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Euler’s Method

1.1
Introduction

In this chapter, we will consider a numerical method for a basic initial value
problem, that is, for

y′ = F(x, y), y(0) = α. (1.1)

We will use a simplistic numerical method called Euler’s method. Because
of the simplicity of both the problem and the method, the related theory is
relatively transparent and will be provided in detail. Though we will not do
so, the theory developed in this chapter does extend to the more advanced
methods to be introduced later, but only with increased complexity.

With respect to (1.1), we assume that a unique solution exists, but that ana-
lytical attempts to construct it have failed.

1.2
Euler’s Method

Consider the problem of approximating a continuous function y = f (x) on
x ≥ 0 which satisfies the differential equation

y′ = F(x, y) (1.2)

on x > 0, and the initial condition

y(0) = α, (1.3)

in which α is a given constant. In 1768 (see the Collected Works of L. Euler,
vols. 11 (1913), 12 (1914)), L. Euler developed a method to prove that the ini-
tial value problem (1.2), (1.3) had a solution. The method was numerical in
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nature and today it is implemented on modern computers and is called Eu-
ler’s method. The basic idea is as follows. By the definition of a derivative,

y′(x) = lim
h→0

f (x + h) − f (x)
h

. (1.4)

For small h > 0, then, (1.4) implies that a reasonable difference quotient ap-
proximation for y′(x) is

y′(x) =
f (x + h) − f (x)

h
. (1.5)

Substitution of (1.5) into (1.2) yields the difference equation

f (x + h) − f (x)
h

= F(x, y) (1.6)

which approximates the differential equation (1.2). However, (1.6) can be
rewritten as

f (x + h) = f (x) + hF(x, y)

or, equivalently, as
y(x + h) = y(x) + hF(x, y(x)), (1.7)

which enables one to approximate y(x + h) in terms of y(x) and F(x, y(x)).
Equation (1.7) is the cornerstone of Euler’s method, which is described pre-
cisely as follows.

Since a computer cannot calculate indefinitely, let x ≥ 0 be replaced by
0 ≤ x ≤ L, in which L is a positive constant. The value of L is usually deter-
mined by the physics of the phenomenon under consideration. If the phenom-
enon occurs over a short period of time, then L can be chosen to be relatively
small. If the phenomenon is long lasting, then L must be relatively large. In ei-
ther case, L is a fixed, positive constant. The interval 0 ≤ x ≤ L is then divided
into n equal parts, each of length h, by the points xi = ih, i = 0, 1, 2, . . . , n. The
value h = L/n is called the grid size. The points xi are called grid points.
Let yi = y(xi), i = 0, 1, 2, . . . , n, so that initial condition (1.3) implies y0 = α.
Next, at each of the grid points x0, x1, x2, . . . , xn−1, approximate the differen-
tial equation by (3.6) in the notation

yi+1 − yi

h
= F(xi, yi), i = 0, 1, 2, . . . , n − 1, (1.8)

or, in explicit recursive form

yi+1 = yi + hF(xi, yi), i = 0, 1, 2, . . . , n − 1. (1.9)

Then, beginning with
y0 = α, (1.10)
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set i = 0 in (1.9) and determine y1. Knowing y1, set i = 1 in (1.9) and deter-
mine y2. Knowing y2, set i = 2 in (1.9) and determine y3, and so forth, until,
finally, yn is generated. The resulting discrete function y0, y1, y2, . . . , yn is
called the numerical solution.

Example 1.1 Consider the initial value problem

y′ + y = x, y(0) = 1. (1.11)

This is a linear problem and can be solved exactly to yield the solution

Y(x) = x − 1 + 2e−x. (1.12)

Hence, there is no need to solve (1.11) numerically. We will proceed numeri-
cally for illustrative purposes only. For Euler’s method, fix L = 1 and h = 0.2.
Then, x0 = 0.0, x1 = 0.2, x2 = 0.4, x3 = 0.6, x4 = 0.8, x5 = 1.0 and differen-
tial equation (1.11) is approximated by the difference equation

yi+1 − yi

0.2
+ yi = xi, i = 0, 1, 2, 3, 4,

or, equivalently, by

yi+1 = (0.8)yi + (0.2)xi, i = 0, 1, 2, 3, 4. (1.13)

Since y0 = 1, (1.13) yields, to three decimal places

y1 = (0.8)y0 + (0.2)x0 = (0.8)(1.000)+ (0.2)(0.0) = 0.800

y2 = (0.8)y1 + (0.2)x1 = (0.8)(0.800)+ (0.2)(0.2) = 0.680

y3 = (0.8)y2 + (0.2)x2 = (0.8)(0.680)+ (0.2)(0.4) = 0.624

y4 = (0.8)y3 + (0.2)x3 = (0.8)(0.624)+ (0.2)(0.6) = 0.619

y5 = (0.8)y4 + (0.2)x4 = (0.8)(0.619)+ (0.2)(0.8) = 0.655.

Thus, the numerical approximation with h = 0.2 is

y(0.0) = 1.000

y(0.2) = 0.800

y(0.4) = 0.680

y(0.6) = 0.624

y(0.8) = 0.619

y(1.0) = 0.655.
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However, from (1.12), the exact solution, rounded to three decimal places, at
the grid points is given by

Y(0.0) = 1.000

Y(0.2) = 0.837

Y(0.4) = 0.741

Y(0.6) = 0.698

Y(0.8) = 0.699

Y(1.0) = 0.736.

Comparison of the numerical and the exact solutions then yields the pre-
cise amount of error that results at each grid point when employing Euler’s
method.

Now, unlike the above example, numerical methodology will be applied
only when the exact solution of (1.2), (1.3) is not known. Thus, in practice the
error at each grid point will not be known. It is essential then to know, a priori,
that the unknown error at each grid point is arbitrarily small if h is arbitrarily
small, that is, that the error at each grid point decreases to zero as h decreases
to zero. If this were valid, then one would have the assurance that the error
generated by Euler’s method is negligible for all sufficiently small grid sizes
h. That this is correct when all calculations are exact will be established next.

A generic algorithm for Euler’s method is given as follows.

Algorithm 1 Euler

Step 1. Set a counter k = 1.
Step 2. Set a time step h.
Step 3. Set an initial time x.
Step 4. Set initial value y.
Step 5. Calculate

K0 = y
K1 = hF(x, y).

Step 6. Calculate y at x + h by
y(x + h) = (K0 + K1).

Step 7. Increase the counter from k to k + 1.
Step 8. Set y = y(x + h), x = x + h.
Step 9. Repeat Steps 5–8.
Step 10. Continue until k = 100.
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1.3
Convergence of Euler’s Method*

We wish to show now that, for Euler’s method, the error at each grid point de-
creases to zero as h decreases to zero. The associated theory is called convergence
theory. In developing convergence theory, we will require some preliminary
results.

Lemma 1.1 If the numbers |Ei| , i = 0, 1, 2, 3, . . . , n, satisfy

|Ei+1| ≤ A |Ei|+ B, i = 0, 1, 2, 3, . . . , n − 1 (1.14)

where A and B are nonnegative constants and A �= 1, then

|Ei| ≤ Ai |E0|+ Ai − 1
A − 1

B, i = 1, 2, 3 . . . , n (1.15)

Proof. For i = 0, (1.14) yields

|E1| ≤ A |E0|+ B = A |E0|+ A − 1
A − 1

B,

so that (1.15) is valid for i = 1. The proof is now completed by induction.
Assume that for fixed i, (1.15) is valid, that is,

|Ei| ≤ Ai |E0|+ Ai − 1
A − 1

B.

Then we must prove that

|Ei+1| ≤ Ai+1 |E0|+ Ai+1 − 1
A − 1

B.

Since, by (1.14),
|Ei+1| ≤ A |Ei|+ B,

then

|Ei+1| ≤ A
[

Ai |E0| + Ai − 1
A − 1

B
]

+ B = Ai+1 |E0|+ Ai+1 − 1
A − 1

B,

and the proof is complete.

The value of Lemma 1.1 is as follows. If each term of a sequence
|E0| , |E1| , |E2| , |E3| , |E4| , . . . , |En| , . . ., is related to the previous term by
(1.14), then Lemma 1.1 enables one to relate each term directly to |E0| only,
that is, to the very first term of the sequence.
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Theorem 1.1 Let I be the open interval 0 < x < L and Ī the closed interval
0 ≤ x ≤ L. Assume the initial value problem

y′ = F(x, y), y(0) = α (1.16)

has the unique solution Y(x) on Ī. Then, on I,

Y′(x) ≡ F(x, Y(x)) (1.17)

and
Y(0) = α. (1.18)

Assume that Y′(x) and Y′′(x) are continuous and that there exist positive constants
M, N such that ∣∣Y′′(x)

∣∣ ≤ N, 0 ≤ x ≤ L (1.19)∣∣∣∣ ∂F
∂y

∣∣∣∣ ≤ M, 0 ≤ x ≤ L, −∞ < y < ∞. (1.20)

Next, let Ī be subdivided into n equal parts by the grid points x0 < x1 < x2 < . . . <
xn, where x0 = 0, xn = L. The grid size h is given by

h = L/n. (1.21)

Let yk be the numerical solution of (1.16) by Euler’s method on the grid points, so
that

yk+1 = yk + hF(xk, yk), k = 0, 1, 2, . . . , n − 1 (1.22)

y0 = α. (1.23)

Finally, define the error Ek at each grid point xk by

Ek = Yk − yk, k = 0, 1, 2, 3, . . . , n. (1.24)

Then,

|Ek| ≤
[
(1 + Mh)k − 1

]
Nh

2M
, k = 0, 1, 2, 3, . . . , n. (1.25)

Proof. Consider
|Ek+1| = |Yk+1 − yk+1| .

Then
|Ek+1| = |Yk+1 − yk+1| = |Y(xk + h) − (yk + hF(xk, yk))| .

Introducing a Taylor expansion for Y(xk + h) implies

|Ek+1| =
∣∣∣∣
(

Y(xk) + hY′(xk) +
1
2

h2Y′′(ξ)
)
− (yk + hF(xk, yk))

∣∣∣∣
=

∣∣∣∣Yk − yk + h
[
Y′(xk) − F(xk, yk)

]
+

1
2

h2Y′′(ξ)
∣∣∣∣ .
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From (1.17), then

|Ek+1| =
∣∣∣∣Yk − yk + h [F(xk, Yk) − F(xk, yk)] +

1
2

h2Y′′(ξ)
∣∣∣∣ ,

which, by the mean value theorem for a function of two variables, implies

|Ek+1| =
∣∣∣∣Yk − yk + h

[
(Yk − yk)

∂F
∂y

(xk, η)
]

+
1
2

h2Y′′(ξ)
∣∣∣∣

=
∣∣∣∣(Yk − yk)

(
1 + h

∂F
∂y

)
+

1
2

h2Y′′(ξ)
∣∣∣∣ .

Hence, by the rules for absolute values,

|Ek+1| ≤ |Yk − yk|
(

1 + h
∣∣∣∣∂F

∂y

∣∣∣∣
)

+
1
2

h2 ∣∣Y′′(ξ)
∣∣ ,

which, by (1.19), (1.20) yields

|Ek+1| ≤ |Yk − yk| (1 + Mh) +
1
2

h2N.

Thus, since |Yk − yk|=|Ek|, one has

|Ek+1| ≤ |Ek| (1 + Mh) +
1
2

h2N. (1.26)

Application of Lemma 1.1 to (1.26) with A = (1 + Mh), B = 1
2 h2N then im-

plies

|Ek| ≤ (1 + Mh)k |E0|+ (1 + Mh)k − 1
(1 + Mh) − 1

(
1
2

h2N
)

. (1.27)

However, since Y(0) = y(0) = α, one has E0 = 0, so that (1.27) simplifies to

|Ek| ≤
[
(1 + Mh)k − 1

]
Nh

2M
, k = 0, 1, 2, 3, . . . , n, (1.28)

and the theorem is proved.

Theorem 1.2 Under the assumptions of Theorem 1.1, one has that at each grid
point

lim
h→0

|Ek| = 0, k = 0, 1, 2, 3, . . . , n.

Proof. Since (1 + Mh) > 1, the largest value of (1 + Mh)k results when
k = n. Thus, from (1.28),

|Ek| ≤ [(1 + Mh)n − 1] Nh
2M

, (1.29)
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which, by (1.21), implies

|Ek| ≤
[
(1 + Mh)L/h − 1

]
Nh

2M
. (1.30)

By the laws of exponents, then,

|Ek| ≤

{[
(1 + Mh)

1
Mh

]ML − 1
}

Nh

2M
. (1.31)

Note now that if Mh = γ, then

lim
h→0

Mh = lim
γ→0

γ = 0.

Thus,

lim
h→0

[
(1 + Mh)

1
Mh

]ML
= lim

γ→0

[
(1 + γ)

1
γ

]ML
.

But, limγ→0

[
(1 + γ)

1
γ

]
= e. Thus,

lim
h→0

{[
(1 + Mh)

1
Mh

]ML − 1
}

Nh

2M
= lim

h→0

{
eML − 1

}
Nh

2M
= 0.

Thus, from (1.31), limh→0 |Ek| = 0 for all values of k, and the theorem is
proved.

1.4
Remarks

In practice, as will be shown soon, numerical methods which are more eco-
nomical and more accurate than Euler’s method can be developed easily.
However, convergence proofs for these methods are more complex than for
Euler’s method.

Note that the essence of Theorem 1.2 is that if one wishes arbitrarily high ac-
curacy, one need only choose h sufficiently small. Unfortunately, such remarks
are purely qualitative. Indeed, if one has a prescribed accuracy, Theorems 1.1
and 1.2 do not allow one to determine the precise h, a priori, since the constant
N in (1.19) is rarely known exactly and the practical matter of roundoff error
in actual calculations has not been included in the theorems. The determina-
tion of accuracy is often estimated in an a posteriori manner as follows. One
calculates for both h and 1

2 h and takes those figures which are in agreement
for the two calculations. For example, if at a point x and for h = 0.1 one finds
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y = 0.876 532 while for h = 0.05 one finds at the same point that y = 0.876 513,
then one assumes that the result y = 0.8765 is an accurate result.

As noted above, Theorems 1.1 and 1.2 do not consider roundoff error, which
is always present in computer calculations. At the present time there is no
universally accepted method to analyze roundoff error after a large number
of time steps. The three main methods for analyzing roundoff accumulation
are the analytical method (Henrici (1962), (1963)), the probabilistic method
(Henrici (1962), (1963)) and the interval arithmetic method (Moore (1979)),
each of which has both advantages and disadvantages.

1.5
Exercises

1.1 With h = 0.1, find the numerical solution on 0 ≤ x ≤ 1 by Euler’s method
for

y′ = y2 + 2x − x4, y(0) = 0.

and compare your results with the exact solution y = x2.

1.2 With h = 0.1, find the numerical solution on 0 ≤ x ≤ 2 by Euler’s method
for

y′ = y3 − 8x3 + 2, y(0) = 0

and compare your results with the exact solution y = 2x.

1.3 With h = 0.05, find the numerical solution on 0 ≤ x ≤ 1 by Euler’s method
for

y′ = xy2 − 2y, y(0) = 1.

Find the exact solution and compare the numerical results with it.

1.4 With h = 0.01, find the numerical solution on 0 ≤ x ≤ 2 by Euler’s method
for

y′ = −2xy2, y(0) = 1,

and compare your results with the exact solution y = 1
1+x2 .

1.5 With h = 0.05, find the numerical solution on 0 ≤ x ≤ 1 by Euler’s method
for

y′ = ey − ex2
+ 2x, y(0) = 0,

and compare your results with the exact solution y = x2.
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1.6 With h = 0.01, find the numerical solution on 0 ≤ x ≤ 10 by Euler’s
method for

y′ = y − 2 + x
(1 + x)2 , y(0) = 1

and compare your results with the exact solution y = 1
1+x .

1.7 Estimate the value M in Theorem 1.1 for each of the following. If possible,
also estimate the value of N.

(a) y′ = x + sin y, 0 < x < 1

(b) y′ = x2 cos y, 0 < x < 2

(c) y′ = x + y, 0 < x < 3.


