
�

� Mladen Pavičíc: Companion to Quantum Computation and Communication —
Chap. pavicic8481c01 — 2013/3/5 — page 1 — le-tex

�

�

�

�

�

�

1

1
Making Computation Faster and Communication Secure:
Quantum Solution

The main stumbling block of quantum information, computation, and to a lesser
extent, communication is the lack of a definite hardware. We still do not know
whether we are going to compute by ions, or by solid state systems, or by photons,
or by quantum electrodynamics, or by superconducting charges . . . Yet, there are
already formalisms, algorithms and theories on quantum “all that.” But, didn’t we
have the same “problem” when we started to compute on classical computers in
the forties? What was the hardware then? “Human computers,” mechanical gad-
gets, electromechanical drums, tube-calculators, . . . And before that, we already
had classical formalisms and algorithms and theories. Let us start with a classical
story which will help us understand that interplay of software and hardware so that
we can better apply it to qubits later on.

1.1
Turing Machine: a Real Machine or . . .

The Turing machine is not a computer and it cannot serve us to build a useful
gadget. Yet, there are so many Turing machine applets on the web to help math
students to prepare their exams. So, why can’t we turn “the machine” into a realistic
computing device? The answer is both simple and long.

Alan Turing graduated in mathematics from King’s College, Cambridge in 1934
and was elected a fellow there the next year thanks to a paper in which he designed
his famous machine. The paper gave a solution to a problem on which the famous
mathematician Alonzo Church at Princeton University was also working at the
time. So, in 1938, Turing went to Princeton to study under Church and received
his Ph.D. from Princeton in 1938.

A few months later, Turing returned to England and started to work part-time
at the Government Code and Cypher School on German encryption systems. A year
later, he joined the wartime station of the school, now famous, Bletchley Park.
There he soon became a main designer of electromechanical decrypting ma-
chines – named Bombes, after their predecessor, a Polish Bomba. They helped the
British to decipher many German messages and gain advantages in many actions
and battles.

Companion to Quantum Computation and Communication, First Edition. M. Pavičíc.
© 2013 WILEY-VCH Verlag GmbH & Co. KGaA. Published 2013 by WILEY-VCH Verlag GmbH & Co. KGaA.

�

� Mladen Pavičíc: Companion to Quantum Computation and Communication —
Chap. pavicic8481c01 — 2013/3/5 — page 2 — le-tex

�

�

�

�

�

�

2 1 Making Computation Faster and Communication Secure: Quantum Solution

The story is a paradigm for today’s university researchers who are expected to
find an application for their research as soon as possible and sign as many contracts
with industry as possible. Then, there were many details in Turing’s approach to
work and people that attract interest of the media today – also a valuable commodity
for today’s university researchers. For example, he induced his colleagues to see his
design of the Bombe as follows: “[in its design] he had the idea that you could use, in
effect, a theorem in logic which sounds to the untrained ear rather absurd; namely,
that from a contradiction, you can deduce everything.” This is our main clue and
we will come back to it in Section 1.2.

In July 1942, Turing devised a new deciphering technique named Turingery
against a new German secret writer, code-named Fish and recommended some
of his coworkers for the project of building the Colossus computer, the world’s
first programmable digital electronic computer, which eventually replaced sim-
pler prior machines and whose superior speed allowed the brute-force decryption
techniques to be usefully applied to the daily-changing ciphers. Turing himself
did not take part in designing the Colossus, but left for America to work on US
Bombes (3 � 2.1 � 0.61 m3; 2.5 t; 120 of them were made till 1944). When he re-
turned to England, he accepted a position as a general consultant for cryptanalysis
at the Bletchley Park. At that time, he also designed a machine for a secure voice
communication which has never been put into production.

Details of his work on cryptography during the war remained a secret for many
years after it. Eventually, he dropped his cooperation with industry and returned to
that lofty realm of science that offers a different history. But, let us first go back to
his machine and examine its “simple history.” We will learn that the machine is
not at all a real machine, but a mathematical procedure.

1.2
. . . a Mathematical Procedure

In the thirties, most leading mathematicians in the field of symbolic logic and re-
lated algebras were involved in solving a problem of decidability – whether one can
decide that a statement (formula, theorem) in a formal system is valid (holds) or
not. That a system is decidable means that each formula in it is either provable or
refutable. That a proof of a formula (predicate of the formula) is effectively decidable
means that for every tree of formulae starting from the axioms of the system we
can tell whether it is a proof of the formula, that is, whether it is recursive. For
functions – formulae that depend on arguments – we then say that they are effec-
tively calculable functions. If there is a system of equations that define a function
recursively, then the function is general recursive.

One of the leading mathematicians who was engaged in these problems and who
defined the notion of the general recursiveness of a function was Alonso Church
(see above) who also formulated his famous Church thesis:

�

� Mladen Pavičíc: Companion to Quantum Computation and Communication —
Chap. pavicic8481c01 — 2013/3/5 — page 3 — le-tex

�

�

�

�

�

�

1.2 . . . a Mathematical Procedure 3

Thesis 1 Church 1936

Every effectively calculable function (effectively decidable predicate) is generally
recursive.

An interpretation of the thesis is the following one. If we know a recursive proce-
dure for obtaining a function, then, of course, the function is effectively calculable
because the procedure itself is the proof that the function is valid. The converse
is not obvious. That is, if we know how to decide whether there is a proof that a
function is valid, we need not ever be able to find a recursive procedure for obtain-
ing the function or even need not know whether such a procedure exists at all. The
Church thesis is a conjecture that it always exists. It has not been proved so far, but
there are overwhelming evidences that it is correct and, of course, it has never been
disproved.

So, how do we prove that a system is decidable and that all its functions are com-
putable, that is, generally recursive? Well, we have to find a procedure which would
prove that every function from the system is effectively calculable or every predi-
cate effectively decidable, and then we search for a generally recursive algorithm1)

for computing the functions. Or, better still, we first find a generally recursive algo-
rithm and constructively prove that all functions from a systems are computable.
The effective decidability and calculability then follow as consequences of the com-
putability of the system.

The latter task is exactly what Church’s general recursiveness (1933), Kleene’s λ-
definability (1935), Gödel’s reckonability (1936), Turing’s machine (1936/1937) and
Post’s canonical and normal systems (Emil Post; 1936; independent discovery) are
about and this is why theoreticians like them so much. They, however, prefer the
Turing machine over others because it is more intuitive and easier to handle.

The final “output” of any of these procedures is the same. They tell us which
theory is decidable and which is not. Then, Church’s thesis tells us to assume that
any decidable theory is computable and that any undecidable one is not.

� Decidable theories are, for example:
– Presburger arithmetic of the integers with equality and addition (Mojżesz Pres-

burger, 1929);
– Boolean algebras (Alfred Tarski, 1949);
– Propositional two-valued classical logic;

� Undecidable theories are, among so many others:
– Peano arithmetic with equality, addition, and multiplication (Kurt Gödel,

1932);
– Predicate logic including metalogic of propositional calculus;
– Every consistent formal system that contains a certain amount of finitary

number theory there exists undecidable arithmetic propositions and the con-
sistency of any such system cannot be proved in the system (many authors,
including A. Turing, from the early thirties until the mid-sixties);

1) Algorithm is a computational method of getting a solution to a given problem in the sense of
getting correct outputs from given inputs.

�

� Mladen Pavičíc: Companion to Quantum Computation and Communication —
Chap. pavicic8481c01 — 2013/3/5 — page 4 — le-tex

�

�

�

�

�

�

4 1 Making Computation Faster and Communication Secure: Quantum Solution

– Functions obeying Rice’s theorem: Only trivial properties of programs are al-
gorithmically decidable. For any nontrivial property of partial functions, the
question of whether a given algorithm computes a partial function with this
property is undecidable (H.G. Rice, 1953).

Thus, any of the above procedures, can be used to prove that a 0-1 Boolean alge-
bra or equivalently, a two-valued (true, >; false, ?) propositional classical logic is
decidable and therefore computable. Peano arithmetic and any more complicated
systems using real numbers are not. Hence, our standard digital binary universal
computer is actually the only one we can build without running into a contradiction
sooner or later. This gives insight into Turing’s colleagues’ remark we cited above:
“[Turing] had the idea that [in dealing with the Bombe computer] you could use,
in effect, a theorem [which states that] from a contradiction, you can deduce ev-
erything.” By invoking this well-known Ex contradictione quodlibet logical principle,
they referred to Turing’s checking whether particular code systems were consistent
or not.

1.3
Faster Super-Turing Computation

Thus, a Boolean digital binary system is a “safe” ideal algebra for building a uni-
versal computer because it is decidable and consistent. But, does that mean that
undecidable and inconsistent systems reviewed in the previous section cannot be
used for computing and building computers?

When Frege, Whitehead, Russell, and Hilbert attempted to develop logic foun-
dations of mathematics, they stumbled on paradoxes of self-reference such as the
famous Liar paradox, on inconsistencies. Their attempts to go around such incon-
sistencies failed, but in the eighties, theoreticians revised such apparently incon-
sistent theories and saw a possibility to revive the Hilbert Program of consistently
building mathematics from its logical foundations.

At the time, David Hilbert gave up his program because Gödel and others proved
that the consistency of arithmetics cannot be proved within arithmetics itself.
Though recently, the authors, such as R.K. Meyer and C. Mortensen, started from
a widely accepted assumption that all negative results would not endanger the
correctness of numerical calculations that have been carried before and since the
beginning of the twentieth century, and started a new program called Inconsistent
Mathematics. Originally, it started with a plausible claim that mathematics could
be given a trouble-free interpretation if we recognized that mathematics is not its
foundation.

We shall not elaborate on the foundational and conditional aspect of “inconsis-
tent mathematics” any further. However, we need to discuss several nonstandard
approaches in computation science and underlying formalisms, algebras, and even
logic to see how it all can be applied in reaching our goal of speeding up computa-
tion – both classical and quantum.

�

� Mladen Pavičíc: Companion to Quantum Computation and Communication —
Chap. pavicic8481c01 — 2013/3/5 — page 5 — le-tex

�

�

�

�

�

�

1.4 Digital Computers Do Not Run on Logic 5

Hilbert’s program considered whether we can write down algorithms for an au-
tomated computation of any expression or carrying out any proof in any mathe-
matical theory. Such algorithms can traditionally and rigorously be obtained only
for Boolean algebras. The Church–Kleene–Gödel–Turing–Post proof of this result
we can – in 2012 Year of Alan Turing – express as follows. “A Turing machine cal-
culating any of the 0-1 Boolean algebra problems will halt after a finite number
of steps.” But, what about standard arithmetics? Theory of rational or real num-
bers? Can there be super-Turing machines that are faster then the Turing ones? We
shall see that there are quantum-Turing machines that are exponentially faster than
the Turing ones and therefore a kind of super-Turing machine. Are there classical
super-Turing machines?

To answer this question, we first have to answer several other questions.

1. Let us start with our safe “digital 0-1 algebra.” Is there a logic behind it which
is more general than the usual two-valued (true-false) one? Can it be imple-
mented in a binary computer? Is it important for our purpose of devising a fast
quantum computer to find a “quantum logic” behind or “under” the Hilbert
space formalism we will use?

2. Can we devise computers that can handle, for example, real numbers directly,
analogously to how we humans handle them on paper, that is, without any need
to first digitalize them? Can analog computers be universal? Are they faster?
What are their limits? Do quantum computers have a theoretical speed limit?

3. Are there other such classical or optical computers that can compute the same
problems quantum would-be computers could solve? Can we achieve similar
exponential speed-up of computation with such computers? Can we realistically
use them to carry out super-Turing computation?

4. How much energy does the computation itself require? Can we reduce heat
and energy dissipated in calculation per operation and per calculated bit? Heat
is a main problem when we want to pack transistors of ever reduced size. The
closer the transistors are to each other, the faster the computation. Are there
processors that dissipate orders of magnitude less heat than today’s standard
Pentiums? What is the theoretical minimum we cannot go beyond? How do
classical computers that dissipate a minimum of energy look like? Are quantum
computers better?

We shall answer all of these questions in the next sections.

1.4
Digital Computers Do Not Run on Logic

It is often taken for granted that 0-1 Boolean algebra, Boolean logic, and classi-
cal propositional logic are all different names for one and the same algebra: 0-1
Boolean algebra. However, that is not the case.

�

� Mladen Pavičíc: Companion to Quantum Computation and Communication —
Chap. pavicic8481c01 — 2013/3/5 — page 6 — le-tex

�

�

�

�

�

�

6 1 Making Computation Faster and Communication Secure: Quantum Solution

If we browse through books on computation and computer organization, we
shall soon notice that these books hardly ever mention logic. This is because the
theory of classical logic contains various methods of manipulating the propositions
and different possible models (semantics). The authors know that almost univer-
sally accepted valuation of the logical propositions is a 0-1 bivaluation, that the
corresponding semantics is represented by truth tables, and that the only lattice
model that corresponds to this bivaluation is a 0-1 Boolean algebra – a Boolean al-
gebra is a distributive lattice. So, they all take for granted that it is OK to deal with
0-1 Bolean algebra instead. Often, Boolean algebra is called Boolean logic. Let us
take a more detailed look.

Algebra is a mathematical structure (most often a vector space, for example, a lat-
tice, a Boolean algebra, a Euclidean space, a phase space, a Hilbert space, . . .) over
a set of elements (most often a field, for example, real or complex numbers, . . .).
Loosely speaking, algebras describe relationships between things that might vary
over time. What interests us the most are algebras that can or cannot be imple-
mented in a computer and algebras that can serve as models of logic.

Thus, although a general Boolean algebra is a vector space over a field or a ring
(e.g., set f0, 1g, for which division is not defined), we shall start with its simplest 0-1
(digital, two-valued) form and define it at first as the set f0, 1g on which operations
conjunction (\), disjunction ([), and complement (0) are defined as in Figure 1.1.

Operations in logics are defined equivalently, only it is taken that 1 means true
and 0 false. These values are called truth values and are denoted as > and ?, respec-
tively. The tables from Figure 1.1 are called truth tables.

What is characteristic of both f0, 1g Boolean algebra rules and classical logic truth
tables is that by starting from the definite initial values for all variables, we will
define values of all intermediary combinations of the values until we reach a fi-
nal result of our calculation as shown in Table 1.1. When the expressions become
huge, evaluation of the intermediary expressions take exponentially more time.
And, these intermediary expressions are exactly what quantum computers should
get rid of. How?

Both classical and quantum computers require the so-called logic gates, which
we can understand as switches or ports through which electrons, photons, . . . , in-
formation flow. Schematics of some classical ones are shown in Figure 1.2 where,
for example, XOR is the electrical current equivalent of the negation of the logical
biconditional “$:” It represents the following electric current behavior in a tran-

x y y y
0
1

´
0
1

0
1

0
1

0
1

0 1 0 1
0
1

0 10 1
0 0

10

U

U

0 1
1 1

11
10

1
1
0

0
x x x x x

y y y y

x ∩ ∩y xxx´

Figure 1.1 Boolean and logical binary operations. Boolean operations 0, \, [,! and$ we
denote in logic as N , ^, _,!, and$.

�

� Mladen Pavičíc: Companion to Quantum Computation and Communication —
Chap. pavicic8481c01 — 2013/3/5 — page 7 — le-tex

�

�

�

�

�

�

1.4 Digital Computers Do Not Run on Logic 7

Table 1.1 Logical truth table. The more complicated the expression, the more intermediary
valuations we have to make to evaluate the final expression. The complexity of its evaluation
grows exponentially in time with its size.2)

a b c a ^ b Na Nc Na ^ Nc (a ^ b) _ (Na ^ Nc) b � c (Na ^ Nc) � (b � c)

> > > > ? ? ? > > >

? > > ? > ? ? ? > >

> ? > ? ? ? ? ? ? >

? ? > ? > ? ? ? ? >

> > ? > ? > ? > ? ?

? > ? ? > > > > ? ?

> ? ? ? ? > ? ? > >

? ? ? ? > > > > > >

sistor: “The output is low when both inputs A and B are high and when neither A
nor B is high.”

That low and high voltage, 0 and 1, a binary digit, a unit of information, a bit
for short, is what makes up every number, word, program, pixel, sound, image
in a classical computer. When we want to represent a number in a binary form,
we soon realize how many physical hardware elements we need to implement any
input. For example, eight-bit binary forms of the first 256 nonnegative integers are
00000000, 0000001, . . . , 11111111. To carry out the addition of these digits (other
operations can be reduced to addition), a classical digital computer uses an eight
bit binary adder. It consists of eight full adders, each full adder consists of two half
adders and an OR gate, and each half adder of an XNOR (negation of XOR) and an
AND gate which altogether makes 40 gates (see Figure 1.71).

Thus, a computation of problems or manipulation of images whose complexities
grow exponentially require an exponential increase of the number of transistors.
Today, the number of transistors (gates) in a classical processor already reached 5
billions and still a quantum processor with only several hundred quantum gates
would outdo it. The reason is that quantum gates can work with an arbitrary con-
tinuous combination, we call it a superposition, of elementary states – quantum

NOTxx xORy
x
y

x
y xANDy

x
y xXORy

Figure 1.2 Logic gate symbols and operations. Notation used for operations: x (NOT x), x C y
(x OR y), x y (x AND y), x ˚ y (x XOR y) (XOR is addition (C) modulo 2: 1 ˚ 1 D 0; also
A˚ B D (AC B)AB D AB C AB). See Figure 1.16.

2) To that, we can add the satiability problem
(SAT) and the isomorph-free generation of
graphs and hypergraphs. SAT problem consists
in verifying whether Boolean expressions
like that one shown in Table 1.1 are satisfied,
that is, true, that is, equal to 1 in a Boolean
algebra. SAT belongs to EXPTIME and that
will help us understand why the factoring

number problem computed in a digital
computer belongs to EXPTIME too. Graphs
and hypergraphs can be used to map
nonlinear equations into hypergraphs and
filter out equations that have solutions.
They also belong to EXPTIME. We shall
use them later on to generate the so-called
Kochen–Specker sets.

�

� Mladen Pavičíc: Companion to Quantum Computation and Communication —
Chap. pavicic8481c01 — 2013/3/5 — page 8 — le-tex

�

�

�

�

�

�

8 1 Making Computation Faster and Communication Secure: Quantum Solution

bits, qubits. Yet, a working quantum computer still does not exist and therefore we
should first explore whether we can exponentially speed-up computation in some
other way.

The first option is to see whether we can implement our classical logic into some
other kind of hardware instead of a binary computer. Since the models of both
classical and quantum logic that we use to implement logics into computers are
lattices (a distributive lattice (Boolean algebra) and a Hilbert lattice (underlying the
Hilbert space)), the option boils down to a question of whether there are other
lattices that can model classical logic. The answer is positive.

Let us look at the lattice shown in Figure 1.3. (A lattice is a partially ordered
set with unique least upper and greatest lower bounds.) Here, a valuation of the
proposition: “A particle is detected at position (4,3,5)” can be not only 1 (true) and
0 (false), but also a, b, a0, or b0.

At the first glance, this seems acceptable as a kind of multivalued logic. One is
tempted to consider a proposition to which value 1 is assigned, as an “always true”
one; then, ones with values a and b as, say 66 and 33%, respectively; and a 0 one
as “always false.” But, we soon realize that such and actually any numerical valua-
tion is impossible. To see this, it suffices to recognize that any numerical valuation
would make a and b comparable with Na and Nb and that is in contradiction with the
main property of o6 lattice – that a and b are incomparable with Na and Nb.

That also means that one cannot construct a simple chip for o6 where we would
just have different voltages for 0, a, b, and 1 as in a multivalued logic (different
voltages are comparable to each other and that is precluded in o6). Actually, such a
chip should have a nonclassical, nonnumerical ports and that is directly correlated
with the above property that we must be able to represent propositions that are
mutually incomparable, that is, nonordered.

To see how that would work for classical logic (CL), let us consider the following
expression, namely,

`CL (A ^ B) _ C � (A _ C) ^ (B _ C) (1.1)

b b

a

_

_

0

1

0

1

a

(a) (b)

Figure 1.3 (a) Boolean lattice model of classical logic; (b) hexagon lattice model of classical
logic. Also called o6 [244, 245, 277].

�

� Mladen Pavičíc: Companion to Quantum Computation and Communication —
Chap. pavicic8481c01 — 2013/3/5 — page 9 — le-tex

�

�

�

�

�

�

1.5 Speeding up Computation: Classical Analog Computation . . . 9

where `CL denotes provability of an expression from the axioms of CL or simply
that an expression is true in CL.

Let us consider possible interpretations of CL, that is, possible semantics or mod-
els. To map propositions and expressions formed by propositions, we use a semantic
valuation (v): a function from the set of all formulas of CL to a set of all formulas
of its model. If a model is a lattice, we will have v (A) D a, v (A ^ B) D a \ b, and
so on.

Now, if the model is a Boolean algebra, the valuation of the valid CL formula
given by expression (1.1) is a well-known property of Boolean algebra (BA) – the
distributivity:

(8a, b, c)[(a \ b)[c D (a [c) \ (b [c)] (1.2)

because if ` A � B is true in a BA-valuation, and then vBA(A) D a D vBA(B) D b
holds in this valuation.

However, if the model is an o6, then the following holds

vo6(A � B) D 1) vo6(A) D a ¤ vo6(B) D b , (1.3)

and as a consequence, we have

(9a, b, c)[(a \ b) [c ¤ (a [c) \ (b [c)] . (1.4)

To prove this, let us take a D vo6(A) D b, c D vo6(C) D a, and b D vo6(B) D a,
in Figure 1.3b. We obtain a \ b D 0 and (a \ b) [c D 0 [c D c. On the other
hand, we have a [c D a, b [c D 1, and (a [c) \ (b [c) D a \ 1 D a. Since
c ¤ a, we do not have (a \ b) [c D (a [c) \ (b [c).

Nevertheless, in this model, one can prove all the tautologies (theorems) and all
the inference rules that are valid in the standard two-valued classical logic [244, 245,
277, pp. 272, 305].

Taken together, logic is a much wider and weaker theory than its lattice mod-
els – Boolean algebra, o6, and so on – through which logic can or cannot be imple-
mented in a hardware. Two-valued Boolean algebra is definitely the simplest model
for which such an implementation is possible and this determines the choice of
the hardware. We can say that the computation is physical. Physical hardware de-
termines how fast we can compute a problem, which algebra we shall use for the
purpose, and how we can translate our problem into the chosen algebra and there-
fore hardware. This physical aspect of computation is of utmost importance for any
attempt to speed-up computation, classical or quantum. In the following sections,
we will discuss some of them.

1.5
Speeding up Computation: Classical Analog Computation . . .

In the previous section, we showed that the logic we use for reasoning on propo-
sitions and operations carried on them can have nonbinary models. On the other

�

� Mladen Pavičíc: Companion to Quantum Computation and Communication —
Chap. pavicic8481c01 — 2013/3/5 — page 10 — le-tex

�

�

�

�

�

�

10 1 Making Computation Faster and Communication Secure: Quantum Solution

hand, although real numbers that we use for everyday calculations can be based on
“binary” (two valued) logic. When we want to carry out a calculation, we first have
to translate every real number to a binary one which has got more digits. Then,
we have to carry out complex gate manipulations in order to apply algorithms that
translate otherwise simple operations with real numbers into operations with bi-
nary digits. In the end, we have to translate the result back into real numbers.
Would it not be faster to make a real computer that would be able to deal with real
numbers directly?

In the theory of computation, real computers are hypothetical computing ma-
chines which can use infinite-precision real numbers. These hypothetical comput-
ing machines can be viewed as idealized analog and parallel computers which op-
erate on real numbers. Realistic analog computers existed in the past, but they were
abandoned for the following two reasons

1. digital (binary) computers proved to be faster;
2. analog computers have never been developed to fully universal machines.

Although, the latter reason is apparently only a consequence of the former one.
Both digital and analog computational devices are very old. For instance, Chi-

nese counting rods and abacus digital “computers” (know in practically all ancient
civilizations), are over 2000 years old. Analog Antikythera mechanism and astrolabe
for calculating astronomical positions are nearly as old.

What is important for us, though, is that the analog/parallel computers in the
“predigital” time were more efficient then digital for particular tasks simply be-
cause a special design of hardware enabled faster and more efficient calculation
then by means of a universal digital machine. It is important, because, on the one
hand, known quantum algorithms (mostly based on the Fourier transform) deter-
mine which feature quantum hardware must possess, and on the other, as opposed
to current classical computers, massive parallel computation is what characterizes
would-be quantum computers and is likely to make them universal. We can say
that both analog classical and quantum computers perform a physical calculation.

To better understand what that means, let us have a look at Figure 1.4.
The examples show how we can calculate even irrational (π) using geometrical

and physical features of our “hardware” as suitable algorithms for solving particu-
lar problems. More sophisticated examples of analog computational devices based
on such algorithms are, for example, slide rule and the Water integrator shown in
Figures 1.5 and 1.6, respectively.

Of course, the analog/parallel computers that were in use after World War II were
electronic ones, but the principle stayed the same – physical calculation. With the
help of the so-called operational amplifier (op-amp)3) we can add, subtract, multiply,
and divide number as well as obtain derivatives and integrals of a chosen function
in one step by simply reading output voltages. For example, if we want to divide
two numbers, we use a circuit shown in Figure 1.7.

3) The first vacuum tube op-amp was built in 1941.

�

� Mladen Pavičíc: Companion to Quantum Computation and Communication —
Chap. pavicic8481c01 — 2013/3/5 — page 11 — le-tex

�

�

�

�

�

�

1.5 Speeding up Computation: Classical Analog Computation . . . 11

π

1

1
1

1
0.5

π

0 1
(a) (b)

Figure 1.4 (a) “Calculating” π by measuring the length of a string originally wrapped around a
cylinder with a radius equal to 0.5; (b) “calculating” π by pouring over water from a cylinder to a
vessel whose base is a square 1� 1 and measuring the height of the water level.

Figure 1.5 A slide rule, essentially being an analog computer, is much more efficient than its
digital competitor abacus.

Figure 1.6 A Russian water analog computer built in 1936 by Vladimir Lukyanov. It was capable
of solving nonhomogeneous differential equations. Image courtesy of the Polytechnic Museum,
Moscow.

�

� Mladen Pavičíc: Companion to Quantum Computation and Communication —
Chap. pavicic8481c01 — 2013/3/5 — page 12 — le-tex

�

�

�

�

�

�

12 1 Making Computation Faster and Communication Secure: Quantum Solution

Op-amp has a resistor with a very high resistance between � and C terminal
so that the current across them is practically zero. Thus, we have I� D IC and
therefore Vg D VC. Since in our circuit we have Vg D 0 D VC, we must also have
V� D 0. Also, Vi n � V� D Vi n D Ii n Ri n and V� � Vout D �Vout D I f R f . Then,
from Ii n D I f C I�, we get Vout D �R f Vi n/Ri n . By setting R f to one, we can
divide Vi n by Ri n in one step. We see that for each division, we have to change Vi n

and Ri n. When we want to integrate a function, we have to use different elements
and for integrations, yet other ones.

There were no such problems with universal digital computers that were advanc-
ing rapidly and the Moore law finally proclaimed the dead sentence to analog and
parallel computers. Moore’s law is an Intel Corporation self-imposed4) longterm pro-
duction road map. After an obviously too ambitious formulation by Gordon Moore,
the “law” was recalibrated in 1975 so as to receive the following formulation as an-
nounced by David House, an Intel executive at the time [17, 271, 308, 329]:

Moore’s Law. CPU clock speed and the number of transistors on an integrated circuit
double every 18 months.

However, it was obvious from the very begging that both the CPU speedup and
its miniaturization as well as miniaturization of memory units would one day hit
the quantum wall. Miniaturization has to stop when the bit carriers come down
to one electron, when logic gates and memory units come down to one atom and
when the conductors between them come down to monolayers. Actually, in the very
same year, when the Moore’s law received its definitive wording – in 1975 – Robert
Dennard’s group at IBM predicted that the power leakage which would switch a
transistor out of its “off” state should happen by 2001 – shown in the left image
of Figure 1.8. They also formulated their – Dennard’s scaling law – which specified
how to simultaneously reduce gate length, gate insulator thickness, and other fea-
ture dimensions to improve switching speed, power consumption, and transistor
density and ultimately postpone the leakage. However, the fast developing industry

−
+

Rin

Rf

V+

V−

Vin Vout

Vg

Figure 1.7 Analog computer. Dividing numbers by means of voltages with the help of an opera-
tional amplifier.

4) by Gordon Moore, a cofounder of Intel, in the early seventies of the last century

�

� Mladen Pavičíc: Companion to Quantum Computation and Communication —
Chap. pavicic8481c01 — 2013/3/5 — page 13 — le-tex

�

�

�

�

�

�

1.5 Speeding up Computation: Classical Analog Computation . . . 13

Figure 1.8 Moore’s miniaturization will stop by 2020 at the latest. Figure reprinted from [4] with
permission from © 2011 IEEE Spectrum magazin.

modified their law and used other technological solutions to pack that 5 billions
transistors in a CPU.

However, the quantum wall is inevitable one way or another and now the sizes
of gates themselves are approaching the nanometer barrier – an atom has the size
of about half a nanometer and, as shown in Figure 1.8b, this will happen by 2020 if
the new thin-channel solution of designing and connecting transistors proves to be
successful [4]. If not, the miniaturization – as Figure 1.8 also shows – has already
stopped.

The CPU clock exponential speed-up already hit the wall a few years ago. In
2003, the exponential speed-up turned in a linear one and in 2005 Intel gave up
the speed-up completely – see Figure 1.11. In 2008, IBM took over at a pace even
slower than linear and dedicated its CPUs to the mainframe usage with a price of
over $ 100 000 per CPU. Therefore, after 2005, individuals cannot even dream of
speeding up their computations for quite some time to come.

Thus, the researchers started to look for alternatives and turned to parallel com-
putation. For today’s market, that meant parallelizing digital computers (we shall
come back to this in Section 1.7), but development research turned to quantum
and analog computers (again).

For example, the special 2010 issue of Computers entitled Analog Computation
introduces the renewed interest as follows. “Computer scientists worldwide are
exploring analog computing under such names as amorphous computing, un-
conventional computing, computing with bulk matter, nonsilicon computing and
other designations. Biologists and computer scientists team up to build “comput-
ers” out of neural tissue or slime molds. Physicists design new materials, such
as graphenes, whose molecular properties are analogous to the atomic-level quan-
tum behavior. Theoretical computer scientists investigate the complexity of analog
computing, and speculate on new complexity classes. All this emerging work has
resulted from the limits that physical laws impose on digital computers.”

�

� Mladen Pavičíc: Companion to Quantum Computation and Communication —
Chap. pavicic8481c01 — 2013/3/5 — page 14 — le-tex

�

�

�

�

�

�

14 1 Making Computation Faster and Communication Secure: Quantum Solution

This may enable real computers to solve problems that are inextricable on digital
computers. For instance, Hava Siegelmann’s neural nets can have noncomputable
real weights, making them able to compute nonrecursive languages. Also, the re-
cent development of the massively parallel computer, the so-called field computer,
indicates that we might be able to solve the so-called NP-problems in a polynomial
time.

What that would mean was best explained by Kurt Gödel in a 1956 letter to John
von Neumann: “If there actually were a machine with [a polynomial running time]
this would have consequences of the greatest magnitude. That is to say, it would
clearly indicate that, despite the unsolvability of the Entscheidungsproblem, the
mental effort of the mathematician could be completely (apart from the postulation
of axioms) replaced by machines.”

However, there is a new kind of parallel computers on which we can – in a poly-
nomial time – solve problems which require an exponential time on classical com-
puters. These are quantum computers whose physical and parallel computation we
are going to analyze in most of the following sections.

1.6
. . . vs. Quantum Physical Computation

In this section, we shall show – on a small scale – how a quantum computer works –
in principle. What is important here is

� a feature of a quantum system – photon – called superposition which is a nonclas-
sical property and which enables massive parallelism;

� a physical calculation in a polynomial time of a problem whose solving requires
an exponential time on a classical computer.

Let us consider a simple experiment consisting of a photon splitting its path at a
50 W 50 beam splitter (BS; a semitransparent mirror), as shown in Figure 1.9. We
denote the two possible incoming paths and also the corresponding states of the
photon moving along them by j0i and j1i. These are the so-called ket vectors be-
longing to Dirac’s bra-ket notation which we will formally introduce in Sections 1.8
and 1.11. So, either the photon arrives from above and has the state described by
j0i or from below in state j1i.

The photon can either go through or be reflected from the beam splitter. Let us
take the case of photon j0i coming in. If it passes through, its field vector will re-
main unchanged. But, because it passes through BS with only 50% probability, we
multiply its ket by 1/

p
2. On the other hand, a vector field reflected from BS un-

dergoes a phase shift π/2 with respect to the one which passes through it. (See [78]
where you have to assume that the lower incoming beam does not contain a pho-
ton.) This phase shift corresponds to multiplying the ket by e i π/2 D i , and therefore
the reflected photon will be described by (1/

p
2)ij1i. Hence, before we detect which

outgoing path the photon took – by registering a “click” in either D0 or D1 – we

�

� Mladen Pavičíc: Companion to Quantum Computation and Communication —
Chap. pavicic8481c01 — 2013/3/5 — page 15 — le-tex

�

�

�

�

�

�

1.6 . . . vs. Quantum Physical Computation 15

BS

0

1

1

0

D

D1

0

Figure 1.9 Photon at a beam splitter.

describe its state by the following superposition (see Section 1.11 for a formal defi-
nition) of paths:

jouti D
1
p

2
(j0i C ij1i) . (1.5)

Such a superposition of states is the crucial ingredient of quantum computation.
Let us now use our photon, our beam splitter, and another beam splitter to make

a quantum computer prototype. Such a two beam splitter set through which a pho-
ton passes is a device known under the name of a Mach–Zehnder interferometer and
is shown in Figure 1.10.

The path to the second beam splitter (BS) from above is described by (i/
p

2)j1i
and from below by (1/

p
2)j0i. Here, we can simply reverse the process we have on

the first beam splitter as follows. The two paths superpose at the beam splitter so
that upper outgoing path is described by

1
p

2

�
1
p

2
j0i C i

i
p

2
j0i
�
D 0 , (1.6)

where the second j0i comes from ij1i which was reflected from BS (at the upper
side of BS we denote it as j0i). The lower path is described by

1
p

2

�
i
p

2
j1i C i

1
p

2
j1i
�
D ij1i , (1.7)

0

1

ε0

ε1
ε0

ε1

1

0

BSBS

D0

D1

’

’

Figure 1.10 Mach–Zehnder interferometer. An incoming j0i (j1i) photon will always end up in
D1 (D0) detector.

�

� Mladen Pavičíc: Companion to Quantum Computation and Communication —
Chap. pavicic8481c01 — 2013/3/5 — page 16 — le-tex

�

�

�

�

�

�

16 1 Making Computation Faster and Communication Secure: Quantum Solution

where the second j1i comes from j0i which is reflected from BS (on the lower side
of BS we denote it as j1i) and the first one from a passage of ij1i from above.
The phase shifters �0 and �1 are set to �0 D 0 and �1 D 0 (we tune them off the
zero-values to obtain an arbitrary probability of photons exiting through any of the
two port). For the zero-values setup, the process at the second beam splitter is just
a reversed image of the process at the first one. The probability of detecting the
photon by D0 is 0, and the probability of detecting it by D1 is jh1j(�i)ij1ij2 D 1.

If we, however, set �0, �1, �0
0, and �0

1 so as to make phase shifts (with respect to the
state of the incoming photon) φ0, φ1, φ0

0, and φ0
1, respectively, then the probability

of detecting a photon by D1 is no longer 1, but

p1 D cos2 φ1 � φ0

2
D

1
2

(1C cos φ) , (1.8)

where φ D φ1 � φ0. Note that the probability would stay the same if we took out
the phase shifters �0

0 and �0
1 which means that the result depends only on the phase

difference φ1 � φ0.
Let us see how we can use the result to factor numbers in order to illustrate

Shor’s algorithm (short of entanglement and the corresponding speed-up, which
we are going to address later on), following Johann Summhammer [301].

We obtain the factors of a chosen number, say N, in a “physical” way using the
setup shown in Figure 1.10 of the previous section and (1.8). Let us increase the
phase shift φ in discrete steps 2π/n so as to have φ j D 2πk N/n, k D 1, . . . , n.
If we let n photons through the device: k D 1, . . . , n, the sum of all individual
probabilities that the detector D1 would register a photon – given by (1.8) – will be:

In D

nX
kD1

p1(k) D
1
2

"
n C

nX
kD1

cos
�

2πk N
n

�#
. (1.9)

If n were a factor of N, we would have p1(k) D 1 and In D n. If not, the cosines
would roughly cancel each other and we would get In � n/2. If n were a factor
of N then only detector D1 would react and if n were not a factor of N, then on
average we would get half of the clicks in D1 and half in D0. So, if we perform n
measurements and obtain n clicks in detector D1 then n is a factor of N.

The numbers we can factor in this way are not big, but the result is very instruc-
tive for understanding the problems we face with classical computers and the way
we can solve them with quantum ones. For the light with λ D 500 nm, using a
continuous wave (CW) laser (for example, Nd:YAG) with which we can have the
coherence length, Δ l – the length over which the phase is fairly constant – of up to
300 km. The corresponding coherence time is Δ t D Δ l/c. The Heisenberg uncer-
tainty relation for energy and time ΔEΔ t � „ and the Planck postulate: E D hν
give ΔνΔ t � 1/4π, where Δν is called the bandwidth. From c D νλ by differentia-
tion we get Δλ D �cΔ/ν2 D �λ2Δν/c, where Δλ is called the linewidth. Dropping
the minus sign which only shows that the changes of Δν and Δλ are opposite
and using the previous relations we get: Δ l � λ2/Δλ. To keep the linewidth at
Δλ � 10�17 is feasible since it corresponds to the coherence length Δ l � 25 km.

�

� Mladen Pavičíc: Companion to Quantum Computation and Communication —
Chap. pavicic8481c01 — 2013/3/5 — page 17 — le-tex

�

�

�

�

�

�

1.7 Complexity Limits: Exponential Time 17

In our setup, at each phase step Δφ D 2π/n a photon is sent into the interfer-
ometer. The phase difference Δφ in our interferometer is proportional to Δo/λ,
where Δo is the optical path difference [33]. The Δo must be smaller than the coher-
ence length and we can estimate that n < λ/Δλ.

Hence, the biggest numbers we could factor are N � 1010 and any PC can factor
a number with 10 digits in a fraction of a second. However, the important property
of this example of physical computing is that our “transistor,” Mach–Zehnder inter-
ferometer, is faster per computing unit (quantum gate) than the standard classical
transistor for the same “clock” speed.

The longest factorization test according to (1.9) will take time proportional to
nN , because the maximum value of k is n. Since the largest n we have to check
is
p

N , the maximum time would be proportional to N 3/2. The required time is
therefore a polynomial function of N.

A direct and the most inefficient algorithm of factoring a number would simply
be
p

N trial divisions. Hence, the number of checks the most inefficient classi-
cal factoring algorithm has to carry out is smaller than N 3/2 we obtained for our
“physical calculation” above. Still, given the same clock frequency, a classical com-
puter calculation is slower per computing unit (gate). There are two reasons for
this. First, we have to turn numbers into bits, and then we have to carry out binary
operations that correspond to division (which is one of the most complicated basic
computer operations). The number of used transistors, that is, loops needed for the
operations increases exponentially with N and that means that the required time is
an exponential function of N. In other words, we obtained an exponential speed-up
of factorization of numbers on our optical “quantum analog device” with respect to
a binary computer cracking.

As opposed to a computer search-verify procedure, the photon search-verify
Mach–Zehnder factorization procedure is instantaneous for each photon. The
problem is that we cannot calculate much with only one Mach–Zehnder interfer-
ometer. We could parallelize the calculation by putting another Mach–Zehnder
interferometer at each output of the first one, then putting another Mach–Zehnder
interferometer at each output of the previous one, and so on (see Figure 2.1 in
Section 2.2). However, that would mean an exponentially growing number of ele-
ments, causing us to lose the advantage we gained. We will show how to get around
this later on. But, before we dwell on the solution to this problem, we should first
show why do we need to speed-up our calculation at all.

1.7
Complexity Limits: Exponential Time

We have mentioned that the Moore law already hit the clock wall (see Figure 1.11)
and that it will soon hit the quantum shrinking barrier – single electron transistor
(SET) and monolayer conductors.

�

� Mladen Pavičíc: Companion to Quantum Computation and Communication —
Chap. pavicic8481c01 — 2013/3/5 — page 18 — le-tex

�

�

�

�

�

�

18 1 Making Computation Faster and Communication Secure: Quantum Solution

1993 1996 1999 2002 2005 2008 2011
0.1

1.0

2.0

3.0

3.8

4.7
5.2

GHz

Figure 1.11 CPU’s clock frequencies: In-
tel 486-50 MHz June 1991, DX2-66 August
1992, P(entium)-100 March 1994, P-133 June
1995, P-200 June 1996, PII-300 May 1997,
PII-450 August 1998, PIII-733 October 1999,
PIII-1.0 GHz March 2000, P4-1.7 April 2001,

P4-2.0 August 2001, P4-2.53 May 2002, P4-2.8
August 2002, P4-3.0 April 2003, P4-3.4 April
2004, P4-3.6 June 2004, Intel P4-3.8 November
2004, IBM Risc Power-6 4.7 GHz June 2007,
5 GHz August 2008, IBM zEnterprise 196
(z196) 5.2 GHz August 2010.

Since 2004, when the clock frequency corollary of Moore’s law died,5) parallel
processing has been introduced into the very processors: dual cores, quad cores,
. . . 16 cores. In a way, these processors are just mini clusters. Clusters and inter-
connected mainframe units have been used for decades to speed-up computation
using algorithms that can distribute parts of a task to many CPUs in parallel. But,
is that efficient? Actually, for the hardest computing problems we have to solve in
various applications, neither classical parallelization nor a speed-up of CPUs are
efficient in the sense of obtaining results proportionally faster with higher speed
or a higher number of CPUs. Here is why.

Computing problems are categorized according to their complexity in the so-
called complexity classes. The problems are defined by their models of computation
and before they are considered as decision problems that algorithms have to re-
solve to reach a decision, that is, the final outcome. There are many undecidable
problems as, for example, the so-called halting problem: “Given a description of a
program and a finite input, decide whether the program finishes running or will
run forever.”

It is often said in the literature that already Alan Turing proved that no Turing
machine can solve the halting problem, i.e, that it is undecidable for Turing ma-

5) A widespread rendering of the law:
“The number of transistors on a single
integrated-circuit chip doubles every 18
months” [28] does not correspond to the
historical data which show 26 months [42].
Moore himself commented: “I never said
18 months. I said one year [in 1965], and
then two years [in 1975]. One of my Intel
colleagues changed it from the complexity of
the chips to the performance of computers

and decided that not only did you get a
benefit from the doubling every two years but
we were able to increase the clock frequency,
too, so computer performance was actually
doubling every 18 months. I guess that’s
a corollary of Moore’s Law. Moore’s Law
has been the name given to everything that
changes exponentially in the industry. I saw,
if Al Gore invented the Internet, I invented
the exponential.” [271, 308, 329]

�

� Mladen Pavičíc: Companion to Quantum Computation and Communication —
Chap. pavicic8481c01 — 2013/3/5 — page 19 — le-tex

�

�

�

�

�

�

1.7 Complexity Limits: Exponential Time 19

chines. But, that is only to be expected because a deterministic Turing machine
stops after solving a decidable problem by definition. It can say nothing about a
theory for which it cannot be defined. So, although there are many other undecid-
able problems, for us, only those problems that have an algorithm for their solving
will be of interest.

We shall be even more specific and will concentrate on the time complexity of
algorithms, although there is also a space complexity. We shall do so because one
of the main advantages of quantum computers is that they are expected to require a
polynomial time for solving problems for which classical computers would require
an exponential time.

Thus, the class EXPTIME is the set of decision problems that can be solved by
some algorithm in an exponential time, the class NP is the set of decision problems
that can be solved by a nondeterministic Turing machine in polynomial time, while
the class P is the set of decision problems that can be solved by a deterministic
Turing machine in a polynomial time.

We stress here that all the problems we shall consider do have some algorithms
for their solution. Thus, our main problem with quantum computation will not
be to find algorithms for a computation of particular programs in general, but to
find algorithms which will be exponentially faster (Shor’s algorithm) or at least a
few polynomial orders faster (Grover’s algorithm) than classical algorithms. Such
a speed-up is also possible in the realm of classical computation. Since a classical
speed-up can compete with and even outdo quantum ones, some details might be
helpful.

Let us consider P and EXPTIME problems for which there exist algorithms de-
scribed by means of functions f (n) D ai ni , i D 1, 2, 3, g(n) D b2n and h(n) D
c3n , where ai , b, and c are constants. We shall say that the algorithm is of order
O(n), O(n2), O(n3), O(2n), and O(3n).

From Table 1.2, we see that when we take a linear problem that we solved within
one day on a personal computer (PC), increase its size by a factor of 1000, and put

Table 1.2 Problems of a polynomial com-
plexity, that is, problems from a P class, can
really take advantage of a speed-up of clas-
sical computers (100N3

3 D x3) x D
3
p

100N3 D 4.64N3). However, for a prob-

lem of an exponential time complexity the
speed-up is limited to an additive constant.
For example, 100 � 2N4 D 2x) x D
N4 C (log 100)/(log 2) D N4 C 6.64.

Time complexity Size of a solvable problem in a time unit
In 1991 Today (2013; Today on a cluster

on 100 times with 1000 CPUs
faster CPU) (105 times faster)

n N1 100N1 100 000N1
n2 N2 10N2 316.2N2
n3 N3 4.64N3 46.4N3
2n N4 N4 C 6.64 N4 C 16.6
3n N5 N5 C 4.19 N5 C 10.5

�

� Mladen Pavičíc: Companion to Quantum Computation and Communication —
Chap. pavicic8481c01 — 2013/3/5 — page 20 — le-tex

�

�

�

�

�

�

20 1 Making Computation Faster and Communication Secure: Quantum Solution

it on a cluster with 1000 CPUs, we will obtain a result also within one day. If one
does that with a problem from an EXPTIME class, the required time would exceed
the age of the Universe even on whatever cluster we have today.

This was the reason why the following definitions have been proposed.

Definition 2 A polynomial algorithm of a problem is called feasible [73].

We often simply say that such a problem is feasible.

Definition 3 A problem which does not have a feasible algorithm is called in-
tractable.

Definitions 2 and 3 are not always appropriate because

� Constant factors and lower terms in a polynom can make an “intractable” prob-
lem feasible and a “feasible” one intractable. For example, an algorithm that
would take time 10100n cannot be carried out, but is nevertheless called “feasi-
ble” because it is in P, while an algorithm that takes time 10�10002n can easily
be carried out for n as large as 1000, but is called “intractable” because it is in
EXPTIME;

� The size of the exponent and of the input can have the same effect.

Still, we do not encounter such unfavorable cases often and therefore the defini-
tions are widely accepted. But, we have to keep in mind that “intractable” does not
mean that a problem cannot be computed or that we do not have an algorithm for
it. It simply means that we have to spend more time or that we do not have enough
money to solve the problem.

Let us have a look at a few problems: Euler tour, Traveling salesman, and factoring
number ones.6)

The first one is the Euler tour problem for a multigraph. An Euler tour is a tour
which covers all the edges but none of them more than once. For example, the
multigraph shown over Königsberg bridges in Figure 1.12 does not have an Euler
tour. It is shown here because Euler formulated his tour problem and found a linear
algorithm for it while solving the Königsberg bridges problem.

Definition 4 A graph G D (V, E) consists of a set (V) of vertices (points) and a set
(E) of edges (lines), each of which connects two vertices. A multigraph is a graph
which has multiple edges.

6) To that, we can add the satiability problem
(SAT) and the isomorph-free generation
of graphs and hypergraphs. SAT problem
consists in verifying whether Boolean
expressions like that one shown in Table 1.1
are satisfied, that is, true, that is, equal to 1 in
a Boolean algebra. SAT belongs to EXPTIME
and that will help us understand why the

factoring number problem computed in a
digital computer belongs to EXPTIME too.
Graphs and hypergraphs can be used to
map nonlinear equations into hypergraphs
and filter out equations that have solutions.
They also belong to EXPTIME. We shall
use them later on to generate the so-called
Kochen–Specker sets.

�

� Mladen Pavičíc: Companion to Quantum Computation and Communication —
Chap. pavicic8481c01 — 2013/3/5 — page 21 — le-tex

�

�

�

�

�

�

1.7 Complexity Limits: Exponential Time 21

Figure 1.12 Euler tour on the example of Königsberg bridges. Is it possible to take a tour over
the bridges, crossing each one only once?

A brute force approach to this problem gives us a search algorithm of complexity
order O(n!) (where n is the number of edges) which is even harder to solve than
those of order O(cn). For instance, the number of paths we have to verify for the
Königsberg bridges is (7� 1)!. If a computer needs 1 sec to verify all of them, then
the time required to verify paths for twice so many (14) bridges is 13!/6! � 100
days.

A similar problem is the traveling salesman problem (TSP) which consists of
finding the cheapest way of visiting all given cities and returning to your starting
point. The vertices are cities and edges are routes between any two of them. Each
link (edge) connecting two cities (vertices on the edge) is pondered by the cost of
going from one of the two cities to the other. Since this is a realistic problem every
travel agency would like to have a solution for, we will first try to estimate to what
extent they can be of service to their customers if they use a brute-force algorithm
which is again of the order O(n!).

Let us assume the agency has a fast machine which provides the cheapest route
for 10 cities in 1 s. Should they try to serve a demanding customer who would like
to make the cheapest tour through 25 cities? Well, the required time is about 136
billion years or 10 ages of the Universe.

Therefore, a better algorithm for such problems are wanted. But no general ap-
proach has been found so far. For instance, it is not known whether the NP set
strictly contains the P set or perhaps coincides with it. So, problems are approached
individually or according to some features they share.

Euler proved that connected graphs have an Euler tour if every vertex shares an
even number of edges and this immediately reduced the time complexity of the
problem from EXPTIME to linear P.

S. Lin found a good approximate algorithm of order O(n3) for the traveling sales-
man problem. With the help of this algorithm, the agency would be able to serve
its customer within 15.6 s, if only approximately.

The next problem of factoring numbers will show us how the complexity of an
important application of algorithms we make use of every day depends on a plat-

�

� Mladen Pavičíc: Companion to Quantum Computation and Communication —
Chap. pavicic8481c01 — 2013/3/5 — page 22 — le-tex

�

�

�

�

�

�

22 1 Making Computation Faster and Communication Secure: Quantum Solution

form we use to solve problems and how we can find faster algorithms on new
platforms.

As shown in Section 1.6, the complexity of algorithms for factoring numbers on
our photon prototype device is of order O(n3/2). The latter algorithms could use the
electric analog machine for resetting the device. But, the number of voltage steps
an analog computer can tell from each other is also limited. A more sophisticated
analog computer would, when compared with a digital one, have two disadvan-
tages: a much lower speed and an inefficient error correction. Therefore, for the
time being, a digital computer is the only option for the task.

However, to introduce a natural number N we want to “crack” into a digital com-
puter we have to translate it into a binary string:

N2 D αn�1αn�2 . . . α1α0 (1.10)

where α i , i D 0, . . . , n � 1 are determined from the following equation:

N2 D αn�12n�1 C αn�22n�2 C � � � C α121 C α020 D

n�1X
iD0

α i2i . (1.11)

For instance, to obtain a binary representation of 255, we divide it by 2 until we
reach 1. Reminders determine bits. So, 255/2 is 127 with the remainder α0 D 1,
and so on, down to α7 D 1 and we get 11111111. In the opposite direction, we have
20C21C22C23C24C25C26C27 D 255. For 256, we have all the remainders, but
the last one equal to zero: α0 D α1 D . . . D 0. The last one (of 1/2) is, of course, 1.
Thus, we get 100000000 and 28 D 256.

A brute force algorithm for the task consists of trial divisions using basic Boolean
operations by means of logic gates shown in Figure 1.2 combined in binary adders
as mentioned in Section 1.4 and explained in [239, Section 1.16]. That means that
such a search would be of order O(2n) or higher, where n is the number of bits.

The majority of encryption we use today for bank and Internet transactions are
based on composite numbers consisting of two huge prime numbers. They are
called RSA after Ron Rivest, Adi Shamir, and Leonard Adleman who invented this
encryption method in 1978 [269]. And again, many faster subexponential7) algo-
rithms have been found.

RSA company provides harder and harder challenges every year to stimulate
finding better algorithms. On December 12, 2009, such a number with 768 bits
and 232 digits was cracked8) after 2000 CPU years of computation, meaning that
it required one month on a cluster with 24 000 CPUs. Also in 2009, a group of
enthusiasts factored 512-bit RSA keys for Texas Instruments calculators using soft-
ware found on the Internet and a distributed computing project. Since 512-bit RSA
numbers are the standard for almost all Internet keys, the aforementioned crack-
ings stirred a debate on the RSA keys security.

7) Subexponential or superpolynomial complexity is the one between P and EXPTIME.
8) Number Field Sieve algorithm of subexponential complexity Ofexp[c(log n)1/3(log log n)2/3]g was

used.

�

� Mladen Pavičíc: Companion to Quantum Computation and Communication —
Chap. pavicic8481c01 — 2013/3/5 — page 23 — le-tex

�

�

�

�

�

�

1.8 Energy Limits . . . 23

The response of the companies will most probably be to simply switch to a 1024-
bit standard, but two issues emerge here. First, already now, all previously illegally
intercepted documents encoded by older 256- and 128-bit keys are easily readable.
Soon, all intercepted and stored 512-bit ones will be readable. Second, tonight a
mathematician somewhere in his attic room can come with an ingenious P algo-
rithm for factoring numbers and crash down the security of the World Internet as
of tomorrow morning.

Here, quantum computation and quantum communication can provide a patch.
What the Internet needs is to make connections secure and eavesdropping im-

possible and that is what quantum cryptography can provide the Internet with al-
ready today.

What computation needs is a speed-up, and that is what the hardware of would-
be quantum computers together with quantum software of the “Shore kind” can
provide us with.

However, before we dwell on these two issues, we first want to consider another
important point that will give us a bridge from classical to quantum platforms and
from classical to quantum formalism. We have already mentioned that the classical
technology already “went parallel” and that means a lot of CPUs, that is, a lot of
heat. So, the final issue we have to elaborate on before we go completely quantum
is the issue of energy.

1.8
Energy Limits . . .

According to the Environmental Protection Agency (EPA) US Congress report in
2007, the energy used by servers and data centers in the US is estimated to be
about 61 billion kWh in 2006 (1.5% of total US electricity consumption) for a total
electricity cost of about $ 4.5 billion [265]. This estimate includes neither office nor
private PCs and it is evaluated to be higher than the electricity consumed by all
color televisions in the US.9)

EPA also estimated the energy use of servers and data centers in 2006 to be more
than double the electricity that was consumed for this purpose in 2000, and that
the power and cooling infrastructure that supports IT equipment in data centers
also uses significant energy, accounting for 50% of the total consumption of data
centers [265]. Taken together, servers and data centers together with their infras-
tructure in 2006 spent 2.25% of total US electricity consumption. Similar statistics
are available for Europe. Intensity of computations constantly going on in Europe

9) The total energy consumption of energy
related to computers (in industry, offices, and
at home) and Internet (including cooling,
personal, maintenance, rooms, and so on)
is independently estimated to be between 3
and 9% (in the US), but no detailed study
has been carried out in at least 10 years.

This is partly because computers are so
much a part of production, education,
communication, traveling, and everyday life
that it is practically impossible to determine
the energy spent by them from the total
amount of spent energy.

�

� Mladen Pavičíc: Companion to Quantum Computation and Communication —
Chap. pavicic8481c01 — 2013/3/5 — page 24 — le-tex

�

�

�

�

�

�

24 1 Making Computation Faster and Communication Secure: Quantum Solution

is obvious from the European Particle Physics Real Time Monitor shown in Fig-
ure 1.13.

Should we add the new parallel law

� The energy spent by clusters and data centers doubles every five years

to the dying Moore law.
Apparently, still not. Because the energy spent in the subsequent five year period

(2005–2010) did not double [153]. It only increased by about 60% worldwide. There
are two main reasons for that. The first is the global crisis occurring in the past
few years. The second is the recent virtualization of computational tasks. Recently
developed cloud computing installations have higher server utilization levels and
infrastructure efficiencies than in-house data centers. But, since the latter filling of
the presently existing computational “vacancies” in the existing in-house servers
will soon saturate them and since most reports do predict an exponential growth
in energy spent by the data centers, the parallel law will continue to hold in its
exponential formulation.

On the other hand, the designers of computers and the Internet argue that
their efficiency has increased several times over in the last twenty years. Previ-
ous NMOS and PMOS transistors dissipated heat through their resistors while
today’s CMOS gates dispense with resistors; optical fibers substitute copper wires;
resistance within conductors is being lowered by reducing the number of electrons
within a gate from thousands to one hundred and soon it will be reduced to one in
single electron transistors (SET). Can this development outweigh the exponential
increase of processed and stored petabytes (PB, 1015 byte)? Here, we should men-
tion that in the face of all the mentioned improvements in the efficiency there is
a part of the Moore law that has outperformed itself recently and that is about the
heat dissipated by the processors since the dissipated heat doubles not every 18
months, but each year or less.

Figure 1.13 Distributed or grid computing
consists of sharing computing tasks over mul-
tiple computer clusters. Elementary particle
physics tasks constantly running on Euro-
pean EGEE and GridPP (distributed over all
national European Grids and with links to

American (both), Asian, and Australian com-
puting clusters) are shown (57 226 tasks run-
ning (dots; bigger dots mean bigger clusters),
21 884 queueing). Reprinted with permission
of the UK Grid Operations Support Centre;
© GridPP.

�

� Mladen Pavičíc: Companion to Quantum Computation and Communication —
Chap. pavicic8481c01 — 2013/3/5 — page 25 — le-tex

�

�

�

�

�

�

1.8 Energy Limits . . . 25

The problem is that when we come down to one electron per gate, we are left
with pure “information heat” and for so many bytes, it becomes considerable. The
information energy that is dissipated in gates just because they compute data or
erase data is then significant. For thousands of electrons per transistor erasing data
can be compared with erasing data from a book. When we burn two books, one with
blank pages and the other with Galileo’s Dialogue on the Two Chief World Systems
printed in it, we would not be able to detect a difference in dissipated heat. But,
when we go down to just several electrons we move around or several atoms whose
magnetization in a hard disk10) we changed, then computation and communication
become physical. The energy needed for creating or erasing one bit of information
directly corresponds to the energy needed to move or change its carrier. Let us
calculate this energy.

We shall do so by means of an ideal gas model. We put gas consisting of atoms
in a cylinder with a piston as shown in Figure 1.14. Pressure which atoms exert
on the piston is p D Fx /a where F is the force with which atoms bounce onto the
piston and the walls of the cylinder. So, the work done by the gas is

W D

Z
Fx dx D

Z
p dV I (1.12)

because dV D adx .
We assume that the gas is in a bath at a constant temperature T. The law

of ideal gas reads p V D N kT , where N is the number of atoms and k D
1.381 � 10�23 J/(molecule K) is the Boltzmann constant. Since the temperature T
is constant, the average kinetic energy of the atoms does not change and therefore
there is no change of the internal energy. Hence, according to the first law of
thermodynamics, work W is equal to the heat Q transfered to a heat reservoir.

Our process is reversible (there is no friction and by returning the heat by means
of a reversible process attached to ours, we can restore its initial state) and there-
fore, using the second law of thermodynamics (the definition of the entropy change
for a reversible process is ΔS D Q/T), from (1.12), we obtain

ΔS D
Q
T
D

1
T

V fZ
Vi

N kT
V

dV D N k ln
V f

Vi
. (1.13)

x

a

dx

x+dx

F

Figure 1.14 Work done by ideal gas during isothermal expansion.

10) Thin layer of magnetic material hard disks are coated with layers 10 nm thick.

�

� Mladen Pavičíc: Companion to Quantum Computation and Communication —
Chap. pavicic8481c01 — 2013/3/5 — page 26 — le-tex

�

�

�

�

�

�

26 1 Making Computation Faster and Communication Secure: Quantum Solution

Now, let us put just one atom in an empty cylinder – as shown in Figure 1.15.
A Maxwell demon watches it and when it is in the left half of the cylinder, he records
it (“1”) and introduces a piston (adiabatically and reversibly) in the middle of the
cylinder (a). In this way, he records one bit of information in cylinder’s memory
“for free.” When he wants to erase this information from its memory, he allows the
piston to move freely (without friction) and isothermally. The atom will do work
against the piston and push it to the right (b). Our demon now takes out the piston
(reversibly and adiabatically) and removes “1”; one bit is erased (c). The cost is
given by (1.15).

The entropy increase of the environment caused by erasure of one bit of infor-
mation is

ΔS D
Q
T
D k ln

2Vi

Vi
D k ln 2 . (1.14)

This is known as the Landauer principle [165]. The dissipated heat caused by the
erasure of one bit is

Q D kT ln 2 . (1.15)

Instead of dividing the cylinder in two compartments, the demon could have
divided it in 4 or 8 or any number w of possible states. Then, we arrive at the
famous Boltzmann microscopic entropy

ΔS D k ln w (1.16)

which is as epitaph engraved in Boltzmann’s gravestone.
From (1.14), it follows that we cannot discard information in a computer without

dissipating heat, no matter how clever we design our circuits. This is a physical law
which we cannot go around because we have to assume some work on the part of
the computer (atom in Figure 1.15) at least when the calculation is over and the
output has to be obtained. This corresponds to “removing of 1” in Figure 1.15b;
also, if the demon simply adiabatically removed the piston in (b), then the system
would not be in any way connected to its environment and would not provide us
with any output. But, we can carry out calculation without discarding information
on each step of calculation and that can save us from unnecessary heat dissipation.
Let us see how we can do that.

(a)

1

(b)

1

(c)

Figure 1.15 Entropy of single atom gas.

�

� Mladen Pavičíc: Companion to Quantum Computation and Communication —
Chap. pavicic8481c01 — 2013/3/5 — page 27 — le-tex

�

�

�

�

�

�

1.9 . . . and Reversible Gates 27

1.9
. . . and Reversible Gates

When we, in a decade or two, scale down the transistors to one electron (single
electron transistors, SET) and the conductors to monolayers one atom thick, that
is, when all Moore’s laws die, we will have to take care of “information garbage,”
that is, the informational heat it produces, given by (1.16).

Since transistors in such atom-level processors will be extremely densely packed
– already today their number exceeds 5 billions11) – we have to think of a way
to get rid of the huge amount of heat per volume unit the discarded bits would
develop.

And, the best way to get rid of the heat the gates (transistors) would produce is
to make gates that do not produce heat. That was the idea (in the early eighties)
of reversible computers that would be able to calculate running both “forwards”
and “backwards” – like a pendulum – without either dissipating or taking in new
energy while calculating.

However, can the binary Boolean algebra and its gates support such swinging
reversible circuits?

Let us have a look at Figure 1.16 (compare with Figure 1.2). By looking at the
output of a NOT gate, we immediately know what the input was. So, it is reversible.
If we keep track of any of the two inputs of an XOR gate, we can reconstruct the
other input by looking at it outputs. However, to be able to reconstruct the inputs
of an AND gate, we have to keep track of both of them because by knowing that
both the output and one of the inputs were 0, we still cannot know whether the
other input was zero or one. So, the answer is in the negative. Standard logic gates
cannot be implemented in a reversible circuit.

But, if we collect input and output data of a gate, that would suffice to make
any operation reversible. Such three-level gates are called the gates of logic width 3.
(The standard binary logic gates have therefore logic width 1.) Bits at the first two
incoming ports of reversible ports are often called the control bits or source bits, the
input bits target or argument bits, the output ones result bits and the one that are not
used in further calculations sink bits or garbage. The terminology will often depend
on the kind of gate we will use. With the Fredkin gate [98] (Table 1.3), we obtain
different operations at different ports of the gate. With the Toffoli gate, we obtain

10 01

0
0 0 0

1 1 1
0 1 1

1 0

0
0 0 0

1 0 1
0 0 1

1 1

Figure 1.16 Gate NOT is reversible. For the XOR gate to be reversible, at least one of the inputs
has to be kept in memory. For AND, both inputs should be kept in memory.

11) Intel 62-core Xeon Phi.

�

� Mladen Pavičíc: Companion to Quantum Computation and Communication —
Chap. pavicic8481c01 — 2013/3/5 — page 28 — le-tex

�

�

�

�

�

�

28 1 Making Computation Faster and Communication Secure: Quantum Solution

Table 1.3 Truth table of the Fredkin gate –
a universal reverse gate that can be used to
implement any other gate. Two examples are
given. Encircled are the values of the control

(0) and result bits for controlled AND gate.
Boxed are control (1) and result values for con-
trolled OR gate. Arrows show another way of
implementing the latter gate.

Fredkin gate
Input–output ports Output–input ports

Port 1 Port 2 Port 3 Port 1 Port 2 Port 3

0 0 �0 0 �0 0
0 0 1 0 1 0
0 ! 1 �0 0 ! �0 1
0 ! 1 1 0 ! 1 1
1 0 �0 1 �0 0
1 0 1 1 0 1
1 ! 1 �0 1 ! �1 0
1 ! 1 1 1 ! 1 1

a result mostly at the last output port. We can also use different ports as control
ones. For instance, the Fredkin gate originally used input port 2 for control bits
and output 2 to obtain operation OR (indicated by arrows in Table 1.3).

The truth values of the Fredkin gate show that we can run it backwards as well.
That prompted Fredkin and Tofolli (in 1982 [98]) to propose another way of repre-
senting the Fredkin gate which could be integrated in a circuit and enable experi-
mental and industrial implementation. It is shown in Figure 1.17.

In 1985, Richard Feynman [95] recognized that the ability of reversible gates to
run backwards as well as forward is just the main feature of the unitary evolution
of any quantum system. Thus, he proposed a concept of quantum mechanical com-
puters which would essentially use the gates and circuits proposed for reversible
computers only applied to quantum bits: photons, electrons, and atoms.

Feynman recognized that the Toffoli gate and circuits proposed by Tommaso Tof-
foli in 1980 [303] are better suited for a would-be quantum application and that the
Toffoli gate is but one gate in a series of scalable gates which he called NOT, CNOT
(CONTROLLED NOT), CCNOT (CONTROLLED CONTROLLED NOT), The
Toffoli gate is a CCNOT gate. Feynman–Toffoli circuit notation enables an easy
handling of gates and is widely accepted in both fields – reversible and quantum
computer research.

Fredkin Fredkiny

z

x

y ⊕ xy ⊕ xz

z ⊕ xy ⊕ xz

x

y

0

x

xy
xy

x

(a) (b)

Figure 1.17 (a) General schematic of the Fred-
kin gate; (b) Schematic of the implementation
of an AND gate by means of the Fredkin gate;
We can easily check that it is a special case of

(a) (see the caption of Figure 1.2). In that way,
we can write down any reversible Boolean gate
by means of the universal Fredkin gate.

�

� Mladen Pavičíc: Companion to Quantum Computation and Communication —
Chap. pavicic8481c01 — 2013/3/5 — page 29 — le-tex

�

�

�

�

�

�

1.9 . . . and Reversible Gates 29

x x

y x ⊕ y

(a)

x x

y y

xy ⊕ zz

(b)

x x

y y

z z

(c)

Figure 1.18 (a) General schematic of a CNOT
gate; x ˚ y D x y C x y ; For x D 1, we obtain
1˚ y D y ; (b) General schematic of a CCNOT
gate (x y ˚ z D x y z C x y z); For x D y D 1,

we obtain 1 ˚ z D z ; (c) Reversibility of
the CCNOT shown by two concatenated CC-
NOT gates. This is equivalent to first running
CCNOT forward as in (b) and then backward.

Circuit formalism for CONTROLLED-. . . NOT gates is shown in Figure 1.18. If
we concatenate two CCNOT gates, then the 3rd port takes the output of the first
gate as its input and the 3rd port of the second gate gives us

x y ˚ (x y ˚ z) D x y (x y z C x y z)C x y (x y z C x y z)

D x y z C x y (x y C z)(x y C z)

D (x y C x y)z D z . (1.17)

This result is graphically presented in Figure 1.18c.
We can see that we obtain the input z we started with and therefore the gate

is reversible, actually self-reversible. We can also see that in CC. . . NOT gates, the
control bits and target-result bits are separated and that the control bit inputs are
identical with control output ones and are therefore conveniently designed for scal-
ing circuits containing them.

Since the values of the control bits stay the same and the target bit involves sym-
metric Boolean operation NOT, it is easy to describe the action of the gate on the
input state by a matrix. The matrix representation of the three-level CCNOT gate –
shown in (1.18) – consists of an “operator-matrix” that just takes care of swapping
values of the target bit and “state matrices” that are just columns of the CCNOT
truth table as shown in Table 1.4. Actually, this matrix representation seems to
have been adopted from the quantum formalism in the classical reversible compu-
tation literature. We nevertheless write it here to point to some differences between
properties of classical reversible gates and circles and their formalism, on the one
side, and quantum ones, on the other.2666666666664

1
1 0

1
1

1
1

0 0 1
1 0

3777777777775

2666666666664

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

3777777777775
D

2666666666664

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 1
1 1 0

3777777777775
(1.18)

�

� Mladen Pavičíc: Companion to Quantum Computation and Communication —
Chap. pavicic8481c01 — 2013/3/5 — page 30 — le-tex

�

�

�

�

�

�

30 1 Making Computation Faster and Communication Secure: Quantum Solution

Table 1.4 Truth tables of CNOT (controlled NOT) and CCNOT (controlled controlled NOT)
gates. The latter gate is also called the Toffoli gate. C stands for control and T for target bits.

CNOT gate
In–out Out–in

C T C T

0 0 0 0
0 1 0 1
1 0 1 1
1 1 1 0

CCNOT (Toffoli) gate
Input–output ports Output–input ports

C1 C2 T C1 C2 T

0 0 0 0 0 0
0 0 1 0 0 1
0 1 0 0 1 0
0 1 1 0 1 1
1 0 0 1 0 0
1 0 1 1 0 1
1 1 0 1 1 1
1 1 1 1 1 0

We see that apart from the target bit values, all the off-diagonal elements in the
matrix are equal to zero. The matrix is equal to itself transposed and multiplied
by itself transposed it gives a unit matrix. Since it is a real matrix, it is therefore a
unitary matrix as a matrix of a quantum operator. Therefore, its action can clearly
be reversed. We can obtain this result by multiplying (1.18) by the matrix from
the left. The matrix multiplied by itself is equal to 1 and we obtain (1.18) with the
reversed positions of “state matrices.”

However, an almost diagonal form of the matrix means that the gate exerts only a
limited action on the “state matrices.” If we wanted to implement other operations,
we would have to tamper it with the latter matrices and use both control and target
bits as shown in Figure 1.19. As we can see in Figure 1.19c, we use not only the
target level, but also the control levels to introduce parameters for obtaining the
results. This makes building up circuits more demanding than in a standard binary
computer so far as the number of gates is concerned. For example, a comparison
of a reversible parallel adder with a standard binary shows that about 40% more
gates is needed. This is quite acceptable, though, because both implementations
have the complexity O(n). The power consumption, on the other hand, is reduced
to 10% of those in the standard chips [76].

On the other hand, we have some restrictions on the circuits that we do not
have for the binary circuits. For example, real hardware fan-outs (copies of gate
outputs) are not allowed because such copying is irreversible – number of input
signals is one and there should be two or more output signals and this is not possi-

�

� Mladen Pavičíc: Companion to Quantum Computation and Communication —
Chap. pavicic8481c01 — 2013/3/5 — page 31 — le-tex

�

�

�

�

�

�

1.9 . . . and Reversible Gates 31

1 1

y y

0 0 ⊕ 1y = y

(a)

x x

y y

xy ⊕ 0 = xy0

(b)

x x

y y

1 xy ⊕ 1 = x + y

(c)

Figure 1.19 (a) Fan-out (two copies of y) simulation (it has to be used for copying gate outputs
because a hardware fan-out is not allowed in a reversible circuit); (b) AND implementation; (c)
OR implementation which requires four additional CCNOT gates at the control ports.

ble since we cannot generate energy from nowhere (remember that in a reversible
circuit electrons/energy “swing”). We can simulate fan-out though, as shown in
Figure 1.19a. Classical reversible circuits share the impossibility of having fan-outs
with the quantum circuits. The reason why we cannot have a fan-out in a quan-
tum circuit (not even simulated) is the so-called no-cloning principle, that is, that a
quantum bit cannot be copied. (We shall come back to this principle later on in the
book.) Similarly, in reversible circuit, feedbacks (loops) are also not allowed because
that would disturb the regularity of “swinging.”

In order to implement an OR gate, we have to use either four additional CCNOTs
as indicated in Figure 1.19c or a combination of NAND (input target is 1) and
NOT (both controls are 1). This is not a problem because CCNOT is universal in a
reversible circuit. But, since it is universal neither in the standard binary sense nor
in the sense of a quantum universal gate, we shall define the reversible universal
gate here [77].

Definition 5 A reversible gate is r-universal if and only if any Boolean function
f (x1, x2, . . . , xn) can be synthesized by a loop-free and fan-out-free combinatorial

network built from a finite number of such gates, using each input x1, x2, . . . , xn

at most once and using an arbitrary finite number of times the constant inputs 0
and 1.

Both Fredkin and Toffoli (CCNOT) gates are r-universal and are necessary and
sufficient for a reversible implementation of arbitrary Boolean function of a finite
number of logical variables. Now, in the standard classical circuits fan-outs are al-
lowed and the smallest universal gates (NAND and NOR)12) are of width 1 and
are linear; In quantum circuits fan-outs are not allowed and the smallest universal
gates are of width 2 and are linear. What is the smallest logic width of r-universal
gates. Can we correlate a hardware “no fan-outs” restriction with a software condi-
tion? The answer is given by the following theorem.

Theorem 6

A reversible gate is r-universal if and only if it is not linear [77].

12) Not only can we express all other operations by means of NAN and NOR, but we can also
compress all the conditions of the Boolean algebra in a single axiom [193] and [327, pp. 807,1174].
We can even express all the conditions with the help of a universal operation so that they keep an
identical form when we substitute NAND, OR, and so on, for that universal operation [198].

�

� Mladen Pavičíc: Companion to Quantum Computation and Communication —
Chap. pavicic8481c01 — 2013/3/5 — page 32 — le-tex

�

�

�

�

�

�

32 1 Making Computation Faster and Communication Secure: Quantum Solution

A truth table of a logic gate of width w consists of 2w lines. A gate is reversible
if and only if all 2w output values form a permutation of all 2w input values. That
makes (2w)! different reversible gates. Two reversible gates of width 1 and all 24
[(22)! D 24] of width 2 are linear. Therefore, the smallest r-universal gate are of
width 3. There are 1344 linear of all (23)! D 40 320 reversal gates of width 3 that
makes 38 976 r-universal gates of width 3. Quantum gates do not have truth tables,
and so we will look for another explanation of their properties in the next sections.

This also gives us an answer as to why it is relevant to go into the details of
gate algebras. They tell us a great deal about hardware; for binary, reversible, and
quantum gates alike.

To sum up, the idea of reversible computers emerged from an energy consid-
eration of the scaling down electronic elements to atomic level in the future. At
the same time, the idea of quantum computers emerged from a consideration of
how to speed-up computation once the CPU clock hits its quantum limits. The
development of both ideas are being developed, although the quantum computers
are better funded for an obvious reason – no matter how well we solve the heat
dissipation, the classical computer can never have a transistor that would work on
less than one electron and can never have conductors thinner than one atom while
quantum superposition mimics just that.

There are properties that reversible and quantum gates share. These are the re-
versibility itself, gate and circuit formalism, unitarity of matrices, universality of
gates at a particular level, absence of fan-outs, and functionality at the atom level.13)

There are properties that they do not share. For example, there are neither truth val-
ues nor truth tables for quantum gates, only for classical reversible ones. Then, at
least for the time being, the reversible circuits are much slower than the standard
binary ones, while the quantum ones are exponentially faster than the standard
binary ones, at least for particular algorithms.

1.10
Ultimate Efficiency: Quantum Computers and Qubits

In Section 1.7, we have seen that the classical solution to a collapse of the expected
exponential increase of the CPU speed is a massive parallelism in both individual
PCs and supercomputers. Intel has put forward a new slogan: “Parallelism Full
Steam Ahead!” in its new journal The Parallel Universe [266].

On the other hand, photons – being quantum systems – inherently possess mas-
sive parallelism based on their ability to superpose their states and, as we have

13) The main feature of reversible circuits is
their power efficiency which stems from
the Landauer principle given by (1.14).
However, the Landauer heat given by (1.15)
is significant only for single electrons (any
technology that relies on many electrons
supporting a single bit dissipates the heat
that is altogether much higher than the sum

of information heats of individual electrons).
The need for reversible gates will increase
as we continue with the miniaturization of
transistors and eventually arrive at single
electron ones. Quantum circuits, on the
other hand, are bound to an atomic level
from the very start since they compute by
means of photons, electrons, and atoms.

�

� Mladen Pavičíc: Companion to Quantum Computation and Communication —
Chap. pavicic8481c01 — 2013/3/5 — page 33 — le-tex

�

�

�

�

�

�

1.10 Ultimate Efficiency: Quantum Computers and Qubits 33

seen in Section 1.6, we can use this superposition of quantum states for a “phys-
ical” quantum computation. The prototype we have described there cannot cope
with massive calculations due to the requirement that the optical path difference
be smaller than the coherence lengths of the laser. Yet, it was a quantum computer
with one quantum bit only – serving as a quantum CPU with a single quantum
transistor, that is, a single quantum gate – that was capable of factoring numbers
with up to 1010 digits.

This means that 50 quantum bits, each having two states j1i and j0i, would give
us a superposition of 250 � 1015 states. Any gate operation on these 50 quan-
tum bits amounts to an interaction with all 250 states in parallel since they are all
in collective phonon modes. These quantum bits build a composite Hilbert space
H D H2 ˝ � � � ˝H2. The computational basis, that is, the basis of this space, con-
sists of the following 250 vectors: j00 � � � 00i, j00 � � � 01i, . . . , j11 � � � 11i. To compute
a function f of each of these states means to let the states evolve according to the
time evolution unitary operator U (Schrödinger equation):

ji1 i2 . . . i50i 7�! Uji1 i2 . . . i50i D j f (i1,i50)i . (1.19)

In a classical computer, we would carry out such a computation in a one-state-at-a-
time sequence. In a quantum computer, we first put all the states on the left-hand
side of (1.19) in a superposition of all 250 basis states and then let them evolve
together and in one step:

1X
i1 i2...i50D0

α i1 i2... i50 ji1 i2 . . . i50i
f
7�!

1X
i1,i2,...,i50D0

α i1 i2... i50 j f (i1 i2 . . . i50)i . (1.20)

After that, we let the obtained (evolved) superposition collapse to a particular state
that we read as a result. Of course, since such a collapse of the wave packet is
intrinsically statistical, we have to repeat it a number of times, but this procedure is
of a polynomial complexity provided that we find a proper function f for a problem
we want to calculate.

The difference between this quantum and a binary classical computer consists of
the fact that 250 states are formed by only 50 quantum transistors (quantum bits),
while in a classical computer, we need a new transistor for each new state, that is,
250 or about one million billion transistors or about half a million of today’s most
advanced CPUs. More realistic and detailed estimations give about 106 quantum
bits for such computational power, though [264].

Of course, to be able to use this parallelism we must – as for classical parallel
systems – find appropriate quantum hardware and software solutions. Quantum
computing power would depend on how well we could correct errors and faults in
computation, on how well we could interconnect qubits, and on how efficient the
algorithms that we would find for them are. To arrive at each aspect of quantum
bits, we have to first learn of their most basic properties and how we can handle
them. We shall do that starting from their abstract definition in the Hilbert space,
but in a pedestrian approach.

�

� Mladen Pavičíc: Companion to Quantum Computation and Communication —
Chap. pavicic8481c01 — 2013/3/5 — page 34 — le-tex

�

�

�

�

�

�

34 1 Making Computation Faster and Communication Secure: Quantum Solution

Definition 7 A qubit (quantum bit) is a two-state quantum system. The two states
form a basis in a two-dimensional Hilbert space H2 and are denoted j0i and j1i.
They are vectors in H2, form a basis in H2, and span H2. In the matrix representa-
tion, they read:

j0i D
�

1
0

�
, j1i D

�
0
1

�
. (1.21)

In the spin and polarization representation, we have j"i D j0i, jHi D j0i (spin
up, horiziontal polarization) and j#i D j1i, jV i D j1i (spin down, vertical polariza-
tion).

Definition 8 Any vector from Hn denoted as jΨ i is called a ket.

Definition 9 Hilbert space H D H2 ˝ . . . ˝ H2 is called a composite qubit space.
The basis of this space, consisting of vectors j00 � � � 00i, j00 � � � 01i, . . . , j11 � � � 11i is
called the computational basis.

Qubits might be linear or circular polarization states of photons, two levels of
an atom or ion, spin-1/2 nuclear states in a magnetic field (nuclear magnetic reso-
nance, NMR), electron and nuclear states in a silicon, electron states in an electron
dot, then charge, flux, phase, and charge-flux states in superconducting devices,
and so on.

We shall often measure a state of a qubit so as to let it pass a filter which lets a
qubit in a particular state through. In that case the qubit will not be distorted by
passing through the filter. Such a filter is called a perfect filter and an ideal measure-
ment. In quantum computation, filtering (perfect and imperfect) is often used for
preparing and handling states of a qubit and we can consider the qubit that exited a
specified port of a filter to be measured, although it has not been destroyed by – we
say, collapsed in – a measurement device.

When we do not deal with a perfect filtering, then the state is distorted and
changed by filtering. This can be statistically described and the outcome can be
statistically predicted, but an outcome of an individual measurement will in the
latter case remain random and unpredictable.

This inherent randomness in triggering a measuring device or passing through a
filter whenever their setups do not match the state in which the qubit was prepared
is one of the main features of a qubit. For example, if a qubit is prepared in a spin-
up state oriented along the CO z-axis as shown in Figure 1.20, then it will always
pass through an sz filter, but it will pass throughCO x andCO y only every second
time. We can verify similar behaviors with polarized photons. A photon prepared
by a polarizer will pass through another polarizer oriented in the same direction.

�

� Mladen Pavičíc: Companion to Quantum Computation and Communication —
Chap. pavicic8481c01 — 2013/3/5 — page 35 — le-tex

�

�

�

�

�

�

1.11 Combining and Measuring Qubits: Quantum Superposition – Qubit Primer 35

Figure 1.20 A qubit prepared in a spin-up
state alongCOz will always pass aCsz filter,
but will pass (at random)Csx andCs y only
in 50% of verifications (it will pass �sx and

�s y in the other 50% of verifications). After
passing sx filters, the qubit will pass a new
Csz filter only in half of the cases.

However, a polarizer rotated by 45ı will only let every second photon through.
The probability of a photon passing the second polarizer oriented in the same

direction as the first one is 1. The probability of a photon passing through the
second polarizer rotated at an angle φ with respect to the first one is

Pφ D cos2 φ . (1.22)

This is the so-called Malus law.14) It gives meaning to the “statistical description” we
mentioned above. For a particular photon, there is no way of predicting whether it
will pass the polarizer or not, but the probability of passing it is cos2 φ for every
one of them.

The randomness will make the algorithms for quantum computation rather de-
manding, but on the other hand, it will make messages coded by a quantum cryp-
tography protocol unbreakable and eavesdropping impossible.

1.11
Combining and Measuring Qubits: Quantum Superposition – Qubit Primer

Superposition of qubits enables exponential speed-up of would-be quantum com-
putation, as we explained in the previous section. It also determines the way in
which we describe interaction of qubits, their manipulation, and their measure-
ment. In Section 1.6, we introduced a superposition of photons in a Mach–Zehnder
interferometer. In a quantum computer, we, however, expect to deal with qubits
that are parts of atoms or ions and therefore we shall introduce a superposition
by considering atom levels of a rubidium atom 87Rb in a cavity as shown in Fig-
ure 1.21.

14) Of, say, 100 photons, 100 cos2 ' will pass the filter and 100 sin2 ' will not.

