

Supporting Information

© Wiley-VCH 2006

69451 Weinheim, Germany

Discovery of Low-Molecular-Weight Ligands for the AF6 PDZ Domain

Mangesh Joshi, Carolyn Vargas, Prisca Boisguerin, Annette Diehl, Gerd Krause, Peter Schmieder, Karin Moelling, Volker Hagen, Markus Schade, and Hartmut Oschkinat

Materials All reagents and starting materials were purchased from commercial sources and used without further purification. TLC was performed on plastic-backed plates pre-coated with silica (0.2 mm, 60 F_{254}) and visualized using an UV lamp (254 and 366 nm). Silica gel 60 (30-63 µm) was used for flash chromatography. Mass spectra were recorded on a LC-MS Agilent 1100 series spectrometer. The compounds were further checked by recording ¹H and ¹³C NMR spectra on Bruker DRX600 and Bruker AV300 NMR spectrometers using DMSO-d₆ solutions. The chemical shifts are given in ppm and *J* values in Hz.

Synthesis of (*Z*)-5-Arylidene-2-thioxo-4-thiazolidinones and (*Z*)-5-isopropylidene-2thioxo-4-thiazolidinone. Compounds 4a-f and 4h-i were synthesized according to the procedure described in [1] while compounds 4g and 4j were prepared according to the procedure in [2]. Twenty millimoles of 2-thioxo-4-thiazolidinone and 20 mmol of aldehyde were used as starting materials. The products were recrystallized from MeOH or mixtures of $H_2O/MeOH$ or $H_2O/EtOH$ when appropriate.

Reduction of **4.** Compounds **5** were prepared according to the procedure described for 5benzyl-2,4-thiazolidinediones.^[3] The final products were obtained after flash chromatography using mixtures of hexane/ethyl acetate as eluant.

Entry	R^1	=СН-	R ¹ moiety	NH	Others
4 a	3-thienyl	7.92	7.30, 7.71, 8.08	13.78	
4b	iPr	6.67	-	13.59	1.07 (CH ₃)
					2.38 (CH)
4 c	C_6H_5	7.64	7.51, 7.55, 7.60	13.85	
4d	$4-MeC_6H_4$	7.60	7.36, 7.48	13.79	2.36 (CH ₃)
4e	$3-MeC_6H_4$	7.59	7.32, 7.39, 7.41, 7.44	13.82	2.37 (CH ₃)
4f	$4-CF_3C_6H_4$	7.70	7.79, 7.88	13.93	
4g	$3-CF_3C_6H_4$	7.98	7.77, 7.79, 7.85, 7.86,	13.93	
4h	$4-BrC_6H_4$	7.61	7.53, 7.74	13.86	
4i	3-indolyl	7.93	7.21, 7.26, 7.51, 7.83, 7.93	13.56, 12.30	
4j	$4-PhC_6H_4$	7.72	7.41, 7.49, 7.68, 7.73, 7.80	13.84	

Table 1. ¹H NMR data of 2-thioxo-4-thiazolidinone derivatives 4.

Table 2. ¹H NMR data of derivatives 5.

Entry	\mathbb{R}^1	CH	CH_2	R^1 moiety	NH
5a	3-thienyl	5.00	3.51, 3.52	6.93, 7.40	13.16
5c	C_6H_5	5.03	3.17, 3.37	7.24, 7.26, 7.31	13.85
5f	$4-CF_3C_6H_4$	5.09	3.46, overlapped with H_2O signal	7.48, 7.69	13.20
5g	$3-CF_3C_6H_4$	5.09	3.46, overlapped with H_2O signal	7.56, 7.57, 7.63	13.19
5h	$4-BrC_6H_4$	5.02	3.19, 3.33	7.21, 7.51	13.87

Entry	\mathbf{R}^1	C=S	C=O	C-5	СН	R ¹ moiety	Others
4a	3-thienyl	194.6	169.1	123.0	124.8	129.3, 135.4,	
						134.3, 137.4	
4b	iPr	196.1	168.0	127.0	143.1	-	20.8, 31.7
4 c	C_6H_5	195.7	169.4	125.5	131.6	129.4, 130.5,	
						130.8, 133.0	
4d	$4-MeC_6H_4$	195.7	169.5	124.3	131.8	130.1, 130.6, 141.2	21.1 (<i>C</i> H ₃)
4e	$3-MeC_6H_4$	195.8	169.4	125.4	131.6	127.7, 129.4, 130.9,	20.9 (<i>C</i> H ₃)
						131.8, 133, 138.9	
4f	$4-CF_3C_6H_4$	195.4	169.3	128.6	129.4	126.1, 126.2,	123.8
						129.8 (q, J _{CF} =32.5),	$(q, J_{CF} = 273.4,$
						130.9, 136.9	$CF_3)$
4g	$3-CF_3C_6H_4$	195.3	169.3	129.7	127.8	126.8 (q, J _{CF} =3.3),	123.8
						127.3 (q, J _{CF} =3.3),	$(q, J_{CF} = 273.4,$
						129.7, 130.1 (q,	$CF_3)$
						J _{CF} =32),	
						133.2, 134.2	
4h	$4-BrC_6H_4$	195.4	169.4	124.3	130.2	126.4, 130.3,	
						132.2, 132.4	
4i	3-indolyl	194.7	169.2	123.5	124.8	112.6, 118.0, 118.5,	
						121.5, 123.4, 126.8,	
						130.1, 136.4	

Table 3. ¹³C NMR data of 2-thioxo-4-thiazolidinone derivatives 4.

Table 4. ¹³C NMR data of derivatives **5.**

Entry	\mathbb{R}^1	C=S	C=O	C-5	CH_2	R ¹ moiety	Others
5a	3-thienyl	203.5	177.7	55.6	30.7	125.5, 127.1,	
						127.0, 137.9	
5c	C_6H_5	203.3	177.9	55.6	36.5	127.1, 128.5,	
						129.2, 136.6	
5 f	$4-CF_3C_6H_4$	203.2	177.9	55.0	36.1	125.3,	124.3
						127.8	$(q, J_{CF}=272.6, CF_3)$
						(q, J _{CF} =32), 130.2,	
						141.6	
5g	$3-CF_3C_6H_4$	203.3	178.1	55.1	36.0	123.9, 124.1,	
						125.9, 129.1 (q,	
						J _{CF} =32), 129.4,	
						133.5, 138.1	
5h	$4-BrC_6H_4$	203.2	177.8	55.2	35.7	120.4, 131.3,	
						131.5, 136.0	

Figure 1. Solution NMR structure of AF6 PDZ-**5f** complex: Superposition of the backbone (N, CA, and C') atoms for the 20 lowest-energy structures (stereoview). Color coding: α -helix: brown (α A: 51-55, α B: 77-86), β -strands: blue (β A: 11-17, β B: 25-29, β C: 40-45, β D: 62-66, β E: 69-71, β F: 90-95), loops: black and the conserved GMGL loop: pink (22-25). **5f** is colored green.

Figure 2. Ribbon representation of the AF6 PDZ-**5f** complex. Only residue 11-95 are shown. **5f** is colored green.

Restraints	
total no. of experimental restraints	1506
total no. of NOE restraints	1426
intraresidue $(i = j)$	449
sequential ($ i-j =1$)	364
medium-range $(2 \le i-j \le 5)$	209
long-range ($ i - j > 5$)	404
no. of H-bond restraints	20
no. of dihedral angle restraints (TALOS)	60
average inter-residue NOE's per residue	11.4
no. of NOE violations > 0.3 Å	0
no. of dihedral angle violations $> 5^{\circ}$	0
$\varphi - \psi$ Space (residues) ^[a,b]	
most favored regions (%)	68.1
additionally allowed regions (%)	21.3
generously allowed regions (%)	10
disallowed regions (%)	0.7
rmsd values ^[c,d]	
Са	0.30 ± 0.09
heavy atoms	1.38 <u>+</u> 0.16

Table 5. Structural statistics of the AF6 PDZ domain.

[a] Residues considered: 11-95. [b] From Procheck-NMR.^[4] [c] Residues considered: 11-17, 25-29, 40-46, 60-66, 69-72, 77-95. [d] Calculated using MOLMOL.^[5]

Figure 3. Solution NMR structure of AF6 PDZ domain (1XZ9): Superposition of the backbone (N, CA, and C') atoms for the 20 lowest-energy structures (stereoview). Color coding: α -helix: brown (α A: 51-55, α B: 77-86), β -strands: blue (β A: 11-17, β B: 25-29, β C: 40-45, β D: 62-66, β E: 69-71, β F: 90-95), loops: black and the conserved GMGL loop: pink (22-25).

Figure 4. Ribbon representation of the AF6 PDZ domain. Only residues 11-95 are shown.

References

- S. Kukolya, S. Draheim, B. Graves, D. Hunden, J. Pfeil, R. Cooper, J. Ott, F. Counter, J. Med. Chem. 1985, 28, 1896-1903.
- G. Bruno, L. Constantino, C. Curinga, R. Maccari, F. Manforte, F. Nicolò, R. Ottanà, M. G. Vigorita, *Bioorg. Med. Chem.* 2002, 10, 1077-1084.
- [3] R. Giles, N. Lewis, J. Quick, M. Sasse, M. Urquhart, L. Youssef, *Tetrahedron* 2000, 56, 4531-4537.
- [4] R. A. Laskowski, J. A. Rullmann, M. W. MacArthur, R. Kaptein, J. M. Thornton, J. Biomol. NMR 1996, 8, 477-486.
- [5] R. Koradi, M. Billeter, K. Wüthrich, J. Mol. Graph. 1996, 14, 29-32.