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1 INTRODUCTION

In this chapter we outline several approaches to treating problems of
dynamics in classical mechanics, i.e., problems concerning motion in
which forces are involved. We examine the force and the energy approaches,
then discuss the Lagrangian and Hamiltonian formulations, and finally
point out some variational approaches. Explicit expressions are given for
the Lagrangians, Hamiltonians, and canonical momenta of various com-
monly encountered systems.
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2 NEWTON'’S LAW APPROACH

The force approach to non-relativistic dynamics makes use of Newton’s
second law which states that the force F on a body equals its rate of change
of momentum p

. dp
P="

(M

Any reference frame in which this law holds is called an inertial frame. In
one dimension the momentum for a particle of mass m and velocity v is
p = mv, and Eq. (1) becomes

dv  d’x

where x is the position coordinate and « is the acceleration. The more
general expression (1) must be used when the mass changes, as in nuclear
decay problems involving the creation and annihilation of particles.

In dynamics we encounter several types of forces, such as:

F=mg gravity near the earth’s surface (3a)
F = Gmm't/r* Newton’s law of gravity (3b)
F = qq't/4meyr? Coulomb’s law (3c)
F = —k(x — xq) harmonic restoring force from the (3d)
equilibrium position x;
F=—uN : static or kinetic friction (3e)
F = —k|" frictional force, often n = 1 as in Stokes’
law F = 6mnrv for streamline flow, 39

or n = 2 with turbulence

F =g(E +v x B) Lorentz force on the charge ¢ (3g)



3 LAGRANGIAN FORMULATION 3

Ordinarily it is easier to solve non-relativistic elementary mechanics
problems by balancing the energy at the beginning (b) and at the end (e)
of the interaction. For a many-particle system in which each particle i has
the kinetic energy %m,—v,2 and the potential energy V;, we can write

Z%mivlzb + Z Vip = Z%miv?e + Z Vie )

where the summations are over the particles of the system. If the particles
interact with each other, then we can add double summations over the initial
and final interaction energies V,»'j’- and Vj to this equation. This energy
approach is valid for conservative systems for which there is no dissipation.

3 LAGRANGIAN FORMULATION

In the Langrangian approach the kinetic and potential energies are
expressed in terms of generalized coordinates ¢; and the velocities ¢; of
each particle i. The Lagrangian itself, L(q{,..., gn,q1»---»Gns 1), 1S the
difference between the total kinetic energy 7" and the total potential energy
V of the system

L=T-V ©)

Examples of some Lagrangians are:

L= %mfcz - %k (x— x())2 harmonic oscillator (6a)
L=-mc|y—qp+qA-v . :
charge ¢ in electromagnetic (6b)
(1 _ ah-12
L~imi = qp+gA -v—mc fields [y = (1 — 7)1
L= %m(r’2 + 26+ k/r Kepler problem of the earth
. . (6¢)
in orbit around the sun
L=11,(6"+¢sin*6) + 1 1,(¥ + ¢ cos 6)* — mgl cos 6 (6d)

Symmetric top with one point fixed using Euler angles
Y = rotation about top axis
¢ = precession about vertical
6 = angle of inclination from vertical

In writing Lagrangians it is good to keep in mind the following details about
three commonly used coordinate systems with their respective differential
lengths ds; = h;dg;.
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. X, vz
cartesian: dx. dv, dz (7a)
L P,z
al: 7b
cylindrical dp. pdé. dz (7b)
spherical: ~%® (7¢)

dr, rd6, rsin 6d¢

Lagrangians are important because, by Hamilton’s principle, the motion
from time ¢, to time ¢, follows a path that makes the line integral

I = J’Z Ldt (8)

4

a stationary value. Using this principle we can show that Lagrange’s
equation

d (0L oL
(=)-==0 i=1,2,....N 9
dt(aq:) 0q; l ©

is satisfied for each of the N coordinates ¢; and their velocities ¢;.
The motion is often limited by constraints. Of particular interest is a

holonomic constraint, which can be expressed in terms of equations invol-
ving the positions r; of the particles, but not the velocities

f(r],..‘,rN,t)z() (10)

If the constraint contains an inequality rather than an equal sign, such as the
condition r* — @* > 0 for being outside a sphere of radius «, then it is not
holonomic. The differential df of the function f(q;, )

& =Y o dg+ e =0 ()

where the summation is over the N particles, may be written in the form

> adg; + a,dr = 0 (12)
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where a; = 9f /dg;. If there is more than one constraint equation, then we
add an index, writing a; and a;. The coefficients a; of the n constraint
equations written as first-order differential equations

Zajiq.i-'_aﬂ:o j=1,2,...,n (13)

enter the N Lagrangian equations

d (3L\ oL ,
d—t<a—q,i)-a—%_§:aﬂxj i=1,2,....N (14)

through the n Lagrange multipliers A;, where the summation over j is from 1
to n. These are now N + n equations to solve and n unknown Lagrange
multipliers to be determined. Each A; usually has the dimension of force or
torque, and in a typical case it is a reaction force.

Sometimes the constraint can be written in the form of Eq. (12) or (13)
even though no function f(g, ¢) exists. Such a constraint might be called
pseudoholonomic; it is not holonomic but it is adequate for the application
of the Lagrange multiplier method (14).

Sometimes friction can be taken into account with the aid of a velocity
dependent Rayleigh dissipation function D

D =1 (ki + kv, + k.vZ) (15)
associated with the frictional force Fy
F,=-V,D (16)

where the gradient is with respect to the velocities. The associated Lagrange
equations are
1<%>—%+£=0 i=1,2,...,N 17)
di\dq;) dq; 8q;
The Rayleigh dissipation function corresponds to the force of Eq. (3f) with
n=1.

Each coordinate ¢; has a conjugate momentum p; defined by the expres-
sion
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oL

%, (18)

pj

Sometimes the conjugate momentum is a linear momentum, as mx, or an
angular momentum, as 6, where I is the moment of inertia, but it can also
be more complicated than that, as in the case of a charge ¢ moving in the
presence of a magnetic field B = V x A. Several conjugate momenta are:

pi = ymv; +qA4; charge ¢ in an electromagnetic
field (19a)
pr=mr
5 Kepler problem (19b)
Po = mr-o
Po = IJ_é

T symmetric top with one
Py =1)(¥ + ¢ cos 0) one point fixed in

Py = (I} cos’ 6 + I, sin’ 0) + Iul/) cos 8| Euler angles

(19¢)

4 HAMILTONIAN FORMULATION

We have discussed the properties of the Lagrangian L(g;, ¢;, t), which is a
function of the generalized coordinates and velocities. There is another
function, called the Hamiltonian H(qg;, p;, t), which depends on the coordi-
nates ¢; and their associated conjugate momenta p; defined by Eq. (18), and
it is formed from the Lagrangian through the following Legendre transfor-
mation

H(gipin ) =D qipi — L(q;. ;. 1) (20)

where the summation is over the coordinates. To carry out this transforma-
tion each conjugate momentum p; is determined by differentiating the
Lagrangian using Eq. (18). Then the resulting equations are solved for the
generalized velocities ¢; and the latter are put into Eq. (20). This provides
the Hamiltonian H expressed as a function of the ¢;, p; and ¢ variables.
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Sometimes this procedure is easy, as with the angle of inclination 8 of the
symmetric top (19c) for which we have

ézl’e/[n (21)

It is more complicated to determine the other two symmetric top angles v
and ¢ which require the solution of two simultaneous equations.

The equations of motion are found from the canonical equations of
Hamilton

M

= 22:
9“=3, (22a)
oH
) = — — 22b
pi 34, (22b)
oL oH

These 2N first-order Hamilton differential equations replace the N second-
order Lagrange equations (8).
Examples of some Hamiltonians are:

2

H= g—m + L k(x — xp)? harmonic oscillator ~ (23a)

H = [(p — gAY’ +m*c*]'* + q¢

— gAY charge ¢ in an
~ (—p““i"%l + q¢ + mc? electromagnetic field (23b)
2 2
H= ;—”n + 2212 - l; Kepler problem (23¢)
Py | (py — pycost)
H=—t 420 V=27 4 Mgt cos & symmetric top (23d)

21 21, sin’6
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Coordinates that do not appear explicitly in the Lagrangian and
Hamiltonian are called cyclic or ignorable. We see from Eqgs. (22b) that
the momentum p; conjugate to such a coordinate is a constant of the
motion, independent of the time, which we will denote by «;

pi=0 (24)

Pi=q; (25)

Because of this it is ordinarily easier to use the Hamiltonian formulation for
writing the equations of motion for cyclic coordinates, and the Lagrangian
approach for the non-cyclic coordinates.

When some coordinates ¢, . . ., ¢, are present explicitly in the Lagrangian
and the remainder ¢, (, ..., gy are cyclic, then it is convenient to restrict the
term Y ¢;p; of Eq. (20) to a summation over the cyclic coordinates and
thereby form the Routhian R

R=R(q1:--- qn+Gis -+ §es Pet1s -+ PN) (26)

which is a function of the non-cyclic velocities ¢; and the constant momenta
p;- This permits Hamilton’s equations to be written for the cyclic coordi-
nates and Lagrange’s equations for the non-cyclic ones. For example, the
Kepler problem has the cyclic coordinate # and hence from Eqgs. (6¢) and
(19b) the Routhian R(r, 6, F, py) is given by

R(r, 0, F, pg) = smi* + p3 /2mr* — k/r 27

where, since 6 is cyclic, the angular momentum p,; = mr?6 is constant in
time.

5 VARIATIONAL PRINCIPLES AND VIRTUAL DISPLACEMENTS

There are several general principles associated with the subject of mechanics.
We have already encountered Hamilton’s principle (8), which states that the
line integral of the Lagrangian over time has a stationary value for the
correct path of motion. This can be expressed differently by saying that
the variation of the line integral I of Eq. (8) with fixed end points 7, and
t, is zero
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51 =6 J Ldt (28)

4l

In other words, as infinitesimal deviation in the path of integration about its
stationary trajectory does not change the value of the integral.

Now let us consider infinitesimal displacements dr; in the presence of an
applied force F*P? which is holding a system in equilibrium. The principle of
virtual work states that the work done by the applied force, called the virtual
work, is zero

D FPPor =0 (29)
and this provides the condition for equilibrium in statics. In dynamics when
the applied forces can cause accelerations X = p,/m, we have D’Alembert’s
principle

D (FPP—p)-or; =0 (30)

which reduces to the principle of virtual work for static conditions.





