

Supporting Information

for

Angew. Chem. Int. Ed. Z53900

© Wiley-VCH 2004

69451 Weinheim, Germany

High content peptide microarrays for deciphering kinase specificity and biology

Mike Schutkowski, Ulf Reimer, Sören Panse, Liying Dong, Jose M. Lizcano, Dario R. Alessi and Jens Schneider-Mergener

Identification of phosphorylation sites in kinase substrate proteins. In a first set of experiments we detected individual phosphorylation sites in substrate proteins. We generated a peptide microarray containing 79 peptides derived from bovine myelin basic protein (MBP; Swiss-Prot: P02687), a promiscuous protein substrate for kinases. The 13meric sequences on that microarray represent a complete overlapping peptide scan (MBP scan) through the primary structure of the protein. The entire list of peptide sequences can be found below. For a proof of concept we selected the catalytic subunit of bovine heart cAMP-dependent protein kinase (PKA) because this enzyme phosphorylates one threonine and seven serine residues in fulllength bovine MBP^[24]. Figure S1 shows the MBP scan after incubation with PKA in the presence of ³²P-ATP. All phosphorylation sites detected on the MBP protein were also identified on the microarray (Fig. S1). They share an arginine residue N-terminal to the phosphorylation site. The immobilised positive control peptide Kemptide^[25] allows an estimation of the substrate quality. Serine 110 seems to be the major phosphorylation site for PKA on bovine MBP which is consistent with published kinetic measurements with soluble peptides^[24]. This experiment demonstrates that microarrays containing overlapping protein-derived peptide scans represent an efficient tool for detection or prediction of potential phosphorylation sites in substrate proteins.

Autophosphorylation is an important principle regulating kinase activities in vivo. In the case of the angiopoietin 1 receptor (Tie-2) several autophosphorylation sites were identified or predicted to serve as a docking module for SH2 domains^[26]. In order to find out whether these arrays could be applied for the prediction of autophosphorylation sites we prepared an array containing an overlapping peptide scan through the predicted cytoplasmic domain of Tie-2 (residues 771-1224; Swiss-Prot: Q02763) to detect autophosphorylation site-derived substrate peptides. Figure S1C shows a phosphorimage of the Tie-2 scan after incubation with the kinase domain of Tie-2 in the presence of ³²P-ATP. Similar results were obtained using a anti-phosphotyrosine-antibody fluoresceine labelled for the detection of phosphorylated peptides (data not shown).

We identified 11 from a total of 19 tyrosine residues in Tie-2 as substrates for Tie-2 (Y^{816} , Y^{807} , Y^{954} , Y^{992} , Y^{1015} , Y^{1048} , Y^{1068} , Y^{1080} , Y^{1102} and Y^{1108}). Figure 2 demonstrates the identification of distinct tyrosine autophosphorylation sites in peptides containing more than one tyrosine residue. Peptides L1 to L8 (corresponding to residues 1035 to 1062) allow the identification of Y^{1048} as the only phosphorylation site in these peptides. Inspection of the Tie-2 crystal structure (pdb1FVR)^[27] shows that all detected tyrosine residues are well exposed at the surface of the Tie-2 kinase domain. While residues Y^{992} , Y^{1048} and Y^{1108} were shown to be autophosphorylation sites, residues Y^{860} and Y^{897} are found to be phosphorylated in baculovirus-expressed Tie-2 and discussed to be additional autophosporylation sites^[28]. For residues Y^{816} , Y^{1068} and Y^{1102} interactions with SH2 domains of Grb14/Shp2, p85-N-terminal domain and Grb2/Grb7/p85-C-terminal domain, respectively, could be demonstrated if these tyrosine residues are phosphorylated in respective peptides^[26]. As a control for the selectivity of this

approach we incubated the Tie-2 scan with Abelson tyrosine kinase (Abl, data not shown) and detected incorporated phosphate at residues Y^{904} , Y^{1012} , Y^{1048} , Y^{1068} , Y^{1080} and Y^{108} .

The catalytic activity of Tie-2 is negatively regulated by phosphorylation at the very C-terminal serine residue (S¹¹¹⁹) with acidic residues in -2, +2 and +3 position^[27]. To search for upstream kinases phosphorylating S¹¹¹⁹ we incubated the Tie-2 scan with casein kinase 1 (data not shown) and casein kinase 2 (CK2) an enzyme claimed to be responsible for phosphorylation of about 10-20 % of the eukaryotic phosphoproteome^[29] through phosphoryl transfer to serine or threonine residues surrounded by acidic amino acids^[30]. The data shown in Figure S2 indicate that CK2 indeed could phosphorylate Tie-2-derived peptides containing the T¹⁰¹⁷ (and Ser¹⁰¹⁹) residue but not the C-terminal S¹¹¹⁹ residue. An identical picture was obtained using casein kinase 1.

In summary, we provide clear evidence that overlapping peptide scans on microarrays enable the detection of both autophosphorylation sites and phosphorylation sites of potential upstream kinases.

Figure S1: Peptide microarray displaying a myelin basic protein (MBP) overlapping peptide scan in triplicates (13mers, 11 amino acids overlap, A1-F4) and control peptides (F5, F6, F14, F15 are identical and correspond to Kemptide^[25]) after incubation with PKA and ³²P-ATP. The complete area of the array is shown in the upper left panel. A magnification of one subarray completed with a grid is shown in the upper right panel. The sequence of MBP is shown in the lower panel. Peptides which are phosphorylated in the microarray experiment are underlined and labeled with the respective coordinates.

Figure S2: Microarray displaying overlapping peptide scan (13mers, 11 amino acids overlap) through the cytoplasmic domain of the receptor tyrosine kinase Tie-2. The left panel shows the phosphorimage after incubation with Tie-2 and ³²P-ATP. Magnification of an area of this image showing the signals for peptides L1-L8 and the respective peptide sequences is shown in the middle panel. In the right panel the microarray displaying Tie-2 scan is shown after incubation with CK2 kinase. The common peptide sequence of spots J12 (SLNYSVYTTNSDV) and K1 (NYSVYTTNSDVWS) is NYSVYTTNSDV.

Materials and Methods

Reagents. Aldehyde modified glass slides were obtained from Quantifoil (Jena, Germany). ³²P-ATP was purchased from Amersham Biosciences (Freiburg, Germany). Abl, GSK3ß, CK1 and CK2 were from New England BioLabs (Beverly, Massachusetts), PKA was from Sigma (Taufkirchen, Germany) and Tie-2 was from Proqinase (Freiburg, Germany). PDK1 was cloned and expressed as described earlier.^[20] Amino-oxy-acetylated peptides were synthesized by SPOT synthesis.^[3] Biotinylated peptides were synthesized on Fmoc-Rink MBHA resin using standard protocols. Biotinylated peptides were purified by RP-HPLC (>95% purity at 220 nm) and identity of peptides was analysed using ESI-mass spectrometry.

Preparation of micro-arrays. Amino-oxy-acetylated peptides were dissolved in printing solution (70% DMSO, 25% 0.2 M sodium acetate pH 4.5, 5 % glycerol; by vol.). Two droplets of 0.5 nL peptide solution were deposited per spot on aldehyde functionalized glass slides using the non-contact printer Nanoplotter of GESIM (Großerkmannsdorf, Germany) equipped with 8 piezoelectric NanoTips (GESIM, Großerkmannsdorf, Germany). Dot size of the microarrays was 250 µm with a pitch of 380 µm. Peptide microarrays were kept at room temperature for 5 hours, washed with deionised water, quenched with 50% aqueous hydroxylamine, washed extensively with water and ethanol, and dried under a stream of nitrogen. The spotted microarrays were stored at 4 °C and maintained reactivity for more than 15 months.

Solution-phase kinase assay. PDK1 was assayed with peptide and protein substrates as described previously.^[20] CK2 assays were done according to the following protocol. Briefly, 25 μ L of peptide solution (2 μ M-4 mM, Fig. 2) containing 300 μ M ATP, 1 μ Ci ³²P-ATP and kinase were incubated in BSA coated 96-well microtiter plates for 5 min at 30 °C (for details see Supplemental Methods online). Reactions were stopped by addition of 25 μ L 7.5 M guanidinium hydrochloride. Aliquots of each well were transferred to a Streptavidin Flashplate Plus (PerkinElmer Life Sciences, Belgium). Subsequent to incubation for 1h plates were washed according to the manufacturer's protocol and radioactivity was counted on a Topcount NXT Microplate Scintillation and Luminescence Counter (PerkinElmer Life Sciences, Belgium). Kinetic data were analysed according to the Michaelis-Menten equation.

Probing and scanning peptide microarrays. Kinase assay solutions including ³²P-ATP were prepared and added to the surfaces of the appropriate peptide microarrays (300 μ L per experiment) in a humidified chamber. For conditions of all kinase assays see Supplementary Table 2 and Supplementary Methods. Subsequent to incubation for the specified time at given temperature the reaction was stopped by washing 5 times with 0.1 M phosphoric acid followed by washings with deionised water. Finally, microarrays were washed with methanol and dried. Microarrays were exposed to an imaging plate for 8 hours. Data analysis was done using a FLA-3000 Phosphor Imager (Fuji, Japan). Data evaluation was carried out using ArrayPro software package (Media Cybernetics, Silver Spring, MD).

Assay Procedures:

Microarray Assays. Two microarray slides are positioned face to face separated by two plastic spacers (0.3 mm thickness) as shown in the drawing (a). 300 µL of kinase solution in assay buffer (see Supplementary Table 2 online) containing 100 µM ATP and 80μ Ci/mL γ -³²P ATP are applied to the resulting space between the two slides. Microarrays were incubated for 1 hour at 30°C. Then the slides were washed 5 times for 3 minutes with 25 mL of 0.1 M phosphoric acid followed by washing steps with 25 mL deionised water. Finally, microarrays were washed with 25 mL methanol for 2 minutes and dried at room temperature.

Detection Methods:

- A) Phosphorimaging. Peptide microarrays were exposed for 8 hours to a BAS-MS imaging plate (Fuji Photo Film Co., Ltd., Japan). Phosphorylation of peptides in the presence of ³²P ATP was detected using a FLA-3000 Phosphor Imager (Fuji, Japan).
- B) Fluorescence scanning. Peptide microarrays were incubated with anti-phosphotyrosine monoclonal antibody (Pt66, fluoresceine-labelled, Sigma, Product No. F3145) according to manufacturers protocols. Readout was performed with a resolution of 5 μM (excitation: 488 nm; emission: 530 nm) using a Array-WoRx Biochip Reader (Applied Precision, LLC, Issaquah, USA).

Microarrays employed in this study:

MBP-Scan array. This microarray displays 79 peptides derived from bovine myelin basic protein (MBP; Swiss-Prot: P02687). The 13meric sequences represent a complete overlapping peptide scan through the primary structure of the protein (11 amino acids overlap).

710 kinase substrates array. This microarray displays 710 annotated human phosphorylation sites as 13meric peptides extracted from Swiss-Prot rel. 4.0 and Phosphobase vers. 2.0.

Phosphopeptide array. All peptides containing at least two potential phosphoacceptor sites in the 710 kinase substrates were extracted (694 peptides). All possible monophosphorylated derivatives resulting in 2234 phosphopeptides were immobilised together with the 694 wild type peptides on microarrays.

Tie2 scan array. This microarray displays 171 peptides derived from protein tyrosine kinase Tie2 (Swiss-Prot: Q02763; amino acid residues 771-1124). The 13meric sequences represent a complete overlapping peptide scan through the primary structure of the protein (11 amino acids overlap).

Human kinase activation loop array. Sequences of activation loops of human kinases were extracted from primary structure data using an alignment from the literature (Kostich,M., English,J., Madison,V., Gheyas,F., Wang,L., Qiu,P., Greene,J. and Laz,T.M. (2002) Human members of the eukaryotic protein kinase family. *Genome Biol.*, **3**, RESEARCH0043). The sequences were dissected into 13-meric peptides with an overlap of three amino acids resulting in 1228 sequences. Additionally we included 166 hydrophobic motifs derived from C-terminal tails of human kinases.

Supplementary References:

[24] A. Kishimoto, K. Nishiyama, H. Nakanishi, Y. Uratsuji, H. Nomura, Y. Takeyama, Y. Nishizuka, *J. Biol. Chem.* **1985**, *260*, 12492-12499.

[25] B. E. Kemp, D. J. Graves, E. Benjamini, E. G. Krebs, *J. Biol. Chem.* **1977**, 252, 4888-4894.

[26] N. Jones, Z. Master, J. Jones, D. Bouchard, Y. Gunji, H. Sasaki, R. Daly, K. Alitalo, D. J. Dumont, *J. Biol. Chem.* **1999**, *274*, 30896-30905.

[27] L. M. Shewchuk, A. M. Hassell, B. Ellis, W. D. Holmes, R. Davis, E. L. Horne, S. H. Kadwell, D. D. McKee, J. T. Moore, *Structure Fold. Des.* **2000**, *8*, 1105-1113.

[28] B. W. Murray, E. S. Padrique, C. Pinko, M. A. McTigue, *Biochemistry* **2001**, *40*, 10243-10253.

[29] L. A. Pinna, J. Cell. Sci. 2002, 115, 3873-3878.

[30] F. Meggio, L. A. Pinna, *Faseb J.* 2003, 17, 349-368.

Complete list of all peptides represented on the Myelin Basic Protein Scan. The peptide sequences are numbered according to the arrangement in Figure 1 A.

A1	AAQKRPSQRSKYL	C1	AARTTHYGSLPQK	E1	KPGFGYGGRASDY
A2	QKRPSQRSKYLAS	C2	RTTHYGSLPQKAQ	E2	GFGYGGRASDYKS
A3	RPSQRSKYLASAS	C3	THYGSLPQKAQGH	E3	GYGGRASDYKSAH
A4	SQRSKYLASASTM	C4	YGSLPQKAQGHRP	E4	GGRASDYKSAHKG
A5	RSKYLASASTMDH	C5	SLPQKAQGHRPQD	E5	RASDYKSAHKGLK
A6	KYLASASTMDHAR	C6	PQKAQGHRPQDEN	E6	SDYKSAHKGLKGH
A7	LASASTMDHARHG	C7	KAQGHRPQDENPV	E7	YKSAHKGLKGHDA
A 8	SASTMDHARHGFL	C8	QGHRPQDENPVVH	E8	SAHKGLKGHDAQG
A9	STMDHARHGFLPR	С9	HRPQDENPVVHFF	E9	HKGLKGHDAQGTL
A10	MDHARHGFLPRHR	C10	PQDENPVVHFFKN	E10	GLKGHDAQGTLSK
A11	HARHGFLPRHRDT	C11	DENPVVHFFKNIV	E11	KGHDAQGTLSKIF
A12	RHGFLPRHRDTGI	C12	NPVVHFFKNIVTP	E12	HDAQGTLSKIFKL
A13	GFLPRHRDTGILD	C13	VVHFFKNIVTPRT	E13	AQGTLSKIFKLGG
A14	LPRHRDTGILDSL	C14	HFFKNIVTPRTPP	E14	GTLSKIFKLGGRD
A15	RHRDTGILDSLGR	C15	FKNIVTPRTPPPS	E15	LSKIFKLGGRDSR
в1	RDTGILDSLGRFF	D1	NIVTPRTPPPSQG	F1	KIFKLGGRDSRSG
в2	TGILDSLGRFFGS	D2	VTPRTPPPSQGKG	F2	FKLGGRDSRSGSP
в3	ILDSLGRFFGSDR	D3	PRTPPPSQGKGRG	F3	LGGRDSRSGSPMA
в4	DSLGRFFGSDRGA	D4	TPPPSQGKGRGLS	F4	GRDSRSGSPMARR
в5	LGRFFGSDRGAPK	D5	PPSQGKGRGLSLS	F5	LRRASLG
в6	RFFGSDRGAPKRG	D6	SQGKGRGLSLSRF	F6	LRRASLG
в7	FGSDRGAPKRGSG	D7	GKGRGLSLSRFSW	F7	VVSHFND
в8	SDRGAPKRGSGKD	D8	GRGLSLSRFSWGA	F8	Blank
в9	RGAPKRGSGKDGH	D9	GLSLSRFSWGAEG	F9	Blank
в10	APKRGSGKDGHHA	D10	SLSRFSWGAEGQK	F10	Blank
в11	KRGSGKDGHHAAR	D11	SRFSWGAEGQKPG	F11	Blank
в12	GSGKDGHHAARTT	D12	FSWGAEGQKPGFG	F12	Blank
в13	GKDGHHAARTTHY	D13	WGAEGQKPGFGYG	F13	VVSHFND
в14	DGHHAARTTHYGS	D14	AEGQKPGFGYGGR	F14	LRRASLG
в15	HHAARTTHYGSLP	D15	GQKPGFGYGGRAS	F15	LRRASLG

Buffers, microarray types, kinase activities and detection methods used in this study for each kinase.

Kinase	Buffer	Micorarray	Units/mL	Detection
				Method
PKA	1)	MBP-Scan	30	A)
PKA	1)	710 Kinase Substrates	30	A)
CK2	2)	Primed 710 Kinase Subtrates	400	A)
CK2	2)	710	400	A)
CK2	2)	Tie2 Scan	400	A)
Tie2	3)	Tie2 Scan	30µg/mL	A), B)
ABL	4)	Tie2 Scan	400	A)
PDK1	5)	Activation Loop	40µg/mL	A)
GSK3	6)	710 Kinase Substrates	500	A)

Buffers

- 50 mM Tris-HCl, 150 mM NaCl, 30 mM MgCl₂, 4 mM DTT, 2 mM EGTA, pH 7.5 at 25°C
- 2) 20 mM Tris-HCl, 50 mM KCl, 10 mM MgCl₂, pH 7.5 at 25°C
- 60 mM HEPES-NaOH, 3 mM MgCl₂, 3MnCl₂, 3µM Na-orthovanadate, 1.2 mM DTT, pH 7.5 at 25°C
- 50 mM Tris-HCl, 10 mM MgCl₂, 1 mM EGTA, 2 mM DTT, 0.01% Brij 35, pH 7.5 at 25°C
- 5) 50 mM Tris-HCl, 10 mM magnesium acetate, 0.1 mM EDTA, 0.1 mM EGTA, 0.1
 % (v/v) beta-mercaptoethanole, 1 μM microcystin-LR (Sigma M2912), 50 μM
 PIFtide, pH 7.5 at 25°C
- 6) 20 mM Tris-HCl, 10 mM MgCl₂, 5 mM DTT, pH 7.5 at 25° C

Complete list of all peptides represented on the overlapping peptide scan through the cytoplasmatic domain of Tie2. The peptide sequences are numbered according to the arrangement in Figures 1C and 1E.

A1	OLKRANVORRMAO	E10	IINLLGACEHRGY	J7	RLPVRWMAIESLN
A2	KRANVORRMAOAF	E11	NLLGACEHBGYLY	.18	PVRWMATESLNYS
<u>23</u>	ANVORBMACAFON	E12	LCACEHRCYLVLA	.19	RWMATESLNYSVY
74		51 51	ACENDOVIVIATE	T10	MATESTNYSVYTT
72	DDMAOA FONT/DEF	E7	FUDCYLVIATEVA	T1 1	TECT NYCUYUTING
A5 36	KRIAQAT ONVREE MAOA FONTOFEDA	FZ F2	EREGILILATEIA DOVI VI ATEVADU	T1 2	CI NYCUYMENICDU
A0 37	MAQAFQNVREEPA	F 3	KGILILAILIAPH		NUCLUMENTODIA
A/	QAFQNVREEPAVQ	F4	ILILAIEIAPHGN	KT VI	NISVITTNSDVWS
A8	FONVREEPAVOFN	F5		K2	SVITTNSDVWSIG
A9	NVREEPAVQENSG	F.0		K3	ITTNSDVWSIGVL
A10	REEPAVQFNSGTL	F'/	EYAPHGNLLDFLR	K4	TNSDVWSYGVLLW
A11	EPAVQFNSGTLAL	F8	APHGNLLDFLRKS	K5	SDVWSYGVLLWEI
A12	AVQFNSGTLALNR	F9	HGNLLDFLRKSRV	K6	VWSYGVLLWEIVS
в1	QFNSGTLALNRKV	F10	NLLDFLRKSRVLE	K7	SYGVLLWEIVSLG
в2	NSGTLALNRKVKN	F11	LDFLRKSRVLETD	K8	GVLLWEIVSLGGT
в3	GTLALNRKVKNNP	F12	FLRKSRVLETDPA	К9	LLWEIVSLGGTPY
в4	LALNRKVKNNPDP	G1	RKSRVLETDPAFA	K10	WEIVSLGGTPYCG
в5	LNRKVKNNPDPTI	G2	SRVLETDPAFAIA	K11	IVSLGGTPYCGMT
в6	RKVKNNPDPTIYP	G3	VLETDPAFAIANS	K12	SLGGTPYCGMTCA
в7	VKNNPDPTIYPVL	G4	ETDPAFAIANSTA	L1	GGTPYCGMTCAEL
в8	NNPDPTIYPVLDW	G5	DPAFAIANSTAST	г5	TPYCGMTCAELYE
в9	PDPTIYPVLDWND	G6	AFAIANSTASTLS	L3	YCGMTCAELYEKL
в10	PTIYPVLDWNDIK	G7	AIANSTASTLSSQ	L4	GMTCAELYEKLPQ
в11	IYPVLDWNDIKFO	G8	ANSTASTLSSOOL	ь5	TCAELYEKLPOGY
в12	PVLDWNDIKFODV	G9	STASTLSSOOLLH	L6	AELYEKLPOGYRL
C1		G10	ASTLSSOOLLHFA	ь7	LYEKLPOGYRLEK
C2	WNDIKFODVIGEG	G11	TLSSOOLLHFAAD	L8	EKLPOGYRLEKPL
C3	DIKFODVIGEGNE	G12	SSOOLTHFAADVA	т.9	LPOGYRLEKPLNC
C4	KFODVIGEGNEGO	н1	OOLLHFAADVARG	T.10	OCYRLEKPLNCDD
C5	ODVICEGNEGOVI.	H2		т.11	VELEKELNCODEV
C5 C6	VICECNECOVI KA	112 112	HEADVARCHD	T12	I FKDI NCDDEVVD
C0	CECNECOVIKA	11.5		1112 M1	LERF INCODEVID
C7	CNECOVINARI	114	AADVARGIDILSQ	MO	INCODEVIDEM
		п5 пС	DVARGMDTLSQKQ	MZ	CDDEVIDLMRQ
C9 010	FGQVLKARIKEDG	по 117	ARGMDILSQRQFI	M3	
C10	QVLKARIKKDGLR	н/	GMDILSQKQFIHR	M4	DEVIDLMRQCWRE
CII		н8	DYLSQKQFIHRDL	M5	VYDLMRQCWREKP
C12	ARIKKDGLRMDAA	Н9	LSQKQFIHRDLAA	M6	DLMRQCWREKPYE
D1	IKKDGLRMDAAIK	H10	QKQFIHRDLAARN	M7	MRQCWREKPYERP
D2	KDGLRMDAAIKRM	H11	QFIHRDLAARNIL	M8	QCWREKPYERPSF
D3	GLRMDAAIKRMKE	н12	IHRDLAARNILVG	м9	WREKPYERPSFAQ
D4	RMDAAIKRMKEYA	11	RDLAARNILVGEN	м10	EKPYERPSFAQIL
D5	DAAIKRMKEYASK	12	LAARNILVGENYV	M11	PYERPSFAQILVS
D6	AIKRMKEYASKDD	13	ARNILVGENYVAK	M12	ERPSFAQILVSLN
D7	KRMKEYASKDDHR	14	NILVGENYVAKIA	N1	PSFAQILVSLNRM
D8	MKEYASKDDHRDF	15	LVGENYVAKIADF	N2	FAQILVSLNRMLE
D9	EYASKDDHRDFAG	16	GENYVAKIADFGL	N3	QILVSLNRMLEER
D10	ASKDDHRDFAGEL	17	NYVAKIADFGLSR	N4	LVSLNRMLEERKT
D11	KDDHRDFAGELEV	18	VAKIADFGLSRGQ	N5	SLNRMLEERKTYV
D12	DHRDFAGELEVLC	19	KIADFGLSRGQEV	N6	NRMLEERKTYVNT
E1	RDFAGELEVLCKL	I10	ADFGLSRGQEVYV	N7	MLEERKTYVNTTL
E2	FAGELEVLCKLGH	I11	FGLSRGQEVYVKK	N8	EERKTYVNTTLYE
E3	GELEVLCKLGHHP	I12	LSRGQEVYVKKTM	N9	RKTYVNTTLYEKF
E4	LEVLCKLGHHPNI	J1	RGOEVYVKKTMGR	N10	TYVNTTLYEKFTY
E5	VLCKLGHHPNIIN	J2	OEVYVKKTMGRLP	N11	VNTTLYEKFTYAG
E6	CKLGHHPNIINLL	J3	VYVKKTMGRLPVR	N12	TTLYEKFTYAGTD
E7	LGHHPNIINLLGA	J4	VKKTMGBLPVBWM	01	LYEKETYAGIDCS
E8	HHPNTTNLLGACE	.15	KTMGBI.PVRWMAT	02	EKETYACTOCSAF
E9	PNIINLIGACEHR	J6	MGRLPVRWMAIES	03	FTYAGIDCSAEEA

Complete list of all peptides represented on the peptide microarray with 710 annotated phosphorylation sites from the human proteome. The peptide sequences are numbered according to the arrangement in Figure 2A.

A 1	FSLHDALSGSGNP
A2	ISLDNPDYQQDFF
A3	GSPNRAYTHQVVT
A4	ELFDDPSYVNVQN
A5	CNATFKKTFRHLL
A6	NRTLSMSSLPGLE
A7	SEKRKQISVRGLA
A 8	STSIEYVTORNCN
A9	RQEDGGVYSSSGL
A10	COLGORIYOYIOS
A11	OCKPVSVTPOGND
A12	- PSVEPPLSQETFS
A13	LDIEOFSTVKGVN
A14	GPMRRSKSPADSA
A15	CADVPLLTPSSKE
A16	POKSHGRTODENP
A17	RLSSLRASTSKSE
A18	Blank
A19	CMDKYRLSCLEEE
A20	GODGVROSRASDK
A21	TGTAEPDYGALYE
Δ22	EHIERRYSNACCP
A23	TODVGAFSTVKGV
Δ24	NVI.SPI.PSOAMDD
Δ25	FELRKARSNSTLS
Δ26	TVDGKETYNTIBB
Δ27	DBMSLUNSBCOFA
A28	
A20	FDUCDEMCTORYE
A20	
R1	CETDONI SDEKCN
D1 D2	GFIDQNLSFIKGN
D2 D2	CIVEVASVCEESD
	GLVEVASICEESR
D4 D5	ISVDGLSTPVVLS
DÜ	REPORTSNVFA
	RDIIRASIIRRGD
	TPVTVAISPERSP
	NLNGREFSGRALR
D3	
B1U D44	FSLLRGPSWDPFR
DII	
B1Z	EQGKRNFSKAMSV
B13	DMKGDVKYADIES
B14	RSRVVGGSLRGAQ
B13	SLLKKRDSFRTPR
B16	
D1/	EITQUENTVSTSL
DIÖ	LAKETIESLSSSE
Б19 D00	YISKAEEYFLLKS
B20	NYLRRRLSDSNFM
B21	RLQRRRGSSIPQF
B22	VASVMQEYTQSGG
B23	SRFNRRVSVCAET
B24	DTATKSGSTTKNR
B25	LHTLVVASAGPTS

B26	STAENAEYLRVAP
B27	ISMISADSHEKRH
B28	TERGDKGYVPSVF
B29	SSPGSPGTPGSRS
B30	Blank
C1	LSRGEEVYVKKTM
C2	SKSKDVISAAEVM
C3	GLSLSBFSWGAEG
C4	BVOSKIGSLONIT
C5	TPCSRSRTPSI.PT
C6	
C7	KGAKPDVSNGOPE
C8	RNLYSGDYYRIOG
C9	YEEKKKKTTTIAV
C10	ESSISSSEEMSL
C11	TSGEDTLSDSDDE
C12	GVRLLODSVDFSL
C13	KEVHKSGYLSSER
C14	RDVYSTDYYRVGG
C15	DOARKAVSMHEVN
C16	INSIRKFSIVOKT
C17	KHDTEMKYYIVHL
C18	TQNVPKDTMDHVN
C19	KEEEEGISQESSE
C20	LARRRKATQVGEK
C21	MKIDEPSTPYHSM
C22	YGSLPQKSHGRTQ
C23	PINGSPRTPRRGQ
C24	STPTSPGSLRKHK
C25	GRRGRLPSKPKQP
C26	GIVYAVSSDRFRS
C27	EILSRRPSYRKIL
C28	MARKMKDTDSEEE
C29	AGTSFMMTPYVVT
C30	TSGSKRNSVDTAT
D1	SDRKGGSYSQAAS
D2	GVRQSRASDKQTL
D3	DRTSRDSSPVMRS
D4	CSDSTNEYMDMKP
D5	YEDDDYVSKKSKH
D6	GDDEDACSDTEAT
D7	LSTPVVLSPGPQK
D8	PFKLSGLSFKRNR
D9	KKFELLPTPPLSP
D10	LLPTHTLTPVLLT
D11	QKRREILSRRPSY
D12	DVHNLDYYKKTTN
D13	SSNDSRSSLIRKR
D14	TQDENTVSTSLGH
D15	QASSPQSSDVEDE
D16	LHALGKATPIYLD
D17	ERNRAAASRCRQK
D18	EPKSPGEYINIDF
D19	EGEEDTEYMTPSS
D20	ICRHVRYSTNNGN

D21	FQDIQQLSSEEND
D22	MGKDGRGYVPATI
D23	SPVFTSRSAAFSG
D24	YDPAKRISCKMAT.
D25	FLLCLPPSSLKAV
D25	DODGUONODEELN
D20	DSRSHQNSPTELN
D27	YFLGSSFSPVRCG
D28	LNTSYPLSPLSDF
D29	VPSSRGDYMTMQM
D30	EEKKKKTTTIAVE
E1	RKRSRKESYSVYV
E2	IAKRRRLSSLRAS
E3	FVSNRKPSKDKDK
F4	OCKCRCI.SI.SRFS
E5	TOTTNDMCECCNI
	1P1LNRMSF55NL
E0	ARAAARLSLTDPL
E/	TFRPRTSSNASTI
E8	SVIVADQTPTPTR
E9	KWTKRTLSETSSS
E10	KEFGVERSVRPTD
E11	ILVSTVKSKRREH
E12	AAELVNNYGKGWS
E13	ALGADDSYYTARS
F14	TSCVIVDSVAKTT
E15	INCUDENT
E13	LNQGVRTIVDPFT
E10	EAQKVIYTLMEKD
E1/	DPGSAAPYLKTKF
E18	SFGLSAMSPTKAA
E19	SMSDPGVSYRTRE
E20	KDGATMKTFCGTP
E21	TYRIGHHSTSDDS
E22	PPTETGESSQAEE
E23	RAKISOGTKVPEE
E24	LRPDSEASOSPOY
F25	AVTRINGSPRTPR
E26	COLLOVODEN
E27	GSGLLCVSPWPFV
	GGTDEGIIDVPLL
E28	QRSRKRLSQDAYR
E29	LVDSVAKTIDAGC
E30	Kemptide*
F1	ARIIDSEYTAQEG
F2	KFEEAERSLKDME
F3	PKLGRRHSMENME
F4	RLIEDNEYTAREG
F5	WTASSPYSTVPPY
F6	YRDVRFESIRLPG
F7	AGI.TAEVSWKVI.E
F8	VELECTNVVEEDS
EQ	TDUDODGGADDED
F3	LEVEVESSAPPTP
F10	LIEDNEYTARQGA
F11	FGPARNDSVIVAD
F12	SNDSTSVSAVASN
F13	LLPTPPLSPSRRS
F14	VLKEQTGSDDEDE
F15	AILRRPTSPVSRE

F16	RELVEPLTPSGEA
F17	IAEPMRRSVSEAA
F18	RLDGENIYIRHSN
F19	AVEEDAESEDEEE
F20	KEVVRTDSLKGRR
F21	AALSRMPSPGGRI
F22	RGKEGPGTPTRSS
F23	SKRKGHEYTNIKY
F24	SKVKRQSSTPSAP
F25	YMAPYDNYVPSAP
F20	TKLTRIPSAKKYK
F21 F28	DSFLQRISSDPTG
F20	IVVARRESKGLRS
F30	Kemptide*
G1	APNVHINTIEPVN
G2	REEEATRSEKKKA
G3	AGGGRRISDSHED
G4	DTSPRHLSNVSST
G5	RKSVPTVSKGTVE
G6	LDSCNSLTPKSTP
G7	QARPGPQSPGSPL
G8	TEASGYISSLEYP
G9	RFIGRRQSLIEDA
G10	GEAGGPLTPRRVS
G11	FDKDGNGYISAAE
G12	IVAENPEYLSEFS
G13	VISDGGDSEQFID
G14	HLESGMKSSKSKD
G15 G16	RGGVKRISGLIYE
G10	ODSDCDASSHESSO
G18	UKSKGKASSHSSU HDGVINFSVFVLT
G19	GPFPGSOTSDTLP
G20	AVRDMROTVAVGV
G21	RGAPPRRSSIRNA
G22	FCKRRVESGEGSD
G23	EQRMKESSFYSLC
G24	AMNREVSSLKNKL
G25	EVEEEDSSESEES
G26	HQDQEGDTDAGLK
G27	VGEEEHVYSFPNK
G28	QAFELILSPRSKE
G29	PAPSRTASFYESM
G30	Tab2*
ロ 1 ロク	ASAASFEYTILDP
п <u>2</u> Ц3	CAELUXKEDUNCC
H4	AHSTHORSEKELS
H5	PSLSRHSSPHOSE
H6	LDIPTGTTPORKS
H7	EDDPEATYTTSGG
H8	TPLHRDKTPLHQK
H9	GRSLSVTSLGGLP
H10	PEEKTTNTVSKFD
H11	PGRSPLPSHARSQ
H12	NTWGCGNSLRTAL
H13	PGETPPLSPIDME
H14	EFPSRGKSSSYSK
H15	LSSLRASTSKSES
H16	SQITSQVTGQIGW
H1/	KNAKKEDSDEEED
H10	IGHGINVIIDPET RCIKRSISEMETC
1113	VGTVY9T9FWEIG

H20	VKSRWSGSQQVEQ
H21	TLTPVLLTPSSLP
H22	KGVDAQGTLSKIF
H23	ADIESSNYMAPYD
H24	IVAILVSTVKSKR
H25	LMLRLQDYEEKTK
H20 H27	ECNSSTDSCDSGP
П2/ Ц28	RDLELPLSPSLLG
H20	FREENCEDVVMC
H30	TARIFVGIFIIMS
11	RKPGLRRSPIKKV
12	EGNNANYTEYVAT
13	VDLSKVTSKCGSL
14	VPSDNIDSQGRNC
15	ESIRMKRYILHFH
16	TGIMQLKSEIKQV
17	DFGFFSSSESGAP
18	QAPGPALTPSLLP
19	VPTVSKGTVEGNY
110	PKRGFLRSASLGR
111	TEATATDYHTTSH
112	LNVAAVNTHRDRP
113	NEEESSYSYEEIN
114	PWLKPGRSPLPSH
115	TSSSQLSTPKSKQ
116	DSDLSRRSSSTMS
117	NRIGMGTSVERAA
110	DSLSKIDSDGDKS
120	LEDIKELTOPET.
121	OSKVPFRSRSPSE
122	TSVSAVASNMRDD
123	DLILNRCSESTKR
124	YSYQMALTPVVVT
125	AQAFPVSYSSSGA
126	FMRLRRLSTKYRT
127	DNTPHTPTPFKNA
128	TRQPVELTPTDKL
129	QDAYRRNSVRFLQ
130	P4*
J1	AGERRKGTDVNVF
J2	LEKIGEGTYGTVF
J3	ATDYHTTSHPGTH
J4 15	PVVSGDTSPRHLS
10	DDIDLEGSDDEEE
17	NUCDMASTI ICTD
.18	DDSSAVRSVDEVN
.19	KIPKRPGSVHRTP
J10	KNSDLLTSPDVGL
J11	GVPVRTYTHEVVT
J12	PQATRQTSVSGPA
J13	SGLYRSPSMPENL
J14	KAPRDPVTENCVQ
J15	RKGAGDGSDEEVD
J16	EKESSNDSTSVSA
J17	RYMEDSTYYKASK
J18	ADSEMTGYVVTRW
J19	EAIKMGRYTEIFM
J20	EREGSKRYCIQTK
J21	VSNEDPSSPRASP
J22	GDRSGYSSPGSPG
J23	AGALASSSKEENR

J24	RHIVRKRTLRRLL
J25	NVKSKIGSTENLK
J26	MPLNRTLSMSSLP
J27	GEEELSNYICMGG
J28	MNMLMERYRVESD
J29	LOKKOLCSFEIYE
J30	P4*
K1	SGAOASSTPLSPT
K2	EKMWAFMSSROOT
K3	DMKVRKSSTPEEV
K4	LLSKNESSPIRFD
K5	SCKDDINSYECWC
K6	OIRRRRPTPATLV
K7	LSAFRRTSLAGGG
K8	OVEFRRLSISAES
K9	FGMSRNLYAGDYY
K10	GOKFARKSTRRSI
K11	GGPGPERTPGSGS
K12	LDRDGSRSLDADE
K13	FKKSFKLSGFSFK
K14	DIMRDSNYISKGS
K15	PSFLRAPSWFDTG
K16	GGPTTPLSPTRLS
K17	AFDLFKLTPEEKN
K18	OSTKVPOTPLHTS
K19	RSGSRRGSFDATG
K20	KKDTETVYSEVRK
K21	CORHLDISRELND
K22	FGEKRKNSILNPI
K23	KSNVKIQSTPVKQ
K24	DEVPSODSPGAAE
K25	IENEEQEYVOTVK
K26	FVOLRRKSDLETS
K27	DGPKGTGYIKTEL
K28	LDDFDGTYETQGG
K29	QIEMKKRSPISTD
K30	P2*
L1	LVNSIAKTYVGTN
L2	GIPVRCYSAEVVT
L3	TPRTPPPSQGKGR
L4	PLPSHARSQPGLC
L5	YVQLPATYMNLGP
L6	SNVSPAISIHEIG
L7	VQGEEKESSNDST
L8	EYTKEDGSKRIGM
L9	TRHPPVLTPPDQE
L10	RGAPKRGSGKVPW
L11	IHRKTTASTRKVS
L12	SKYLATASTMDHA
L13	FMSSRRQSVLVKS
L14	GLAKSFGSPNRAY
L15	VLDIEQFSTVKGV
L16	KTPDGNKSPAPKP
L17	YQAEENTYDEYEN
L18	LMPVSAQTPKGRR
L19	QCKDKEATKLTEE
L20	GRKGSGDYMPMSP
L21	VSGQLIDSMANSF
L22	SSMPGGSTPVSSA
L23	RGVQRKVSGSRGS
L24	PTAENPEYLGLDV
L25	YPTGNHTYQEIAV
L26	QCALCRRSTTDCG
1 27	LCYESHESMESYE

L28	KKKKKRFSFKKSF
L29	FPTSTSLSPFYLR
1 30	D2+
L30	FZ ~
M1	NNFDQDFTREEPV
M2	OSRPRSCTWPLOR
M2	FERCEREVNENDI
	EEIGIEEIMKMDL
M4	REEAIKFSEEQRF
M5	MLRGRSLSVTSLG
MG	
INIO	VRIIKENSPCVTP
M7	SSNYMAPYDNYVP
M8	AAGERRKSOEAOV
MO	
IVIS	FREGGRESRSGSP
M10	KRFSFKKSFKLSG
M11	PAYSBALSBOLSS
M40	
	GKKTKFASDDEHD
M13	LCNMYKDSHHPAR
M14	DDSSDDASDAHSD
	DESSERASEAIISE
M15	LCEDLPGTEDFVG
M16	FYYEILNSPEKAC
M17	CKOCDT CTDTCDC
	SKQSPISIPISPG
M18	EYLTRDSSILGPH
M19	SSVTVTRSYRSVG
M20	OVENDVCEDDCTD
	QREARISTRESTE
M21	FGMSRDVYSTDYY
M22	GLGRSITSPTTLY
M02	
IVIZS	DSPSDGGTPGRMP
M24	RPNPCAYTPPSLK
M25	NTHLEKKYVBBDS
MOG	
IVIZ0	INIEGRGSVAGSV
M27	APAPKKGSKKAVT
M28	HHKLVLPSNTPNV
MOO	
11/29	GVHHIDYYKKTSN
M30	KNGCRRGSSLGQI
N1	TPSDSLTYDDGLS
NO	
IN Z	LLADLTRSLSDNI
N3	RYIEDEDYYKASV
N4	ESTKMOOYTEHEM
NE	
си	PKINRSASEPSLH
N6	EEGTFRSSIRRLS
N7	PSSSTDEVESEOP
Nð	WGRGTDEYFIRKP
N9	TYIDPETYEDPNR
N10	FEOEYVOTVKSSK
N11	KDGNGYISAAELR
N12	GSPESPESTEITE
N13	YKPLYIPSNRVND
N4 4	
IN 14	EKARKNGSIVSMN
N15	NLLKKFRSSTSSS
N16	RRAASMDSSSKLL
NI47	
	THIGPRITRAQGI
N18	HFFKNIVTPRTPP
N19	LDTSSVLYTAVOP
NOO	
IN ZU	DIVNOSNIAARO
N21	QQKIRKYTMRRLL
N22	RPASVPPSPSI.SR
NOO	
INZ3	RVPTMRPSMSGLH
N24	VAYSPKRSPKENL
N25	HORRKYRSNKGES
NOC	Z
1120	VTSESESSKALAS
N27	EEEDIRVSITEKC
N28	NFHLMAPSEEDHS
NOO	
1129	SATUMAÄIKDSET
N30	SLKDMEESIRNLE
01	PSDLLPMSPSVYA
	-

02	TKAQVPDSAGTAT
O 3	SYEEHIPYTHMNG
04	EEGFGSSSPVKSP
05	SVPEFPLSPPKKK
06	DFVGHQGTVPSDN
07	AGPTRQASQAGPV
08	RHLSNVSSTGSID
09	YASSNPEYLSASD
010	DMYDKEYYSVHNK
011	KGRGLSLSRFSWG
012	FLPRHRDTGILDS
013	IVEDI TOSCENDN
014	FOOI FYTSODCSS
015	UDGET DKGGYRGA
017	LSDIDMESOFDIK
018	LINKRRGSVPTLR
019	CYEOLNDSSEEED
020	LIDSMANSFVGTR
021	SLGFKRSYEEHIP
022	SNFDKEFTROPVE
023	EYVOTVKSSKGGP
024	RAGKRRPSRLVAL
O25	SGFQVSETPRQAP
O26	FPVSNTNSPTKIL
027	AATKIQASFRGHI
O28	ITKALGISYGRKK
O29	KENSPCVTPVSTA
O30	RLMTGDTYTAHAG
P1	ASATVSKTETSQV
P2	PPDAADASPVVAA
P3	SGRPRTTSFAESC
P4	KLPGLRTYVDPHT
P5	MSSSEEVSWISWF
P6	SAYGGLTSPGLSY
P7	VSSDGHEYIYVDP
P8	WTETKKQSFKQTG
P9	NTIDLPMSPRALD
P10	NSLTPKSTPVKTL
P11	VPEMPGETPPLSP
P12	DGSRKIGSMDELE
P13	SSPTAAGTPNKET
P14	VDAQGTLSKIFKL
P 10 D16	ARTAHIGSLPURS
D17	VGTTUTAS LETEK
P18	20KAAAIIETIKD
P19	SCASTCIVEALEL.
P20	DSMKDEEYEOMVK
P21	HHVPGHESRGPPP
P22	EYEDENLYEGLNL
P23	AKALGKRTAKYRW
P24	VSTQLVNSIAKTY
P25	ATRGRGSSVGGGS
P26	SGISSVPTPSPLG
P27	GPPEPGPYAQPSV
P28	QRRSARLSAKPAP
P29	CYALCNRTFRKTF
P30	TGESDGGYMDMSK
Q1	PTAGALYSGSEGD
Q2	AFIAARGSFDGSS
Q3	ITSTLASSFKRRR
Q4	WKVLRRFSVTTMR
Q5	PRASPAHSPRENG

Q6	GAGFGSRSLYGLG
Q7	SPVMRSSSTLPVP
08	VCOPENEVEDERV
	VSQREAEIEFEIV
Q9	EPHVTRRTPDIFL
Q10	ERLKLSPSPSSRV
Q11	DGKKRKRSRKESY
Q12	VCNGGIMTPPKST
Q13	KGTVEGNYVSLTR
014	DDCSVISTACCTD
015	
	VCDCKRNSDVMDC
Q16	QASSTPLSPTRIT
Q17	DQPSEPPSPATTP
Q18	CNKAFRDTFRLLL
Q19	OLTWGRPSTRIOO
020	KEDEKETCODEAE
024	KERELEISDDERE
QZI	KDKMAEAYSEIGM
Q22	GGGGGEFYGYMTM
Q23	GGRERLASTNDKG
Q24	RAGETRFTDTRKD
Q25	TSFMMTPYVVTRY
026	DKCKDDNCFFFTF
007	KKSKKKNSEFEIF
Q27	REEADGVYAASGG
Q28	GAVVPQGSRQVPV
Q29	APTKRNSSPPPSP
Q30	SLPDHKKTLEHLC
R1	RSPKENLSPGESH
R2	MTITEFICDDTD
D2	MILLISELISKKIK
RJ	KSISERLSVLKGA
R4	EPPSPATTPCGKV
R5	DSSESEESAGPLL
R6	ESHESMESYELNP
R7	SSLGFKRSYEEHI
R8	SNVSSTGSTDMVD
PQ	KKNCDII TI DDCN
	KINGKILILPKSN
RIU	INIQUQUSSGEED
R11	EKIGEGTYGVVYK
R12	AGMEFSRSKSDNS
R13	TDNLLPMSPEEFD
R14	NRFTRRASVCAEA
R15	SSVICWPTVRERM
D16	ACCEVENEDDDDC
	ASGSKKHSKPPKG
R17	RLFVENDSPSDGG
R18	KDIIRQPSEEEII
R19	SKDESVDYVPMLD
R20	VPWEDRMSLVNSR
R21	LGQTLKASMRELG
R22	KSFLDSGYRILGA
R23	CTDTDKISASEED
D24	
RZ4	TASTRKVSLAPQA
R25	KMQLRRPSDQEVS
R26	STATKDTYDALHM
R27	PSGSQASSPQSSD
R28	LALHIRSSWSGLH
R29	AEPEKMESSISSS
R30	AKAKTPROPACTO
C4	MEDDY DOGODODC.
00	IF PPAPGSPEPPH
52	SDGEFLRTSCGSP
S3	RVKGRTWTLCGTP
S4	FDNNEEESSYSYE
S5	YLSWGTASPYSAM
S6	EKGNVESSPTAAG
S7	FACTYVCTDVVVD
6 0	CODECCENTRAL
00	SUGRINCSTNDSLL
29	LUPDIPESQMEEP

S10	EEDTDEDSDNEIH
Q11	FECEDOCCUDYID
511	FESERRGSHFIID
S12	QLKPLKTYVDPHT
S13	GSPGMKIYIDPFT
S14	DKKGNFNYVEFTB
01E	
515	KVTSKCGSLGNIH
S16	STTTTRRSCSKTV
S17	KVDNEDIYESRHE
S18	
510	LQARKKQ3 V LINLM
519	AITSTLASSFKRR
S20	FLSEETPYSYPTG
S21	GHOGTVPSDNIDS
\$22	
322	PGLGRKLSDFGQE
S23	KTPSSPVYQDAVS
S24	CNRTFRKTFKMLL
S25	TLTTNEEYLDLSO
626	
320	IIVKCQGSRIDDQ
S27	LEHVTRRTLSMDK
S28	RALSRQLSSGVSE
S29	KNTVTPRTPPPSO
020	
330	NENTEDQISLVED
T1	ALALARETIESLS
T2	DSOGRNCSTNDSL
тз	
T4	
14	DLLSRFQSNRMDD
T5	ALRADENYYKAQT
T6	ANRERRPSYLPTP
Т7	VIVTIDGSBKIGS
то	
18	QNLNEDVSQEESP
Т9	DDTSDPTYTSSLG
T10	SSEDLSAYASISF
T11	SSOCUDTYVEMBP
T40	
112	HFDERDKTSRNMR
T13	DEICIAGSPLTPR
T14	PHLDRLVSARSVS
T15	DUNALKEAAGAHN
T4C	
116	AEKHLEISREVGD
T17	VVRTPPKSPSSAK
T18	PRSKGQESFKKQE
Т19	KTYSCDYYROCCA
T20	
120	RESISAESQSPGT
T21	SSTYQSTSETVSI
T22	IYISPLKSPYKIS
T23	TCSPOPEYVNOPD
T24	
124	TIESLSSSEESIT
T25	SDTEEQEYEEEQP
T26	EKKRRKMSKGLPD
T27	SEETPATSPSKRA
T22	
120	LRIHNGASPIQCI
129	HGDRPRASGCLAR
T30	RDTGILDSIGRFF
U1	KELEKRASGOAFE
112	
02	STPRSRQSPISTP
U3	SRKVGPGYLGSGG
U4	QALDNPEYHNASN
U5	TVSRASSSRSVRT
IIE	TAKAOEMECEETC
00	THUNGETSGEETS
U7	EPSGPYESDEDKS
U8	NGDDPLLTYRFPP
U9	TVTSTDEYLDLSA
1110	
1144	
011	ELKGTTHSLLDDK
U12	KDLYLPLSLDDSD
U13	TFLPVPEYINOSV
-	-

U14	GSVQNPVYHNQPL
U15	DEEEDDDSEEDEE
U16	MEQKKRVTMILQS
U17	LKGKRGDSGSPAT
U18	HYTLDFLSPKTFQ
U19	LRAQRASSNVFSN
U20	VLCLRKGSGAKDA
U21	DAIKMGRYKESFV
U22	SPISTPTSPGSLR
U23	KAYGNGYSSNGNT
U24	YVHVNATYVNVKC
U25	MPLNVSFTNRNYD
U26	ERSKTVTSFYNQS
U27	NPLMRRNSVTPLA
U28	DSKNFDDYMKSLG
029	TREEPVLTLVDEA
U3U	KGMMPPLSEEEL
V1 V2	GSRSRTPSLPTPP
V2 V2	LILLAPPSPISEA
VJ VA	DOSECEESIMUTE
V4 \/5	PPSEGEESIVKFA
V6	DCDDKKKMDDKYE
V7	TPOTOSTSCRERE
V8	DIVKDPDVVRKGS
V9	TLYDRYSSPPAST
V10	FTATEPOYOPGEN
V11	EGSFESRYOOPFE
V12	VRRLRRLTAREAA
V13	KKVAVVRTPPKSP
V14	RYFLDDQYTSSSG
V15	GRASDYKSAHKGF
V16	ENVPLDRSSHCQR
V17	TYRYHGHSMSDPG
V18	KEKMKELSMLSLI
V19	TASSGADYPDELQ
V20	EDENGDITPIKAK
V21	VNVIPPHTPVRTV
V22	RPPSAELYSNALP
V23	EYEPETVYEVAGA
V24	LHPPPQLSPFLQP
V25	ERLRLSPSPTSQR
V26	PGPMVDQSPSVST
V2/ \/20	KDSSHYDSDGDKS
V20	RSAIRRASTIEMP
V29 V20	EPLERRLSLVPDS
V 30 W/4	DCDOCDCCDIFFF
W2	TWTFFKKCKICTV
W3	KKDRRKDTPALHT
W4	DAENRI.OTMKEEI.
W5	YSGSEGDSESGEE
W6	GSCRSDDYMPMSP
W7	SRLRRRASOLKIT
W8	VANQDPVSPSLVO
W9	VVTLCYESHESME
W10	PKIEDVGSDEEDD
W11	IHFWSTLSPIAPR
W12	ENGRIHGSPLQKL
W13	ASLGRRASFHLEC
W14	FKYPRPSSVPPSP
W15	RGEPNVSYICSRY
W16	TQGGGSVTKKRKL
W17	AAAAAPASEDEDD

W18	PLASPEPTKKPRI	
W19	RPRGORDSSYYWE	
W20	EKMESSISSSEE	
W21	TSSVPTPSPLCPL	
W22	SGYSSPGSPGTPG	
W23	ENFORFETBCOPV	
W24	SCSSDSDSBSHONSD	
W25	DUTENDOVECTEN	
W26	FUNKDDECDCCD	
W20	EENRORISRDSSP	
W/20	EFFSLKVSAGFLL	
W/20	CENAODEVINE	
VV29	SEHAQDTYLVLDK	
VV3U	HSTPPSAYGSVKA	
X1 X0	DFRTRESTAKKIK	
X2	PLPSGLLTPPQSG	
X3	ESLSYAPSPLQKP	
X4	SKALRISTPLTGV	
X5	SQRQRSTSTPNVH	
X6	INEWLTKTPDGNK	
X7	DSLDSRLSPPAGL	
X8	CIAGSPLTPRRVT	
X9	PDLKKSRSASTIS	
X10	AIETDKEYYTVKD	
X11	GAKLRKVSKQEEA	
X12	ALTSNQEYLDLSM	
X13	SKEKIKQSSSSEC	
X14	RPSQRHGSKYLAT	
X15	PGKARKKSSCQLL	
X16	RHTDDEMTGYVAT	
X17	GSPSKSPSKKKKK	
X18	LRGAQAASPAKGE	
X19	NQNSRRPSRATWL	
X20	FGYGGRASDYKSA	
X21	QAIKMDRYKDNFT	
X22	HIIENPQYFSDAC	
X23	REDSARVYENVGL	
X24	KKLERNLSFEIKK	
X25	HGSKYLATASTMD	
X26	LLLSNPAYRLLLA	
X27	QEKRROISIRGIV	
X28	PLSYTRFSLAROV	
X29	LLAVSEEYLDLRL	
X30	AEHOYFMTEYVAT	
*Control Peptides:		

P2: GTAEPDYGALY P4: GTDEGIPYDVPL Tab2: VVSHFND Kemptide: LRRASLG