Angewandte
 Eine Zeitschrijt der Gesellschaft Deutscher Chemiker Chemie

Supporting Information

© Wiley-VCH 2007
69451 Weinheim, Germany

3-Boryl-2,2'-Bithiophene as a Versatile Core Skeleton for Full-Color Highly Emissive Organic Solids

Atsushi Wakamiya, ${ }^{\dagger}$ Kenji Mori, ${ }^{\dagger}$ and Shigehiro Yamaguchi ${ }^{*}{ }^{\dagger},{ }^{,}$,
${ }^{\dagger}$ Department of Chemistry, Graduate School of Science, Nagoya University, and ${ }^{*}$ SORST, Japan Science and Technology Agency, Chikusa, Nagoya 464-8602, Japan

Table of Contents

- Synthesis of Compounds 1-7 S2
- X-Ray Crystal Structure Analysis of Compounds $\mathbf{1}$ and $\mathbf{8}$ S7
- Complete Reference of [5e] S9
- Absorption and Emission Spectra of Compounds 1 and 3-7 S10
in THF and in the Solid State
- Morphology of Spin-Coated Films of Compounds 1 and 3-7 S13
- Photophysical Data of Compounds 1, 6, and 7 in Various Solvents S14
- Thermogravimetric Analysis of Compounds 1, and 3-7 S17
- Cyclic Voltammograms of Compounds 6 and 7 S18
- Theoretical Calculations of Compounds $\mathbf{1}$ and $\mathbf{8}$ S19
- NMR Spectra of Compounds 3-7 S20

General. Melting points (mp) were measured on a Yanaco MP-S3 instrument. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded with a JEOL AL-400 spectrometer in CDCl_{3} or $\left(400 \mathrm{MHz}\right.$ for ${ }^{1} \mathrm{H}$, 100 MHz for ${ }^{13} \mathrm{C}, 128 \mathrm{MHz}$ for ${ }^{11} \mathrm{~B}$). UV-vis absorption spectra and fluorescence spectra measurement were performed with a Shimadzu UV-3150 spectrometer and a Hitachi F-4500 spectrometer, respectively, in degassed spectral grade solvents. Quantum yields were determined with a Hamamatsu C9920-01 calibrated integrating sphere system. Time-resolved fluorescence spectra were measured using a Hamamatsu C4780 system equipped with a PLP-10 picosecond light pulser (LED wavelengths: 375 or 405 nm). Thermogravimetric analysis (TGA) was carried out with a Seiko TGA 6200 at a heating rate of $5^{\circ} \mathrm{C} / \mathrm{min}$ under nitrogen. Cyclic Voltammetry (CV) was performed on an ALS/chi-617A electrochemical analyzer. The CV cell consisted of a glassy carbon electrode, a Pt wire counter electrode, and an $\mathrm{Ag} / \mathrm{AgNO}_{3}$ reference electrode. The measurement was carried out under argon atmosphere using THF solutions of samples with a concentration of 1 mM and 0.1 M tetrabutylammonium hexafluorophosphate $\left(\mathrm{Bu}_{4} \mathrm{~N}^{+} \mathrm{PF}_{6}^{-}\right)$as a supporting electrolyte. The redox potentials were calibrated with ferrocene as an internal standard. Thin layer chromatography (TLC) was performed on plates coated with 0.25 mm thick silica gel $60 \mathrm{~F}-254$ (Merck). Column chromatography was performed using PSQ 60B (Fuji Silysia). Preparative gel permeation chromatography (GPC) was performed with a JAI LC-918 chromatograph equipped with JAIGEL 1 H and 2 H column. 2-(2',6'-dimethoxybiphenyl)dicyclohexylphosphine (S-Phos) ${ }^{[1]}$ was purchased from Aldrich and used as received. All reactions were carried out under argon atmosphere.

Computation Method. All calculations were conducted using the Gaussian 03 program. ${ }^{[2]}$

3-Dimesitylboryl-2,2'-bithiophene (1). To a solution of 3-bromo-2,2'-bithiophene (3.49 g , $13.7 \mathrm{mmol})$ in ether (20 mL) was added a hexane solution of $n \mathrm{BuLi}(1.6 \mathrm{M}, 9.0 \mathrm{~mL}, 14.4$ mmol) dropwise at $-78^{\circ} \mathrm{C}$. The mixture was stirred at the same temperature for 3 h . A solution of dimesitylboron fluoride ($4.05 \mathrm{~g}, 15.1 \mathrm{mmol}$) in ether (20 mL) was added to the reaction mixture via syringe. The reaction mixture was gradually warmed to room temperature and stirred overnight. After addition of water (20 mL), the organic layer was
separated and the aqueous layer was extracted with hexane for three times. The combined organic layer was dried over MgSO_{4}, filtered, and evaporated under reduced pressure. The mixture was purified by a silica gel column chromatography (7/1 hexane/toluene, $R_{\mathrm{f}}=0.40$), followed by recrystallization from a hexane/toluene mixed solvent to afford $3.59 \mathrm{~g}(8.68$ mmol) of $\mathbf{1}$ in 63% yield as yellow solids: mp $129-130{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 2.02(\mathrm{~s}, 12 \mathrm{H})$, $2.21(\mathrm{~s}, 6 \mathrm{H}), 6.65(\mathrm{~s}, 4 \mathrm{H}), 6.67\left(\mathrm{dd}, J_{\mathrm{HH}}=5.2,3.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.75\left(\mathrm{dd}, J_{\mathrm{HH}}=3.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}\right)$, $6.89\left(\mathrm{~d}, J_{\mathrm{HH}}=4.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.03\left(\mathrm{dd}, J_{\mathrm{HH}}=5.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.19 \mathrm{ppm}\left(\mathrm{d}, J_{\mathrm{HH}}=4.8 \mathrm{~Hz}, 1 \mathrm{H}\right)$; ${ }^{13} \mathrm{C}^{\mathrm{NMR}}\left(\mathrm{CDCl}_{3}\right) \delta 21.2,23.0,124.6,126.2,126.7,127.0,128.1,135.1,136.5,138.6,140.6$, 142.2, 146.0, $147.7 \mathrm{ppm} ;{ }^{11} \mathrm{~B}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 69.2 \mathrm{ppm}$. Anal. Calcd for $\mathrm{C}_{26} \mathrm{H}_{27} \mathrm{BS}_{2}$: C, 75.35; H, 6.57. Found: C, 75.10; H, 6.53.

The compound $\mathbf{1}$ is stable under the acidic and basic conditions. The treatment of chloroform solution of $\mathbf{1}$ with a 1 N HCl aqueous solution or a 1 N NaOH aqueous solution resulted in no change, as confirmed by the ${ }^{1} \mathrm{H}$ NMR spectrum.

5,5'-Dibromo-3-dimesitylboryl-2,2'-bithiophene (2). A solution of $\mathbf{1}$ ($1.66 \mathrm{~g}, 4.00 \mathrm{mmol}$) and N -bromosuccinimide $(1.49 \mathrm{~g}, 8.40 \mathrm{mmol})$ in dichloromethane $(10 \mathrm{~mL})$ was stirred at room temperature for 12 h . After addition of water (10 mL), the organic layer was separated and the aqueous layer was extracted with dichloromethane for three times. The combined organic layer was washed with brine, dried over MgSO_{4}, filtered, and evaporated under reduced pressure. The mixture was purified by a silica gel column chromatography (5/1 hexane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}, R_{\mathrm{f}}=0.68$) to afford $2.26 \mathrm{~g},(3.95 \mathrm{mmol})$ of $\mathbf{2}$ in 99% yield as yellow solids: mp $174-175{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 2.03(\mathrm{~s}, 12 \mathrm{H}), 2.24(\mathrm{~s}, 6 \mathrm{H}), 6.45\left(\mathrm{~d}, J_{\mathrm{HH}}=4.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.61$ $\left(\mathrm{d}, J_{\mathrm{HH}}=4.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.69(\mathrm{~s}, 4 \mathrm{H}), 6.85 \mathrm{ppm}(\mathrm{s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 21.2,23.1,111.9$, 113.2, 127.5, 128.2, 129.5, 136.7, 137.1, 139.3, 140.6, 141.5, 145.6, $149.3 \mathrm{ppm} ;{ }^{11} \mathrm{~B}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 70.0 \mathrm{ppm}$. Anal. Calcd for $\mathrm{C}_{26} \mathrm{H}_{25} \mathrm{BBr}_{2} \mathrm{~S}_{2}: \mathrm{C}, 54.57 ; \mathrm{H}, 4.40$. Found: C, 54.30; H, 4.48 .

5,5'-Dimesityl-3-dimesitylboryl-2,2'-bithiophene (3). A mixture of 2 ($286 \mathrm{mg}, 0.50 \mathrm{mmol}$), mesitylboronic acid ($328 \mathrm{mg}, 2.0 \mathrm{mmol}$), $\mathrm{Pd}_{2}(\mathrm{dba})_{3} \cdot \mathrm{CHCl}_{3}(10.5 \mathrm{mg}, 0.01 \mathrm{mmol})$, S-Phos $(17.6 \mathrm{mg}, 0.04 \mathrm{mmol})$, and $\mathrm{K}_{3} \mathrm{PO}_{4}(640 \mathrm{mg}, 3.0 \mathrm{mmol})$ in 4 mL of toluene was stirred at $50^{\circ} \mathrm{C}$ for 36 h . After addition of water (10 mL), the organic layer was separated and the aqueous
layer was extracted with dichloromethane for three times. The combined organic layer was dried over MgSO_{4}, filtered, and evaporated under reduced pressure. The mixture was purified by a silica gel column chromatography (10/1 hexane/dichloromethane, $R_{\mathrm{f}}=0.38$) to afford $166 \mathrm{mg}(0.26 \mathrm{mmol})$ of $\mathbf{3}$ in 51% yield as green solids: $\mathrm{mp} 167-168{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.96(\mathrm{~s}, 6 \mathrm{H}), 2.09(\mathrm{~s}, 12 \mathrm{H}), 2.17(\mathrm{~s}, 6 \mathrm{H}), 2.19(\mathrm{~s}, 6 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H})$, $6.41\left(\mathrm{~d}, J_{\mathrm{HH}}=3.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.56(\mathrm{~s}, 1 \mathrm{H}), 6.65(\mathrm{~s}, 4 \mathrm{H}), 6.85\left(\mathrm{~d}, J_{\mathrm{HH}}=3.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.88(\mathrm{~s}, 2 \mathrm{H})$, $6.90 \mathrm{ppm}(\mathrm{s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 20.5,20.8,21.05,21.15,23.1,126.6,126.7,127.9$, $128.0,128.2,130.5,130.7,134.6,136.7,137.78,137.80,137.9,138.3,138.4,140.6,140.7$, 142.4(br), 142.7, 146.7, $148.2 \mathrm{ppm}(\mathrm{br}) ;{ }^{11} \mathrm{~B}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 68.5 \mathrm{ppm} ;$ HRMS (FAB): $650.3223\left(\mathrm{M}^{+}\right)$; Calcd for $\mathrm{C}_{44} \mathrm{H}_{47} \mathrm{BS}_{2}: 650.3212$.

5,5'-Diphenyl-3-dimesitylboryl-2,2'-bithiophene (4). A mixture of 2 ($286 \mathrm{mg}, 0.50 \mathrm{mmol}$), phenylboronic acid ($243 \mathrm{mg}, 2.0 \mathrm{mmol}$), $\mathrm{Pd}_{2}(\mathrm{dba})_{3} \cdot \mathrm{CHCl}_{3}(10.9 \mathrm{mg}, 0.01 \mathrm{mmol})$, S-Phos (17.0 $\mathrm{mg}, 0.04 \mathrm{mmol})$, and $\mathrm{K}_{3} \mathrm{PO}_{4}(638 \mathrm{mg}, 3.0 \mathrm{mmol})$ in toluene $(5 \mathrm{~mL})$ was stirred at $50^{\circ} \mathrm{C}$ for 12 h. After addition of water (10 mL), the organic layer was separated and the aqueous layer was extracted with dichloromethane for three times. The combined organic layer was dried over MgSO_{4}, filtered, and evaporated under reduced pressure. The mixture was purified by a silica gel column chromatography ($5 / 1$ hexane/dichloromethane, $R_{\mathrm{f}}=0.40$) and GPC to afford $265 \mathrm{mg}(0.46 \mathrm{mmol})$ of $\mathbf{4}$ in 93% yield as yellow solids: $\mathrm{mp} 118-120{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta$ $2.10(\mathrm{~s}, 12 \mathrm{H}), 2.20(\mathrm{~s}, 6 \mathrm{H}), 6.69(\mathrm{~s}, 4 \mathrm{H}), 6.78\left(\mathrm{~d}, J_{\mathrm{HH}}=4.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.89\left(\mathrm{~d}, J_{\mathrm{HH}}=4.0 \mathrm{~Hz}, 2 \mathrm{H}\right)$, 7.12 (s, 1H), 7.34 (s, 2H), 7.34 (d, 7.2 Hz, 4H), 7.41 (d, $7.2 \mathrm{~Hz}, 2 \mathrm{H}$), $7.56 \mathrm{ppm}(\mathrm{d}, 7.2 \mathrm{~Hz}, 2 \mathrm{H})$; ${ }^{13} \mathrm{C}_{\mathrm{NMR}}\left(\mathrm{CDCl}_{3}\right) \delta 21.2,23.1,123.0,125.6,125.9,127.4,127.5,127.9,128.2,128.78$, 128.81, 130.8, 133.8, 134.3, 136.1, 138.9, 140.8, 142.3 (br), 143.1, 145.1, 145.3, 149.0 ppm (br); ${ }^{11}$ B NMR $\left(\mathrm{CDCl}_{3}\right) \delta 69.0 \mathrm{ppm}$; HRMS (FAB): 566.2283 (M ${ }^{+}$); Calcd for $\mathrm{C}_{38} \mathrm{H}_{35} \mathrm{BS}_{2}$: 566.2273.

5,5'-Bis[4-(N-carbazolyl)phenyl]-3-dimesitylboryl-2,2'-bithiophene (5). To a solution of $4-N$-carbazolyl-iodobenzene ($299 \mathrm{mg}, 0.81 \mathrm{mmol}$) in ether (5 mL) was added a hexane solution of $n-\operatorname{BuLi}(1.6 \mathrm{M}, 0.56 \mathrm{~mL}, 0.90 \mathrm{mmol})$ dropwise at $-78^{\circ} \mathrm{C}$. The mixture was stirred at the same temperature for 1 h . Tributyltin chloride ($293 \mathrm{mg}, 0.90 \mathrm{mmol}$) was added to the reaction mixture via syringe. The reaction mixture was gradually warmed to room
temperature and stirred overnight. After the solvent was removed under reduced pressure, the mixture was dissolved with 5 mL of THF and added to a mixture of $2(172 \mathrm{mg}, 0.30 \mathrm{mmol})$, $\mathrm{Pd}_{2} \mathrm{dba}_{3} \cdot \mathrm{CHCl}_{3}(6.2 \mathrm{mg}, 0.003 \mathrm{mmol})$, and trifurylphosphine ($5.6 \mathrm{mg}, 0.024 \mathrm{mmol}$) in 5 mL of THF via cannula. The reaction mixture was refluxed for 30 h . After the solvent was removed under reduced pressure, the mixture was purified by a silica gel column chromatography ($4 / 1$ hexane/dichloromethane, $R_{\mathrm{f}}=0.25$) to afford $85 \mathrm{mg}(0.095 \mathrm{mmol})$ of 5 in 32% yield as yellow solids: $\mathrm{mp}>300{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 2.10(\mathrm{~s}, 12 \mathrm{H}), 2.20(\mathrm{~s}, 6 \mathrm{H}), 6.75$ $(\mathrm{s}, 4 \mathrm{H}), 6.89\left(\mathrm{~d}, J_{\mathrm{HH}}=3.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.03\left(\mathrm{~d}, J_{\mathrm{HH}}=3.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.25(\mathrm{~s}, 1 \mathrm{H}), 7.30\left(\mathrm{td}, J_{\mathrm{HH}}=8.4\right.$ $\mathrm{Hz}, 3.6 \mathrm{~Hz}, 4 \mathrm{H}), 7.42\left(\mathrm{t}, J_{\mathrm{HH}}=8.4 \mathrm{~Hz}, 4 \mathrm{H}\right), 7.44\left(\mathrm{~d}, J_{\mathrm{HH}}=8.4 \mathrm{~Hz}, 4 \mathrm{H}\right), 7.57\left(\mathrm{~d}, J_{\mathrm{HH}}=8.4 \mathrm{~Hz}\right.$, $4 \mathrm{H}), 7.65\left(\mathrm{~d}, J_{\mathrm{HH}}=8.4 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.81\left(\mathrm{~d}, J_{\mathrm{HH}}=8.4 \mathrm{~Hz}, 2 \mathrm{H}\right), 8.15 \mathrm{ppm}(\mathrm{dd}, 8.4 \mathrm{~Hz}, 3.6 \mathrm{~Hz}, 4$ $\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 21.2,23.2,109.7,109.8,120.06,120.08,120.4,123.47,123.48$, 123.52, 126.0, 126.9, 127.0, 127.2, 127.3, 127.4, 128.2, 128.3, 131.4 132.9, 133.3, 136.5, 136.9, 139.1, 140.7, 140.9, 142.2, 144.2, 145.4, $149.3 \mathrm{ppm}(\mathrm{br}) ;{ }^{11} \mathrm{~B}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 67.5$ ppm; HRMS (FAB): $896.3441\left(\mathrm{M}^{+}\right)$; Calcd for $\mathrm{C}_{62} \mathrm{H}_{49} \mathrm{BN}_{2} \mathrm{~S}_{2}: 896.3430$.

5,5'-Bis[4-(N, N-diphenylamino)phenyl]-3-dimesitylboryl-2,2'-bithiophene (6). To a solution of 4 -(N, N-diphenylamino)bromobenzene ($341 \mathrm{mg}, 1.05 \mathrm{mmol}$) in THF (10 mL) was added a hexane solution of $n-\operatorname{BuLi}(1.6 \mathrm{M}, 0.69 \mathrm{~mL}, 1.10 \mathrm{mmol})$ dropwise at $-78^{\circ} \mathrm{C}$. The mixture was stirred at the same temperature for 1 h . Tributyltin chloride ($358 \mathrm{mg}, 1.10$ mmol) was added to the reaction mixture via syringe. The reaction mixture was gradually warmed to room temperature and stirred for 3 h . The mixture was transferred to a mixture of $2(286 \mathrm{mg}, 0.50 \mathrm{mmol}), \mathrm{Pd}_{2} \mathrm{dbaa}_{3} \cdot \mathrm{CHCl}_{3}(21.3 \mathrm{mg}, 0.021 \mathrm{mmol}$), and trifurylphosphine (19.5 $\mathrm{mg}, 0.083 \mathrm{mmol}$) in THF (5 mL) via cannula. The reaction mixture was refluxed for 61 h . After the solvent was removed under reduced pressure, the mixture was dissolved into CHCl_{3} and washed with water (40 mL). The organic layer was dried over MgSO_{4}, filtered, and concentrated under reduced pressure. The mixture was purified by a silica gel column chromatography ($4 / 1$ hexane/chloroform, $R_{\mathrm{f}}=0.23$) to afford $238 \mathrm{mg}(0.26 \mathrm{mmol})$ of $\mathbf{6}$ in 53% yield as reddish orange solids: $\mathrm{mp} 134-135{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 2.09(\mathrm{~s}, 12 \mathrm{H}), 2.20(\mathrm{~s}, 6 \mathrm{H})$, $6.69(\mathrm{~s}, 4 \mathrm{H}), 6.74\left(\mathrm{~d}, J_{\mathrm{HH}}=3.9 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.80\left(\mathrm{~d}, J_{\mathrm{HH}}=3.9 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.01-7.06(\mathrm{~m}, 8 \mathrm{H}), 7.03(\mathrm{~s}$, $1 \mathrm{H}), 7.09\left(\mathrm{~d}, J_{\mathrm{HH}}=7.6 \mathrm{~Hz}, 4 \mathrm{H}\right), 7.11\left(\mathrm{~d}, J_{\mathrm{HH}}=7.6 \mathrm{~Hz}, 4 \mathrm{H}\right), 7.23-7.29(\mathrm{~m}, 10 \mathrm{H}), 7.41 \mathrm{ppm}(\mathrm{d}$,
$\left.J_{\mathrm{HH}}=8.5 \mathrm{~Hz}, 2 \mathrm{H}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 21.2,23.1,122.2,123.0,123.1,123.5,123.7,124.4$, $124.5,126.4,126.6,127.8,128.0,128.2,128.3,129.27,129.30,130.0,135.4,138.8,140.8$, 142.3 (br), 142.6, 144.7, 144.9, 147.2, 147.2, 147.4, 147.5, $148.7 \mathrm{ppm}(\mathrm{br}) ;{ }^{11} \mathrm{~B}$ NMR (CDCl_{3}) $\delta 68.5 \mathrm{ppm}$; HRMS (FAB): $900.3754\left(\mathrm{M}^{+}\right)$; Calcd for $\mathrm{C}_{62} \mathrm{H}_{53} \mathrm{BN}_{2} \mathrm{~S}_{2}$: 900.3743.

5,5" ${ }^{\prime}$-Bis(N, N-diphenylamino)-4'-dimesitylboryl-2,2':5',2":5",2"'-quaterthiophene (7).
To a solution of 2-(N, N-diphenylamino)thiophene ($528 \mathrm{mg}, 2.10 \mathrm{mmol}$) in THF (10 mL) was added a hexane solution of $n-\operatorname{BuLi}(1.6 \mathrm{M}, 1.4 \mathrm{~mL}, 2.2 \mathrm{mmol})$ dropwise at $-78{ }^{\circ} \mathrm{C}$. The mixture was stirred at the same temperature for 20 min and was warmed to $0{ }^{\circ} \mathrm{C}$. After stirring for 2 h , tributyltin chloride ($293 \mathrm{mg}, 0.90 \mathrm{mmol}$) was added to the mixture via syringe. The reaction mixture was gradually warmed to room temperature and stirred overnight. The obtained mixture was added to a mixture of $2(573 \mathrm{mg}, 1.00 \mathrm{mmol}), \mathrm{Pd}_{2} \mathrm{dba}_{3} \cdot \mathrm{CHCl}_{3}(20.7 \mathrm{mg}$, $0.02 \mathrm{mmol})$, and trifurylphosphine ($18.6 \mathrm{mg}, 0.08 \mathrm{mmol}$) in THF (15 mL) via cannula. The reaction mixture was refluxed for 14 h . After addition of water (40 mL), the organic layer was separated and the aqueous layer was extracted with chloroform for three times. The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. The mixture was purified by a silica gel column chromatography (3/1 hexane/dichloromethane, $\left.R_{\mathrm{f}}=0.24\right)$ to afford $681 \mathrm{mg}(0.75 \mathrm{mmol})$ of 7 in 75% yield as red solids: mp 100-102 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 2.05(\mathrm{~s}, 12 \mathrm{H}), 2.19(\mathrm{~s}, 6 \mathrm{H}), 6.54\left(\mathrm{~d}, J_{\mathrm{HH}}=3.9 \mathrm{~Hz}\right.$, $1 \mathrm{H}), 6.57\left(\mathrm{~d}, J_{\mathrm{HH}}=3.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.61\left(\mathrm{~d}, J_{\mathrm{HH}}=3.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.63\left(\mathrm{~d}, J_{\mathrm{HH}}=3.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.67(\mathrm{~s}$, $4 \mathrm{H}), 6.75\left(\mathrm{~d}, J_{\mathrm{HH}}=3.9 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.79(\mathrm{~s}, 1 \mathrm{H}), 6.91\left(\mathrm{~d}, J_{\mathrm{HH}}=3.9 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.01-7.07(\mathrm{~m}, 4 \mathrm{H})$, 7.13-7.17 (m, 8H), 7.24-7.30 ppm (m, 8H); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 21.2,23.1,120.9,121.2$, 122.0, 122.6, 122.69, 122.75, 123.2, 123.3, 127.6, 128.3, 129.2, 130.2, 130.8, 130.9, 134.8, 136.6, 138.6, 139.0, 140.8, 142.1 (br), 143.6, 147.6, 148.6 (br), 150.68, $150.72 \mathrm{ppm} ;{ }^{11}$ B NMR $\left(\mathrm{CDCl}_{3}\right) \delta 70.9 \mathrm{ppm}$; HRMS (FAB): $912.2887\left(\mathrm{M}^{+}\right) ;$Calcd for $\mathrm{C}_{52} \mathrm{H}_{49} \mathrm{BN}_{2} \mathrm{~S}_{4}$: 912.2872.

X-Ray Crystal Structure Analysis of 1. Single crystals of $\mathbf{1}$ suitable for X-ray crystal analysis were obtained by slow diffusion of hexane into a CHCl_{3} solution of 1 . Intensity data were collected at 173 K on a Rigaku Single Crystal CCD X-ray Diffractometer (Saturn 70 with MicroMax-007) with Mo $K \alpha$ radiation $(\lambda=0.71070 \AA$) and graphite monochromator. A total of 7590 reflections were measured at a maximum 2θ angle of 50.0°, of which 3893 were independent reflections ($R_{\mathrm{int}}=0.0251$). The structure was solved by direct methods (SHELXS-97 ${ }^{[3]}$) and refined by the full-matrix least-squares on F^{2} (SHELXL-97 $7^{[3]}$). One thiophene ring (S2, C5, C6, C7, and C8) is disordered and solved using appropriate disordered models. Thus, two sets of thiophene rings, i.e., (S2A, C5, C6A, C7A, C8A) and (S2B, C5, C6B, C7B, C8B), were placed and their occupancies were refined to be 0.73 and 0.27 , respectively. The two sets of disordered thiophene rings (S2A, C5, C6A, C7A, C8A) and (S2B, C5, C6B, C7B, C8B) were restrained by SADI, DELU, and DFIX (S2B-C5) instructions during refinement. All non-hydrogen atoms were refined anisotropically and all hydrogen atoms were placed using AFIX instructions. The crystal data are as follows: $\mathrm{C}_{26} \mathrm{H}_{27} \mathrm{BS}_{2} ; \mathrm{FW}=414.41$, crystal size $0.20 \times 0.15 \times 0.05 \mathrm{~mm}^{3}$, Triclinic, $P-1, a=8.514(2) \AA$, $b=11.325(3) \AA, c=11.991(3) \AA, \alpha=83.960(7)^{\circ}, \beta=83.873(7)^{\circ}, \gamma=79.621(7)^{\circ}, V=$ 1126.4(4) $\AA^{3}, \mathrm{Z}=2, D_{\mathrm{c}}=1.222 \mathrm{~g} \mathrm{~cm}^{-3}$. The refinement converged to $R_{1}=0.0407, \mathrm{w} R_{2}=$ $0.1066(I>2 \sigma(I)), \mathrm{GOF}=1.082$.

X-Ray Crystal Structure Analysis of 8. Single crystals of $\mathbf{8}$ suitable for X-ray crystal analysis were obtained by slow diffusion of hexane into a solution of $\mathbf{8}$ in dichrolomethane. Intensity data were collected at 123 K on a Rigaku Single Crystal CCD X-ray Diffractometer (Saturn 70 with MicroMax-007) with Mo K α radiation $(\lambda=0.71070 \AA$) and graphite monochromator. A total of 16099 reflections were measured at a maximum 2θ angle of 51.0°, of which 8276 were independent reflections ($R_{\mathrm{int}}=0.0345$). The structure was solved by direct methods (SHELXS-97 ${ }^{[3]}$) and refined by the full-matrix least-squares on F^{2} (SHELXL-97 ${ }^{[3]}$). Two sets of two independent molecules are included in a lattice. The thiophene ring consisting S4, C31, C32, C33, C34, and C35 in one molecule is disordered and solved using appropriate models. Thus, two sets of thiophene rings, i.e., (S4A, C31, C32, C33, C34A) and (S4B, C31, C32, C33, C34B), were placed and their occupancies were refined to be 0.58 and 0.42 ,
respectively. All non-hydrogen atoms were refined anisotropically and all hydrogen atoms were placed using AFIX instructions. The crystal data are as follows: $\mathrm{C}_{26} \mathrm{H}_{27} \mathrm{BS}_{2} ; \mathrm{FW}=$ 414.41, crystal size $0.20 \times 0.20 \times 0.20 \mathrm{~mm}^{3}$, Triclinic, $P-1, a=8.5599(2) \AA, b=10.6718(2) \AA$, $c=25.4636(6) \AA, \alpha=91.4862(7)^{\circ}, \beta=91.3853(9)^{\circ}, \gamma=100.562(2)^{\circ}, V=2284.92(9) \AA^{3}, \mathrm{Z}=4$, $D_{\mathrm{c}}=1.205 \mathrm{~g} \mathrm{~cm}^{-3}$. The refinement converged to $R_{1}=0.1067, \mathrm{w} R_{2}=0.2543(I>2 \sigma(I))$, GOF $=1.198$.

Figure S1. ORTEP drawing of 8. One of two independent molecules is shown. Thermal ellipsoids are drawn at the 50% probability level. Hydrogen atoms are omitted for clarity. The dihedral angle between the mean planes of ($\mathrm{S} 1, \mathrm{C} 1, \mathrm{C} 2, \mathrm{C} 3, \mathrm{C} 4$) and ($\mathrm{S} 2, \mathrm{C} 5, \mathrm{C} 6, \mathrm{C} 7 . \mathrm{C} 8$) is 9.85°.

References

[1] T. E. Barder, S. D. Walker, J. R. Martinelli, S. L. Buchwald, J. Am. Chem. Soc. 2005, 127, 4685.
[2] Gaussian 03 (Revision C.01), M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, J. A. Pople, Gaussian, Inc., Pittsburgh, PA, 2004.
[3] G. M. Sheldrick, SHELX-97, Program for the Refinement of Crystal Structures; University of Gottingen: Gottingen, Germany, 1997.

Complete reference of [5e]: Z. Yuan, C. D. Entwistle, J. C. Collings, D. Albesa-Jové, A. S. Batsanov, J. A. K. Howard, N. J. Taylor, H. M. Kaiser, D. E. Kaufmann, S.-Y. Poon, W.-Y. Wong, C. Jardin, S. Fathallah, A. Boucekkine, J.-F. Halet, T. B. Marder, Chem. -Eur. J. 2006, 12, 2758.

Figure S2. UV-vis absorption and fluorescence spectra of $\mathbf{1}$ in THF and in the solid state (spin-coated film).

Figure S3. UV-vis absorption and fluorescence spectra of $\mathbf{3}$ in THF and in the solid state (spin-coated film).

Figure S4. UV-vis absorption and fluorescence spectra of $\mathbf{4}$ in THF and in the solid state (spin-coated film).

Figure S5. UV-vis absorption and fluorescence spectra of $\mathbf{5}$ in THF and in the solid state (spin-coated film).

Figure S6. UV-vis absorption and fluorescence spectra of $\mathbf{6}$ in THF and in the solid state (spin-coated film).

Figure S7. UV-vis absorption and fluorescence spectra of $\mathbf{7}$ in THF and in the solid state (spin-coated film).

Pictures of the Spin-Coated Films

Figure S8. The pictures of the spin-coated films of 1, and 3-7 under irradiation of a black light at 365 nm . The spin-coated films were prepared from THF solutions $\left(10^{-3} \mathrm{M}\right)$.

Figure S9. Optical micrographs of the spin-coated film of 1 a) $(\times 500)$, b) $(\times 3000)$, and c) with crossed polarizers $(\times 3000)$. The film was prepared from a THF solution $\left(10^{-3}\right.$ M). The optical polarization microscope image indicates that the homogeneous amorphous thin film forms even in the case of crystalline compound $\mathbf{1}$.

Table S1. Photophysical Data of $\mathbf{1}$ in Various Solvents and in the Solid State

	$\lambda_{\text {abs }} / \mathrm{nm}^{a}$	$\lambda_{\text {em }} / \mathrm{nm}^{b}$	$\Phi_{\mathrm{F}}{ }^{c}$
Cyclohexane	378	457	0.52
Benzene	377	467	0.75
THF	371	477	0.66
MeOH	375	478	0.57
Film^{d}	386	486	0.55

${ }^{\text {a }}$ Only the longest absorption maxima are shown. ${ }^{\text {b }}$ Excited at the longest absorption maxima. ${ }^{c}$ Absolute fluorescence quantum yield determined by a calibrated integrating sphere system. ${ }^{d}$ Spin-coated film prepared from a THF solution.

Figure S10. UV-vis absorption and fluorescence spectra of $\mathbf{1}$ in various solvents.

Table S2. Photophysical Data of $\mathbf{6}$ in Various Solvents and in the Solid State

	$\lambda_{\text {abs }} / \mathrm{nm}^{a}$	$\lambda_{\mathrm{em}} / \mathrm{nm}^{b}$	$\Phi_{\mathrm{F}}{ }^{c}$
Cyclohexane	443	572	0.92
Benzene	450	591	0.96
THF	449	600	0.90
MeOH	441	605	0.59
Film d	456	601	0.60

${ }^{\text {a }}$ Only the longest absorption maxima are shown. ${ }^{\text {b }}$ Excited at the longest absorption maxima. ${ }^{c}$ Absolute fluorescence quantum yield determined by a calibrated integrating sphere system. ${ }^{d}$ Spin-coated film prepared from a THF solution.

Figure S11. UV-vis absorption and fluorescence spectra of $\mathbf{6}$ in various solvents.

Table S3. Photophysical Data of $\mathbf{7}$ in Various Solvents and in the Solid State

	$\lambda_{\text {abs }} / \mathrm{nm}^{a}$	$\lambda_{\mathrm{em}} / \mathrm{nm}^{b}$	$\Phi_{\mathrm{F}}{ }^{c}$
Cyclohexane	459	622	0.36
Benzene	467	642	0.41
THF	465	660	0.38
MeOH	458	663	0.25
Film^{d}	479	657	0.30

"Only the longest absorption maxima are shown. 'Excited at the longest absorption maxima. ${ }^{c}$ Absolute fluorescence quantum yield determined by a calibrated integrating sphere system. ${ }^{d}$ Spin-coated film prepared from a THF solution.

Figure S12. UV-vis absorption and fluorescence spectra of $\mathbf{7}$ in various solvents.

Thermogravimetric Analysis (TGA)

Table S4. Thermogravical analysis (TGA) Data of 1, and 3-7.

Compd	$T_{\mathrm{d} 5}\left({ }^{\circ} \mathrm{C}\right)^{a}$	$T_{\mathrm{d} 10}\left({ }^{\circ} \mathrm{C}\right)^{b}$	Compd	$T_{\mathrm{d} 5}\left({ }^{\circ} \mathrm{C}\right)^{a}$	$T_{\mathrm{d} 10}$	$\left({ }^{\circ} \mathrm{C}\right)^{b}$
$\mathbf{1}$	210	224	$\mathbf{5}$	415	425	
$\mathbf{3}$	309	323	$\mathbf{6}$	416	486	
$\mathbf{4}$	301	320	$\mathbf{7}$	385	397	

${ }^{a}$ Temperature at which 5% weight loss was recorded on TGA at a heating rate of

Cyclic Voltammetry

Figure S13. Cyclic voltammograms of 6 and 7 in THF, measured with $n-\mathrm{Bu}_{4} \mathrm{~N}^{+} \mathrm{PF}_{6}^{-}(0.1 \mathrm{M})$ as a supporting electrode at a scan rate of 100 mV s .

Theoretical Calculations

Table S5. Calculated HOMO, ${ }^{a}$ LUMO, ${ }^{a}$ and Lowest Excitation Energies ${ }^{b}$

Compd	HOMO /eV ${ }^{\text {a }}$	LUMO /eV ${ }^{\text {a }}$	Transition $/ \mathrm{eV}^{\text {b }}$	Main CI coefficient ${ }^{\text {b }}$	Oscillator Strength f^{b}
1	-5.59	-1.77	3.18 (390 nm)	0.66 (HOMO \rightarrow LUMO)	0.0726
8	-5.61	-1.98	3.24 (382 nm)	0.61 (HOMO \rightarrow LUMO)	0.5473

1
a) HOMO
b) LUMO

Figure S14. Pictorial presentation of (a) HOMO and (b) LUMO of 1 calculated at the B3LYP/6-31G(d) level.

a) HOMO
b) LUMO

Figure S15. Pictorial presentation of (a) HOMO and (b) LUMO of $\mathbf{8}$ calculated at the B3LYP/6-31G(d) level.

