically, the molecular weight of the
polymers is on the order of 106 g mol–1 so that they can bridge the gap between
particles without losing too much conformational entropy.

• Flocculation by capillary forces: the addition of small amounts of a secondary fluid,
immiscible with the continuous phase of the suspension, causes agglomeration
due to the capillary bridges and creates particle networks even at low particle
volume fraction.

Investigations of the rheology of strongly flocculated gels are difficult because
of the poor reproducibility of sample preparation, sensitivity to shear history, and
preparation conditions. On the other hand, weak or reversible flocculation allows
for breakup and re-formation of aggregates due to thermal forces and the structure
may reach a metastable thermodynamic state.

Rheology of Weakly Flocculated Gels Suspensions in which particles are reversibly
captured in a shallow primary or secondary minimum [typically (−min/kBT) < 20,
where min is the minimum of interaction potential] are classified as weakly floc-
culated gels. To demonstrate some features of the rheology of these weakly
flocculated gels let us consider the results of the investigations of depletion floccu-
lated suspensions and the thermoreversible gelation of sterically interacting particle
suspensions. Figure 1.18a shows the shear rate dependence of the relative viscosity
of colloidal dispersions of octadecyl grafted silica spheres in benzene (φ = 0.367)
at several temperatures [34]. When the temperature is decreased below the theta
temperature (316 K) weak aggregates are formed, leading to an increase in viscosity
and shear thinning behavior. Buscall et al. [35] studied sterically stabilized acrylic
copolymer particles dispersed in ‘‘white spirit’’ (mixture of high-boiling hydro-
carbons). Adding non-adsorbing polyisobutylene above the critical free polymer
concentration for depletion flocculation causes a dramatic increase in viscosity with
increasing polymer concentration (Figure 1.18b).
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Figure 1.18 (a) Relative shear viscosity
versus shear rate for a dispersion of oc-
tadecyl grafted silica spheres in benzene
(φ = 0.367) at several temperatures [34]; (b)
relative viscosity versus shear stress σ for
a dispersion of acrylic copolymer particles
(a = 157 nm) grafted with hydroxystearic

acid–poly(methyl methacrylate) and dis-
persed in ‘‘white spirit’’ at volume frac-
tion φ = 0.4 with added polyisobutene
(Mw = 411 000 g mol–1) of different con-
centrations in weight per volume: 0.1, 0.4,
0.5, 0.6, 0.85, and 1% (from bottom to
top) [35].

Weakly flocculated systems are also characterized by an apparent yield stress.
Tadros [1] investigated depletion flocculated aqueous PS dispersions containing
free poly(ethylene oxide) (PEO) chains. It was found that the yield stress σ y

increases linearly with increasing PEO concentration φp and the slope of this linear
dependence increases with increasing particle volume fraction φ (Figure 1.19). The
following scaling relation applies:

σy ∼ φp (1.38)

where the power-law exponent p depends on the fractal dimension and is around
3 according to experimental investigations, while numerical simulations report
higher values: 3.5–4.4, depending on whether the aggregation is slow or rapid.

Figure 1.20 shows the elastic modulus G′ of the depletion-flocculated aqueous
PS dispersions as a function of the free polymer (PEO) volume fraction φp at
several particle volume fractions. Above the critical free polymer concentration G′

increases with increasing φp since the aggregates grow; G′ then reaches a plateau
value as soon as a sample-spanning network is formed. Furthermore, it can be
seen that at any given φp the elastic modulus G′ increases with increasing particle
volume fraction.

Rheology of Strongly Flocculated Gels Suspensions in which particles are captured
in a deep primary or secondary minimum with (−min/kBT) > 20 are classified as
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Figure 1.19 Yield stress σ y versus free polymer (PEO, Mw = 20 000 g mol–1) volume frac-
tion φp for a polystyrene dispersion at several particle volume fractions φ [1].
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Figure 1.20 Elastic modulus G′ versus free polymer (PEO, Mw = 20 000 g mol–1) vol-
ume fraction φp for polystyrene dispersion (a = 77.5 nm) at three different particle volume
fraction φ [1].

strongly flocculated gels. Such systems are not at equilibrium and hence difficult
to investigate experimentally. Nevertheless, several studies [36–38] examined the
rheological properties of strongly flocculated gels and found some typical trends
for these materials. Strongly flocculated gels are highly elastic (G′ 	 G′′) at small
amplitudes and have an extremely limited range of viscoelastic response. Above a
critical amplitude γ c the elastic modulus G′ rapidly decreases since the flocculated
structure breaks down. For strongly flocculated systems γ c is much lower than for
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stable dispersions with repulsive interactions or for polymer melts and solutions.
The frequency independent elastic modulus G′ of strongly flocculated gels is found
to be independent of particle size but strongly increases with particle volume
fraction φ according to the following scaling law:

G′ ∼ φα (1.39)

where the exponent α varies between 2 and 6 depending on the aggregation
conditions. If aggregation is slow (reaction limited) dense structures are formed
and gel formation sets in at a higher particle volume fraction and, correspondingly,
α is high. Figure 1.21 shows the volume fraction dependence of the G′ plateau
modulus for a sterically stabilized PS latex dispersion at various concentrations of
sodium sulfate (Na2SO4) [39]. The stable dispersion shows a strong increase of
G′ within a narrow concentration range above φ = 0.5, with an exponent α ≈ 30.
At Na2SO4 concentrations above the critical flocculation concentration α suddenly
decreases and reaches the value of 2.2 at 0.5 M Na2SO4, indicating that an open
sample-spanning network structure is formed at a particle volume fraction as low
as φ = 0.35.

Strongly flocculated dispersions are very sensitive to shear and are characterized
by an apparent yield stress. The yield stress σ y of an aggregated dispersion can be
related to the adhesion force Fadh between two particles [40]:

σy = Fadh

a2
f (φ) (1.40)

The term Fadh/a2 is the stress per particle and for low particle concentration the
function f (φ), referring to the number of particle contacts, can be approximated as
the number of binary contacts, that is, f (φ) =φ2. The adhesion force is given by
the van der Waals attraction, that is, Fadh ≈ a and thus:

σy ∼ φ2

a
(1.41)
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Figure 1.21 Elastic modulus G′ versus particle volume fraction φ for a sterically stabilized
suspension with grafted PEO flocculated by adding Na2SO4 [39].
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More elaborate models for f (φ) and the DLVO interaction potential result in the
same scaling law and provide good estimates for the absolute value of σ y and G′.
However, various experimental studies [38, 39] have revealed a different scaling for
the yield stress of strongly flocculated particulate gels with particle size and volume
fraction:

σy ∼ φ3

a2
(1.42)

Capillary Forces in Suspension Rheology Recently, Koos and Willenbacher [41]
reported that the addition of small amounts of a secondary fluid, immiscible with
the continuous phase of the suspension, can dramatically change the rheological
properties of suspensions. Capillary forces between particles lead to the formation of
a sample-spanning network structure resulting in a transition from predominantly
viscous to gel-like behavior. This phenomenon is observed for various different
fluid/particle systems, independent of whether the primary liquid or the secondary
immiscible liquid preferentially wet the solid particles. When the secondary fluid
creates isolated capillary bridges between particles the observed gel-like state is
termed the ‘‘pendular’’ state, analogous to the pendular state in wet granular media
(see Chapter 2, in Volume 1 [28]). Even if the second, immiscible fluid does not
preferentially wet the solid particles it can still attach to the particles and cause
agglomeration due to the negative curvature of the solid/liquid interface. This state
is analogous to the capillary state in wet granular media close to the saturation
limit. Figure 1.22 shows two examples demonstrating the effect of the fraction of
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Figure 1.22 Yield stress versus fraction of wetting liquid S. For the aqueous PVC disper-
sion with addition of DINP the yield stress shows a maximum in the capillary state. On
adding water to the suspension of hematite particles in DINP the yield stress shows a max-
imum in the pendular state.
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wetting liquid on the yield stress for both the pendular and the capillary state. The
increase in yield stress is greatest in the capillary state for the aqueous poly(vinyl
chloride) (PVC) dispersion with diisononyl phthalate (DINP) as a secondary fluid.
In contrast, the maximum in the yield stress for the dispersion of hematite particles
in DINP is in the pendular state where water is the secondary fluid.

SAOS measurements of suspension in the capillary state clearly demonstrate
the transition between the weakly elastic, predominantly viscous to highly elastic,
gel-like behavior with increasing amount of secondary fluid. Figure 1.23 shows
the frequency dependence of the complex shear modulus G* for hydrophobically
modified calcium carbonate (CaCO3) particles suspended in a silicone oil with
different amounts of added water as a secondary fluid. Without the secondary
fluid the magnitude of the complex shear modulus |G*| increases with increasing
frequency, whereas on addition of only 0.2% wt. water the complex shear modulus
G* becomes frequency independent. This transition in the rheological properties
of a suspension upon adding small amount of a secondary fluid is directly evident
from the images shown in Figure 1.24. Note that this phenomenon has been
observed at a particle volume fraction as low as about 10%.

This phenomenon has important potential technical applications. The formation
of a strong sample-spanning network prevents sedimentation. Furthermore, it
changes the rheological properties of the system, which is a reversible process and
may be tuned by temperature or addition of surfactant. Another field of application
is to use such suspensions as precursors for porous materials. The strong capillary
forces prevent the collapse of the network structure upon removal of the liquid
phase. A solid PVC foam has been already produced under laboratory conditions,
using PVC particles (φ = 0.2) dispersed in water, with DINP as a secondary fluid [41].
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Figure 1.23 Magnitude of complex shear modulus |G*| versus frequency ω for hydrophobi-
cally modified CaCO3 particles (a = 800 nm, φ = 0.173) dispersed in a silicone oil, with the
addition of various amounts of water.
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Fluidization of Highly Concentrated Dispersions Highly concentrated dispersions
with a particle volume fraction above the colloidal glass transition φg behave as
gel-like materials with finite plateau modulus G0. A classical method to keep
highly concentrated dispersions fluid and to minimize their viscosity is to shift the
maximum packing fraction by mixing of particles of different size (Section 1.4.3).
However, in this section we will consider an alternative concept of fluidizing dense
colloidal dispersions, based on the so-called re-entry glass transition in colloidal
dispersions [42–45].

Weak attractive interactions, for example, introduced by the depletion effect of
non-adsorbing polymers dissolved in the continuous phase, can shift the colloidal
glass transition φg to significantly higher values (up to φ ≈ 0.7), which can be used
to make freely flowing but highly concentrated dispersions. Figure 1.25 shows
the viscosity reduction upon addition of a non-adsorbing polymer to an aqueous
dispersion of a hard-sphere like polystyrene–(butyl acrylate), P(S-BA), dispersion
at a particle volume fraction above the colloidal glass transition [46]. It can be seen

0.00% H2O wt. 0.10% 0.20% 0.30% 0.40% 0.50%

Figure 1.24 Transition from weakly elastic, predominantly viscous to highly elastic, gel-like
behavior with increasing amount of water added to a suspension of hydrophobically modi-
fied CaCO3 (a = 800 nm, φ = 0.11) in DINP.
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Figure 1.25 Relative viscosity as a function of shear rate for an aqueous polystyrene–(butyl
acrylate) P(S-BA) dispersion at φ = 0.64 with and without added PEO (Mw = 20 000 g l–1) in
comparison with a commercial polymer dispersion (acrylate latex) with a broad multimodal
size distribution [46].
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(a) (b) (c)

Figure 1.26 Changes in the texture of an aqueous P(S-BA) latex (a) at φ =0.64 upon addi-
tion of different concentrations of PEO (Mw = 4000 g mol–1): (b) 5 and (c) 10 g l–1.

that the low-shear viscosity decreases by two orders of magnitude upon addition
of non-adsorbing polymer and the effect is comparable to that resulting from
broad multimodal particle size distribution. The fluidization of an aqueous latex
dispersion due to added non-adsorbing polymer is also evident in Figure 1.26, which
shows images of the suspension with different polymer concentration placed on a
glass plate. On adding different amounts of PEO to the aqueous P(S-BA) dispersion
the texture of the sample changes from gel-like, due to the particle caging at this
concentration (repulsive glass), to fluid like and again to gel-like but now due to
particle bonding (attractive glass).

1.4.3
Effect of Particle Size Distribution

Numerous experimental studies have been performed using bimodal and multi-
modal model systems and various phenomenological models have been developed
to describe the effect of particle size distribution on viscosity. Typically, a signifi-
cant viscosity reduction due to mixing particles with different size is observed at
particle volume fractions φ > 0.5 and the effect increases with increasing φ. For
bimodal systems the viscosity at a given particle loading goes through a pronounced
minimum at a relative fraction of small particles ξ s ≈ 0.3. This viscosity reduction
phenomenon is observed for dispersions of non-Brownian as well as Brownian
hard spheres. Typical examples are presented in Figure 1.27a,b. Viscosity reduction
has been observed at particle size ratios as low as χ = 1.7 and for hard sphere
suspensions the effect increases with increasing χ = alarge/asmall. This is no longer
true if repulsive colloidal interactions become relevant. At a fixed size of the large
particles an increasing χ value corresponds to a decreasing size of small particles
asmall and if the range of the repulsive interactions is constant this corresponds
to an increasing φeff. As a consequence the viscosity goes through a minimum
and then increases again if the size ratio χ is increased at a constant total particle
concentration and a fixed fraction of small particles. This is shown schematically
in Figure 1.28. Willenbacher and coworkers [47, 48] have investigated this phe-
nomenon intensively using a large number of polymer dispersions with different
particle size ratio and different range of repulsive interaction. They could show
that for typical commercial dispersions with short-range repulsive interactions the
viscosity reduction effect is most pronounced at a size ratio χ = 4–5. Furthermore,
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Figure 1.27 Relative zero-shear viscosity η0,r versus small particle volume fraction ξ s: (a)
for a suspension of non-Brownian hard spheres at different size ratios (b) For a suspen-
sion of Brownian particles with size ratio χ = 1.7 at different particle concentration φ (0.58
and 0.56). Redrawn from Rodriguez et al. [50].
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Figure 1.28 Schematic drawing of relative
viscosity as a function of particle size ra-
tio calculated according to Equation 1.43
for large particle radius alarge = 400 nm,
total particle concentration φ = 0.6, and
small particle volume fraction ξ s = 0.25.

The dashed line shows the results
for ε = 2, that is, hard sphere disper-
sions, and the solid line represents
the results for ε as a function of aver-
age particle size. Adapted from Dames
et al. [47].
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they proposed a generalized Quemada model:

η = η̃

(
1 − φ

φmax

)−ε

(1.43)

with a shear rate dependent pre-factor η̃ and they could show that φmax can be
calculated solely from the particle size distribution according to a phenomenological
model derived from a large set of data for non-colloidal hard sphere packing [51], and
the colloidal interactions are parameterized by the exponent ε ≥ 2. The exponent ε

is equal to 2 in the hard sphere limit and increases with decreasing mean particle
size. This is attributed to the fact that colloidal interactions among particles become
more important as the mean particle separation diminishes and viscosity diverges
at lower volume fractions than expected for hard spheres.

The phenomenon of viscosity reduction due to bi- or multimodal particle size
distribution is often attributed to an optimized packing that fits small particles into
the interstitial volume between the large particles. Along these lines Farris [52] has
developed a model for bimodal dispersions with size ratio χ > 10, treating the small
particles together with the solvent as a homogeneous fluid with an effective viscosity
and assuming that small and large particles do not interact. This model predicts a
viscosity minimum at a small particle fraction ξ s = 0.27, which is in good agreement
with many experimental observations. But, on the other hand, a minimum value
of χ c = 6.46 [53] is required to fit a small particle into the interstitial volume within
a tetrahedron of large particles and for χ = χ c this packing concept corresponds
to a fraction of small particles ξ s < 0.01, which is by far not sufficient to induce a
viscosity reduction. However, a small particle volume fraction of ξ s ≈ 0.3, which is
needed to induce a significant viscosity reduction, corresponds to a number ratio
Nsmall/Nlarge ≈ 100 at a size ratio around χ c. These considerations demonstrate
that simple packing considerations are not sufficient to explain the observed
phenomena. Accordingly, the formation of ordered superlattice structures or phase
separation effects have also been discussed, but a satisfying theory explaining the
effect of particle size distribution on viscosity is still lacking.

1.4.4
Shear Thickening

Shear thickening describes the phenomenon of increasing viscosity with increasing
shear rate or shear stress. This phenomenon has been observed for a wide variety of
colloidal and non-colloidal particle suspensions. Shear thickening becomes impor-
tant at high shear rates and occurs beyond a critical volume fraction (Figure 1.29a).
The thickening effect increases with particle loading and depends on particle size,
particle size distribution, and interactions among particles [54].

Early rheological and light scattering results [56, 57] suggested that the shear
thickening phenomenon is due to a shear induced order–disorder transition
and the shear thinning observed at intermediate shear rates is attributed to the
formation of a layered structure. Repulsive interactions are assumed to stabilize
this layered structure. At sufficiently high shear rates spatial fluctuations of particle
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Figure 1.29 Shear thickening of charge
stabilized silica dispersions with vari-
ous particle radii (75, 167, 300, 600, and
1000 nm) and particle volume fraction
ranging between 0.31 and 0.59 [55]. (a)

Viscosity versus shear stress; (b) critical
shear stress σ c versus particle radius a.
The line fits the power law dependence
σ c ≈ a−2. Adapted from Maranzano and
Wagner [55].

position destabilize the ordered flow, which results in a strong increase in viscosity.
The onset of shear thickening is related to a critical shear rate, above which
the hydrodynamic lubrication forces exceed the repulsive colloidal forces [58].
However, comprehensive rheo-optical and small-angle neutron scattering (SANS)
experiments [59–62] have revealed that the shear thickening phenomenon may
or may not be accompanied by an order–disorder transition but this transition is
not a necessary condition. Instead, these investigations clearly revealed that shear
thickening is due to the formation of so-called hydroclusters, which form under
the action of hydrodynamic forces pushing particles together and instantaneously
disintegrate upon cessation of flow. The formation of clusters shows up in turbidity
and flow birefringence and has also been confirmed by stress jump experiments [63]
as well as Stokesian dynamics simulations of hard sphere dispersion flow [64–66].
Furthermore, Chow and Zukoski [67] investigated the shear thickening behavior
of electrostatically stabilized particles in very thin rheometer gaps and found that
the critical shear rate for shear thickening increases with increasing the gap size,
indicating formation of gap-spanning clusters. The increase in viscosity is attributed
to the anisotropic shape of the clusters and the enhanced effective particle volume
fraction due to trapped solvent. The hydroclusters can collide with each other and
thus ‘‘jam’’ the flow, leading to discontinuous shear thickening at a critical shear
stress. If the particle volume fraction is not high enough, hydrocluster formation
does not lead to jamming and the shear thickening effect is less pronounced.
The formation of hydroclusters is controlled by the balance of hydrodynamic
force needed to push particles together and the repulsive thermodynamic forces.
Accordingly, a critical stress σ c for the onset of shear thickening is predicted that
scales as σ c ≈ a−2 for electrostatically stabilized systems, which is consistent with
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experimental results [55, 58, 61] (Figure 1.29b). This scaling has also been observed
for sterically stabilized dispersions [68]. Note that σ c is almost independent of
particle volume fraction φ, while the corresponding critical shear rate γ̇c = σc/η(φ)
decreases with increasing φ.

Shear thickening can be suppressed or shifted to higher critical stresses by a
broad particle size distribution [54]. It has been shown that for bimodal mixtures
with size ratio χ ≈ 3 the critical shear stress σ c increases with increasing fraction
of small particles ξ s [55, 61]. Particle shape also has a strong influence on the shear
thickening behavior. Beazley [69] demonstrated that anisotropic clay suspensions
exhibit shear thickening behavior at lower volume fractions and the effect increases
with increasing aspect ratio. Bergstrom [70] investigated aqueous suspensions of
rod-shaped silicon carbide whiskers with aspect ratio rp ≈ 10 and reported shear
thickening behavior at volume fraction as low as 17%. More recently, Egres and
Wagner [71] investigated systematically the effect of particle anisotropy on shear
thickening using a poly(ethylene glycol) based suspensions of acicular precipitated
calcium carbonate (PCC) particles with aspect ratio varying between 2 and 7. Two
important results have been pointed out: the critical volume fraction for the onset
of shear thickening decreases with increasing aspect ratio but the critical shear
stress σ c is independent of the aspect ratio and follows the scaling laws proposed
for hard sphere dispersions with a size corresponding to the minor axis dimension.

1.5
Rheology of Emulsions

The rheology of emulsions exhibits many qualitative analogs to the rheology of
solid spherical particle dispersions. Differences arise from the deformability of
liquid drops, which is especially relevant at high shear rates and/or high volume
fraction of the disperse phase. However, even at low shear rates and low droplet
concentrations the relative viscosity of emulsions differs from that of solid sphere
dispersions. This is due to circulation of the flow inside the droplets, which leads
to deformation of the external streamlines around the fluid spheres such that the
flow is less disturbed and viscous dissipation is lower [72]. The degree of this effect
depends on the viscosity ratio M:

M = ηd

ηs
(1.44)

where ηd is the viscosity of the droplet liquid. For high droplet viscosity the viscosity
ratio M approaches infinity and the distortion of the stream lines approaches that
of rigid spheres. This effect is measurable even in very dilute emulsions and is
captured by the Taylor equation [73]:

η = ηs

[
1 +

(
1 + 2.5M

1 + M

)
φ

]
(1.45)

which reduces to the Einstein equation (Equation 1.24) for M → ∞. Taylor’s
hydrodynamic theory assumes no deformation of droplets, which is satisfied at low
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enough shear rates. In typical oil-in-water (O/W) emulsions the interfacial tension
� is high enough to counteract the effect of hydrodynamic forces and leads to fast
shape relaxation. The droplet relaxation time τ d is given by:

τd = aηs

�
(1.46)

and droplet deformation is not relevant for emulsion rheology as long as γ̇ < τ−1
d .

The balance between surface tension and shear forces is often expressed by the
dimensionless capillary number (Ca):

Ca = aηsγ̇

�
(1.47)

Droplet deformation and rupture occur at Ca > 1. A closer look at the phenomenon
reveals that the critical Ca at which droplet rupture occurs depends strongly on the
viscosity ratio M and can vary by orders of magnitude [74, 75]. Flow kinematics also
plays a role and, generally, droplet rupture is easier in elongational than in shear
flow.

Experimental results on model emulsions of different viscosity ratios M, reported
by Nawab and Mason [76] demonstrated excellent agreement with Taylor’s hydro-
dynamic theory (Figure 1.30). Nawab and Mason pointed out that in some cases
adsorbed surfactant layers can reduce the internal circulations and thereby cause
an increase of intrinsic viscosity to the rigid sphere limit.

With increasing concentration above the Einstein limit, hydrodynamic inter-
actions become significant and Taylor’s equation cannot describe the volume
fraction–viscosity dependence. Pal [77] has proposed a phenomenological viscosity
equation for concentrated emulsions that takes into account the effect of viscosity
ratio M and reduces to the generalized Krieger–Dougherty equation (Equation 1.26)
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Figure 1.30 Intrinsic viscosity [η] versus droplet volume fraction φ for monodisperse emul-
sions of butyl benzoate oil droplets in different water solutions in order to vary the viscosity
ratio M [76]. Taken from Macosko [8]. Copyright © 1994 John Wiley & Sons.
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when M → ∞:

ηr

[
2ηr + 5M

2 + 5M

]3/2

=
[

1 − φ

φmax

]−2.5φmax

(1.48)

This equation as based on a large set of experimental data for emulsions covering
a broad range of droplet volume fractions φ and viscosity ratios M.

The effect of dispersed phase volume fraction on rheology of typical technical
emulsions is less severe in comparison to colloidal dispersions. Since droplet size is
usually in the micron range technically relevant shear rates correspond to very high
Pe numbers and the measured viscosity data correspond to the upper Newtonian
plateau regime. Viscosity is further reduced at high droplet volume fractions due
to the usually broad droplet size distributions. As a consequence such emulsions
behave as Newtonian fluids up to volume fractions close to dense packing (φ ≈ 0.6)
[78]. Emulsions with an average droplet radius in the range of several 100 nm exhibit
a flow behavior resembling very much that of colloidal hard sphere suspensions.
Note that increasing the volume fraction of the dispersed phase does not necessarily
result in a monotonic increase in viscosity. At a critical droplet volume fraction,
phase inversion may occur that is accompanied by a drastic drop in viscosity.
However, emulsions are usually stabilized by surfactants adsorbed onto the droplet
surface that prevent the coalescence of droplets at contact.

Repulsive and attractive colloidal interactions as well as droplet deformation
and rupture during flow can cause a deviation from the hard sphere behavior of
emulsions. The effect of repulsive droplet interactions due to surface charge or
adsorbed polymer can be captured by hard sphere mapping (φ → φeff) similar to
that for suspensions of repulsive solid particles. Attractive droplet interactions lead
to flocculation and gelation analogously to attractive particle suspensions. Emulsion
rheology can be tuned over a wide range by adding thickeners to the continuous
phase or by excess surfactant providing self-assembling gel-like structure to the
continuous phase, which is particularly relevant for stabilization against creaming.

Emulsions can exhibit distinct viscoelastic properties even if both constituents are
Newtonian fluids due to the contribution of the interfacial tension, which opposes
droplet deformation. This is particularly important for polymer blends, where
the viscosity of both components is high and deformed interfaces relax slowly.
Various models have been established to describe the complex shear modulus G*
of emulsions. When both phases are Newtonian the Oldroyd model [79, 80] suits:

G∗ = iωηs

(
1 + 3

2 φ E
D

1 − φ E
D

)
(1.49)

with:

E = 2iω(ηd − ηs)(19ηd + 16ηs) + 8�

a
(5ηd + 2ηs)

D = iω(2ηd + 3ηs)(19ηd + 16ηs) + 40�

a
(ηd + ηs) (1.50)
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For emulsions with viscosity ratio M → ∞, droplets behave like solid particles and
the droplet relaxation time is so short that the ratio E/D reduces to:

E

D
= 0.4 + M

1 + M
(1.51)

In the dilute limit with φ → 0, Equation 1.49 simplifies to:

G∗ = iωηs

(
1 + 5

2
φ

E

D

)
(1.52)

For emulsions where both continuous and dispersed phase are viscoelastic with
frequency dependent complex moduli G∗

s and G∗
d, respectively, the Palierne [81]

model provides a good description for the complex modulus G* of the emulsion:

G∗ = G∗
s

(
1 + 3

2 φ E
D

1 − φ E
D

)
(1.53)

with:

E = 2(G∗
d − G∗

s )(19G∗
d + 16G∗

s ) + 8�

a
(5G∗

d + 2G∗
s )

D = (2G∗
d + 3G∗

s )(19G∗
d + 16G∗

s ) + 40�

a
(G∗

d + G∗
s ) (1.54)

Kitade et al. [82] investigated the viscoelastic properties of polymer blends consisting
of polydimethylsiloxane (PDMS) and polyisoprene and demonstrated that the
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Figure 1.31 Comparison of the Palierne model (lines) with measured G′(ω) dependence
for a blend of 11% polyisoprene (η0 = 60.9 Pa s) in PDMS (η0 = 73.7 Pa s) with � = 3.2 mN
m–1, pre-sheared at four different shear rates [82].
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experimentally determined frequency dependence of G′ is in agreement with the
Palierne model (Figure 1.31). The contribution of the interfacial term results in a
pronounced shoulder in the G′(ω) curve in the low frequency range. Figure 1.31
shows that with increasing pre-shear rate, which corresponds to a decrease of
the average droplet size [82], the ‘‘shoulder’’ in the G′(ω) dependence shifts to
higher frequencies. This is due to an increased interfacial area and hence a more
pronounced interfacial contribution for smaller droplets. In the high frequency limit
the interfacial terms can be ignored and G′ is determined only by the viscoelasticity
of the dispersion medium. Then, if G∗

d/G∗
s ≈ 1, the Palierne emulsion model

further simplifies to:

G∗ ≈ (1 − φ)G∗
s + φG∗

d (1.55)

Emulsions exhibit unique flow properties that are not observable in suspensions
when a critical volume fraction φc is exceeded. For colloidal systems φc may
be associated with the glass transition and for non-Brownian systems with the
volume fraction of close packing. At volume fractions φ > φc dispersions of solid
particles can no longer flow. In contrast, emulsions still flow even at φ >φc since
droplets start to deform and take a polyhedral shape. Such emulsions exhibit an
apparent yield stress, strong shear thinning, and pronounced elasticity. In the linear
viscoelastic regime the storage modulus G′ is much larger than G′′ and essentially
independent of frequency; this G′ value is known as the plateau modulus G0. Steady
shear flow curves are usually well described by the Herschel–Bulkley model:

σ = σy + kγ̇ (1.56)

where k is the consistency parameter and n the power law index. The apparent
yield stress, the degree of shear thinning (here expressed in terms of n), and
the plateau modulus increase with increasing volume fraction of internal phases
and decreasing droplet size. A thermodynamic model developed by Princen [83]
related the droplet compression to the osmotic pressure in the system, which
increases with increasing droplet volume fraction φ. When the osmotic pressure
exceeds the Laplace pressure �/a droplets start to deform and pack more tightly
with increasing φ. The elasticity of the system then arises from the surface tension
acting to resist the deformation. The plateau modulus G0 gradually develops when
φc is approached and then increases linearly with effective volume fraction [84]:

G0 = 3�

2a
(φeff − φc) (1.57)

where φeff accounts for the excluded volume due to repulsive forces. G0 is also
proportional to the Laplace pressure �/a and when φeff approaches unity the
plateau modulus approaches the limiting value G0 ≈�/2a.

Densely packed emulsions with φ >φc are characterized by an apparent yield
stress σ y at which the rest structure breaks down. In oscillatory shear measure-
ments, yielding occurs at a critical deformation amplitude, called the yield strain
γ y = σ y/G0. For highly concentrated emulsions this yield strain increases linearly
with increasing droplet volume fraction [85]:

γy ∼ (φeff − φc) (1.58)
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Figure 1.32 (a) Yield strain γ y versus
effective volume fraction φeff; solid
line corresponds to Equation 1.58; (b)
apparent yield stress σ y scaled by the
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Figure 1.32a demonstrates this linear dependence for monodispersed emulsions
having different droplet size. Obviously, the volume fraction dependence of γ y is
independent of droplet size and γ y reaches its minimum at φc. The yield stress σ y

can be approximately expressed as σ y = G0γ y and together with Equation 1.57 this
yields the following relationship:

σy = 3

2

�

a
(φeff − φc)2 (1.59)

which nicely fits the experimental data in Figure 1.32b. For φeff ≈ 1 Equation 1.59
roughly reduces to:

σy(φeff = 1) ≈ 0.1
�

a
(1.60)

These experimental findings are also captured by the Princen–Kiss model [86]:

σy = �

a
φ

1
3 Y(φ) (1.61)

This model is based on the affine deformation of a hexagonal structure and Y(φ)
can be expressed in analytical form for two-dimensional systems; however, for
three-dimensional emulsions Y(φ) is an empirical function:

Y(φ) = −0.080 − 0.114lg(1 − φ) (1.62)

Also distinct in a mathematical sense, the absolute numerical values of the terms
φ1/3(φ) and (φeff −φc) are not very different and φeff does not differ much from φ

if the layer immobilized by the surfactant is small compared to the droplet size,
as for many technically relevant emulsions. Equations 1.59 and 1.61 include the
linear relationship between σ y and the Laplace pressure �/a; if the particle size a is
known, measuring σ y or preferentially G0, since it is accessible with high accuracy
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(Equation 1.57), is a valuable tool for determining the interfacial tension �, which
is otherwise often hard to access.

Highly concentrated emulsions often do not exhibit uniform deformation even
in simple shear flow, instead they show shear banding, which can be very irregular
in the sense that the plane of deformation changes its position or that the width of
the deformed region changes with time [87–90].
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