Angewandte anman

Supporting Information
© Wiley-VCH 2005
69451 Weinheim, Germany

Vitamin B_{12} : a Methyl Group without a Job?

Philip Butler, Marc-Olivier Ebert, Andrzej Lyskowski, Karl Gruber, Christoph Kratky, Bernhard Kräutler*

General.
[*] Dr. P. Butler, Dr. M.-O. Ebert, Prof. Dr. B. Kräutler
Institute of Organic Chemistry, Innrain 52a, and Center for Molecular Biosciences,
Leopold-Franzens-Universität Innsbruck, A-6020 Innsbruck, Austria
Fax: (+43)512-507-2892
e-mail: bernhard.kraeutler@uibk.ac.at
Prof. Dr. K. Gruber, A. Lyskowski, Prof. Dr. C. Kratky
Institute of Chemistry, Karl-Franzens-Universität Graz,
Heinrichstraße 28, A-8010 Graz, Austria
[**] We thank K.-H. Ongania for measuring FAB mass spectra. We are grateful to HoffmannLaRoche for a gift of vitamin B_{12}. The project was supported by grants from the European Commission (Proj. No. HPRN-CT-2002-00195), the Austrian National Science Foundation (FWF, projects P-13595 and P-17132). X-ray diffraction data were collected at the EMBL beamline X13 at DESY in Hamburg, Germany.

Materials. Cobyric acid (7), alpha-ribazole-3'-phosphate and alpha-ribazole-3',5'-cyclo phosphate were prepared from the methods of Bonnet et al., ${ }^{[\mathrm{S} 1]}$ Brown \& Hakimi, ${ }^{[\mathrm{S} 2]}$ and Friedrich et al., ${ }^{[\mathrm{S} 3]}$ respectively. Cyanocobalamin, Hoffmann-La Roche; water purified using Epure, Barnstead Co.; acetone, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{CH}_{3} \mathrm{OH}, \mathrm{Hg},\left(\mathrm{Bu}_{4} \mathrm{~N}\right) \mathrm{PF}_{6}, \mathrm{CH}_{3} \mathrm{COOH}, \mathrm{KCl}, \mathrm{KCN}, \mathrm{KH}_{2} \mathrm{PO}_{4}, \mathrm{~K}_{2} \mathrm{HPO}_{4}, \mathrm{NaH} 2 \mathrm{PO} 4$, $\mathrm{Na}_{2} \mathrm{HPO}_{4}, \mathrm{NaOOCH}_{3}, \mathrm{CH}_{3} \mathrm{CN}$, ethanolamine, triethylamine, hydrochloric acid fuming 37%, all Fluka puriss. p.a., or Fluka MicroSelect; DMF Fluka, puriss., absolute, over molecular sieves ($\mathrm{H}_{2} \mathrm{O}$ $\leq 0.01 \%$); benzoic acid, methyl 4-toluene-sulfonate, ethyl chloroformate all Fluka purum; $\mathrm{H}_{3} \mathrm{PO}_{4}$, Fluka, crystallized puriss. O_{2}-sensitive reactions were done in a glove box (Mecaplex GB-80, <10 $\mathrm{ppm} \mathrm{O}_{2}$). The electrochemical syntheses were carried out in an electrolysis cell with two compartments, separated by a medium porosity glass frit; Hg pool working electrode; Pt-wire counter electrode; 0.1 N calomel electrode (0.1 N CE) as reference electrode; potentiostat Amel 550. pH values were measured with a WTW SenTix 41 electrode connected to a WTW inoLab digital pH meter. TLC: RP18 F254s TLC plates (Merck No. 105559). Preparative TLC: RP18 F254s TLC plates $20 \times 20 \mathrm{~cm}$ (Merck No. 115389). Column Chromatography: LiChroprep RP-18 ($25-40 \mu \mathrm{~m}$) (Merck No. 109303).UV/Vis Spectra: Hitachi-U3000; $\lambda \max (\log \varepsilon)$ in nm. CD Spectra: Jasco J715; $\lambda \max$ or $\lambda \min (\Delta \varepsilon)$ in nm . NMR Spectra of B_{12}-derivatives were collected at $25^{\circ} \mathrm{C}$ on a 500 MHz Varian Unity Inova spectrometer equipped with 5 mm triple-resonance probe with z-gradients. Sample concentrations were 3.7 mM (norvitamin B_{12}) and 2.5 mM (methyl-norcobalamin) in 0.6 ml $\mathrm{D}_{2} \mathrm{O}$. Norvitamin $\mathrm{B}_{12}(\mathbf{1})$: TOCSY with presaturation of the water signal: $2 \mathrm{k} \times 256$ complex data points. Spectral width in direct (SW2) and indirect dimension (SW1) 9 ppm centered around the residual water signal. 16 scans per increment. 80 ms DIPSI-2 spinlock with B_{1}-field strength of 7 kHz . HSQC: $2 \mathrm{k} \times 512$ complex data points. SW2 9 ppm centered around the residual water signal, SW1 0-200 ppm. 80 scans per increment. HMBC: $2 \mathrm{k} \times 256$ data points (real). SW2 9 ppm centered around residual water signal, SW1 0-200 ppm. 64 scans per increment. Methyl-norcobalamin (2): TOCSY with presaturation of the water signal: 2374×256 complex data points. SW1,2 10 ppm centered around the residual water signal. 16 scans per increment. 80 ms DIPSI- 2 spinlock with $\mathrm{B}_{1}-$ field strength of 7 kHz . HSQC: 2k x 256 complex data points. SW2 9 ppm, SW1 0-200 ppm. 32 scans per increment. HSQC: 2k x 64 complex data points. SW2 9 ppm , SW1 $25-75 \mathrm{ppm} .256$ scans per increment. HMBC: $2 \mathrm{k} \times 256$ data points (real). SW2 9 ppm , SW1 $0-200 \mathrm{ppm} .64$ scans per increment. Spectra were shifted as to give the least cumulative chemical shift differences (sum of the absolute values of the chemical shift differences in each dimension) with respect to the corresponding methyl group bearing compound (vitamin B_{12} or methylcobalamin). For norvitamin B_{12}, differences between chemical shifts obtained by this procedure and by referencing to the water signal are negligible. For methylcobalamin the shifts, if referenced to water, change by +0.03 ppm for ${ }^{1} \mathrm{H}$ and +0.6 ppm for ${ }^{13} \mathrm{C}$. FABMS: Finnigan MAT 95S, positive-ion mode; glycerine; Cs gun.

Syntheses: (2-aminoethyl)-3'-(alpha-ribazolyl)-diphosphate (8). Potassium (117 mg, 3.0 mmol) was added to pre-distilled ethanolamine $(1 \mathrm{ml})$ until H_{2} ceased to evolve. To this the cyclic alpha-ribazole-phosphate $(50 \mathrm{mg}, 0.15 \mathrm{mmol})$ in ethanolamine $(0.5 \mathrm{ml})$ was added dropwise. After two hours the reaction was quenched by adding $\mathrm{H}_{2} \mathrm{O}(1 \mathrm{ml})$, this was then directly loaded onto an RP-18 column ($1 \mathrm{~cm} \times 10 \mathrm{~cm}$) which was washed with a column length of water, to remove the excess ethanolamine. The product was eluted with a $\mathrm{H}_{2} \mathrm{O}: \mathrm{CH}_{3} \mathrm{CN}$ (6:2) solvent system to give 44 mg (73 $\%$) of the mixture of the two isomers. NMR showed the two isomers to be formed in a 5:1 ratio of 3^{\prime} - and 2^{\prime}-phosphates, respectively. The mixture of $\mathbf{8}$ and its 2^{\prime}-isomer were separated by preparative TLC on RP-18 plates $\left(\mathrm{H}_{2} \mathrm{O}: \mathrm{CH}_{3} \mathrm{CN} ; 6: 2\right)$. Two chromatographically well separated fractions were eluted from the absorbant. Both spots showed a positive test after dipping in a ninhydrin dip. Yield of $\mathbf{8}=32 \mathrm{mg}(52 \%)$.
TLC (RP-18, $\left.\mathrm{H}_{2} \mathrm{O}: \mathrm{CH}_{3} \mathrm{CN}, 6: 2\right): \mathrm{R}_{\mathrm{f}}=0.32 .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$): $2.37\left(3 \mathrm{H}\right.$, singlet, $\left.\mathrm{CH}_{3}\right)$, $2.39\left(3 \mathrm{H}\right.$, singlet, $\left.\mathrm{CH}_{3}\right), 3.19\left(2 \mathrm{H}\right.$, triplet, $\left.\mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 3.83(1 \mathrm{H}$, double doublet, $J=4.2 \mathrm{~Hz}, J=$ $\left.12.6 \mathrm{~Hz}, \mathrm{H}_{\mathrm{a}} \mathrm{C} 5 \mathrm{R}\right), 3.95\left(1 \mathrm{H}\right.$, double doublet, $\left.J=2.7 \mathrm{~Hz}, J=12.6 \mathrm{~Hz}, \mathrm{H}_{\mathrm{b}} \mathrm{C} 5 \mathrm{R}\right), 4.08$ (2H, multiplet, $\mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{O}$), $4.62(1 \mathrm{H}$, multiplet, HC 4 R), 4.7-4.9 (water signal superimposes signals of HC 2 R , HC3R), $6.41(1 \mathrm{H}$, doublet, $J=4.5 \mathrm{~Hz}, \mathrm{HC} 1 \mathrm{R})$, $7.45(1 \mathrm{H}$, singlet, aromatic CH$), 7.53(1 \mathrm{H}$, singlet, aromatic CH), $8.34\left(1 \mathrm{H}\right.$, singlet, HC2N). UV/Vis $\left(c=9.97 * 10^{-4} \mathrm{M}, 0.1 \mathrm{~m}\right.$ phosphate buffer, pH 7.25): 286.5(4.05), 278.5(4.07), 248(4.21), $\left(c=9.97^{*} 10^{-4} \mathrm{M}, 0.1 \mathrm{M} \mathrm{HCl}, \mathrm{pH} 1.00\right): 284(4.22)$, 276(4.25). ESI-MS: $439.97\left(20,[\mathrm{M}+\mathrm{K}]^{+}\right), 423.97\left(5,[\mathrm{M}+\mathrm{Na}]^{+}\right), 404.03$ (5), 403.02 (20), 402.01 (100, $\left.[\mathrm{M}+\mathrm{H}]^{+}\right), 146.97$ (10).

Norvitamin $B_{12}(\mathbf{1})$. Alpha-aqua-beta-cyano cobyric acid (7) ($\left.10.0 \mathrm{mg}, 10.2 \mu \mathrm{~mol}\right)$ was dissolved in dry DMF (3.5 ml) and cooled to $\approx 10^{\circ} \mathrm{C}$ in an ice-salt water bath, before triethylamine (6.2 mg , $61.5 \mu \mathrm{~mol})$ and ethylchloroformate ($3.4 \mathrm{mg}, 30.8 \mu \mathrm{~mol}$) were added. After $20 \mathrm{mins} 8(5.0 \mathrm{mg}, 12.5$ $\mu \mathrm{mol})$ in DMF (1.0 ml) was added and the reaction was stirred for 30 min at $0^{\circ} \mathrm{C}$ and a further 1 hour at room temperature. The reaction was quenched with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{ml})$ (with a trace of cyanide) and the coloured aqueous phase was washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 * 20 \mathrm{ml})$ before the solvent was removed. The crude product was precipitated with $\mathrm{H}_{2} \mathrm{O}$ /acetone and further material was obtained from precipitating the mother liquor. The material was purified by preparative TLC (RP-18 plate) $\left(\mathrm{H}_{2} \mathrm{O}: \mathrm{CH}_{3} \mathrm{CN} ; 6: 2\right)$. The red residue was crystallised from $\mathrm{H}_{2} \mathrm{O} /$ acetone to give dark red crystals, 10 $\mathrm{mg}(73 \%)$ of norvitamin $\mathrm{B}_{12}(\mathbf{1})$.

Norvitamin $\mathrm{B}_{12}(\mathbf{1})$: UV/Vis ($c=5.59^{*} 10^{-4} \mathrm{M}, \mathrm{H}_{2} \mathrm{O}$): 548(3.85), 518.5(3.80), 407(3.47), 360(4.36), $321.5(3.81)$, $304.5(3.88), 277.5(4.10)$. FAB-MS: 1343.5 (13), 1342.5 (22), 1341.5 (24, $\left.[\mathrm{M}+\mathrm{H}]^{+}\right)$, 1317.6 (57), 1316.4 (100), 1315.5 (94, $\left.[\mathrm{M}+\mathrm{H}-\mathrm{CN}]^{+}\right) .{ }^{1} \mathrm{H}-$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$: see Table S1.

Methyl-norcobalamin (2). In the glove box ($<10 \mathrm{ppm} \mathrm{O}_{2}$) norvitamin $\mathrm{B}_{12}(\mathbf{1})(10 \mathrm{mg}, 7.45 \mu \mathrm{~mol})$ and benzoic acid $(1.8 \mathrm{mg}, 15 \mu \mathrm{~mol})$ were dissolved in 0.1 M tetrabutylammonium hexafluorophosphate (TBAHFP) in methanol and added to the cathode chamber of the electrolysis cell. 1 was then reduced at a Hg-pool electrode, with magnetic stirring, at -1.1 V vs. 0.1 N CE to norcob(I)alamin (under UV control; the colour went from dark red to brown and finally to blackgreen). The mixture was then protected from light and a solution of methyl tosylate ($13.9 \mathrm{mg}, 75$ $\mu \mathrm{mol}$) in 0.1 M TBAHFP in methanol was added (while keeping the applied potential at $-1.1 \mathrm{~V} v s$. 0.1 N CE). After 3h, a UV-spectrum showed complete conversion to the product. The mixture was then transferred into a dark room, taken up in $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{ml})$ and extracted with dichloromethane (3* 20 ml). The aqueous phase was evaporated to give 9.2 mg of raw product (93%). The material was then crystallised from $\mathrm{H}_{2} \mathrm{O} /$ acetone to give $7.9 \mathrm{mg}(80 \%)$ of red crystalline 2.
Methyl-norcobalamin (2): UV/Vis $\left(c=4.51 * 10^{-4} \mathrm{M}, 0.1 \mathrm{M}\right.$ phosphate buffer, $\left.\mathrm{pH}=7.25\right)$: 518.5(3.83), 373.5(3.93), 339(4.01), 314.5(4.00), 279(4.15), 265(4.18). FAB-MS: 1332.6 (24), 1331.6 (43), $1330.6\left(52,[\mathrm{M}+\mathrm{H}]^{+}\right), 1317.6$ (68), 1316.5 (100), $1315.6\left(76,[\mathrm{M}+\mathrm{H}-\mathrm{CN}]^{+}\right) .{ }^{1} \mathrm{H}-\mathrm{and}$ ${ }^{13} \mathrm{C}-\mathrm{NMR}$: see Table S1.

Determination of the pK_{a} of $\mathbf{2 - \mathbf { H } ^ { + }}$ (see Figure 5 in main text). Aqueous solutions of methylnorcobalamin (2) (c $\left.=4.51 * 10^{-4} \mathrm{~m}\right), 0.1 \mathrm{~m}$ buffer $(\mathrm{HCl}$, acetate or phosphate) and KCl (total ionic strength 1.0 m) were prepared with pH values $7.25,3.67,3.31,3.14,2.96,2.59$. 1.00. Absorbance spectra of these solutions obtained at room temperature showed isobestic points at $490 \mathrm{~nm}, 385 \mathrm{~nm}$ and 334 nm . The spectral changes at $533 \mathrm{~nm}, 453 \mathrm{~nm}$ and 303 nm were analysed according to Equation 1 by the method of least squares, where A_{x} is the absorbance at a given wavelength of the solution at pH_{x}, and A_{AH} and $A_{\mathrm{A}^{-}}$are the corresponding absorbencies of $\mathbf{2}-\mathbf{H}^{+}$and $\mathbf{2}$, determined (in duplicate) at the titration end points. The intercepts resulting from these fits of data determined at $533 \mathrm{~nm}, 453 \mathrm{~nm}$ and 303 nm , respectively, were $3.243,3.240$ and 3.241 , yielding a pK_{a} value of 3.24 ± 0.008 for $\mathbf{2} \mathbf{-} \mathbf{H}^{+}$.

$$
\mathrm{pH}_{x}=\mathrm{pK}_{\mathrm{a}}+\log \left(\left|A_{x}-A_{\mathrm{AH}}\right| /\left|A_{\mathrm{A}^{-}}-A_{x}\right|\right)
$$

Equation 1

Structure determination of norvitamin \mathbf{B}_{12} (1). Crystals of norvitamin B_{12} were grown from water/acetone. A crystal specimen was immersed in hydrocarbon oil, picked up with a rayon loop,
and quickly cooled to cryotemperature by immersing in liquid nitrogen. Diffraction experiments were carried out on the EMBL beamline BW7b at DESY in Hamburg (Germany), which was equipped with a MAR imaging plate detector and a gas-stream low temperature (103(2) K) device. Data pertaining to the data collection and structure refinement are summarized in Table S2.
Indexing of diffraction images, intensity integration, and data scaling were performed with programs Denzo/Scalepack. ${ }^{[56]}$ The structure was solved by direct methods to yield the Co-atoms plus most remaining atoms of the structure. Missing atoms (mostly in the solvent region) were located in subsequent electron-density maps. Full-matrix least-squares refinement on F^{2} was performed with the program SHELXL-97. ${ }^{[S 7]}$ No absorption correction was applied to the data. Scattering factors including real and imaginary dispersion corrections were taken from the 'International Tables of Crystallography'. H-Atom positions were calculated and refined as 'riding' on their respective non- H -atom. The isotropic adp for each H -atom was set to 1.5 times the equiv. isotropic adp of the adjacent non-H-atom. The solvent electron density was modeled with one acetone, 5 fully occupied and 18 partially occupied $\mathrm{H}_{2} \mathrm{O}$ sites. Crystallographic residuals at the close of the refinement are also given in Table S2.
The B_{12} moiety was very well defined except for the hydroxymethylene group (C5R, O5R) of the ribose in the nucleotide loop, which was found to be disordered over two alternate conformations.

CCDC 278482 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif, by emailing data_request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Centre, 12, Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223336033.

Table S1: Comparison of NMR chemical shift values for $\mathbf{1}^{\text {a) }}$ and $\mathbf{2}^{\text {a) }}$ with those of $\mathbf{4}^{[54]}$ and $\mathbf{5}^{[55]}$

	$\delta^{1} \mathrm{H}[\mathrm{ppm}]$				$\delta{ }^{13} \mathrm{C}[\mathrm{ppm}]$				$\Delta \delta$ (2-5)		$\Delta \delta$ (1-4)	
	1	2	4	5	1	2	4	5	${ }^{1} \mathrm{H}$	${ }^{13} \mathrm{C}$	${ }^{1} \mathrm{H}$	${ }^{13} \mathrm{C}$
$\beta-\mathrm{CH}_{3}$		-0.01		-0.05		9.7		9.5	0.04	0.2		
C1					88.0	87.9	87.9	87.6		0.3		0.1
C1A	0.47	0.50	0.45	0.47	22.1	23.2	22.2	22.9	0.03	0.3	0.02	-0.1
C2					50.2	49.0	50.1	48.9		0.1		0.1
C2A	1.41	1.35	1.40	1.35	19.5	19.6	19.6	19.4	0.00	0.2	0.01	-0.1
C3	4.19	4.06	4.17	4.09	59.1	58.2	59.2	58.0	-0.04	0.2	0.02	-0.1
C4					183.0	178.0	182.8	177.7		0.3		0.2
C5					110.4	108.0	110.3	108.0		0.0		0.1
C6					168.3	165.9	168.1	165.7		0.2		0.2
C7					54.4	52.7	54.2	52.6		0.1		0.2
C7A	1.86	1.76	1.87	1.77	21.7	22.1	21.9	21.7	-0.01	0.4	-0.01	-0.2
C8	3.41	3.32	3.42	3.38	58.5	57.4	58.5	57.1	-0.06	0.3	-0.01	0.0
C9					176.6	172.5	176.4	172.3		0.2		0.2
C10	6.08	5.92	6.09	5.91	97.6	96.7	97.7	96.5	0.01	0.2	-0.01	-0.1
C11					179.8	176.1	179.7	175.9		0.2		0.1
C12					51.1	49.4	50.9	49.2		0.2		0.2
C12A	1.45	1.40	1.45	1.40	21.9	22.1	22.1	22.3	0.00	-0.2	0.00	-0.3
C12B	1.19	0.95	1.20	0.94	34.0	34.4	34.1	34.6	0.01	-0.2	-0.01	-0.1
C13	3.33	3.07	3.33	3.05	56.5	56.0	56.5	55.8	0.02	0.2	0.00	0.0
C14					168.9	166.4	168.8	166.2		0.2		0.1
C15					107.1	106.3	106.9	106.0		0.3		0.2
C16					181.9	177.7	181.7	177.4		0.3		0.2
C17					62.1	60.5	62.0	60.4		0.1		0.1
C17B	1.40	1.33	1.39	1.33	18.5	19.3	18.8	19.2	0.00	0.1	0.01	-0.3
C18	2.76	2.63		2.62	41.8	41.8	41.9	41.6	0.01	0.2		-0.1
C19	4.10	3.97	4.11	3.96	77.7	76.5	77.7	76.3	0.01	0.2	-0.01	0.0
C21	2.41	2.31	2.40	2.30	45.6	45.9	45.6	45.9	0.01	0.0	0.00	0.0
C31	2.03/1.98	2.02/1.97	1.95	2.0/1.95	28.8	28.8	28.8	28.7	0.02/0.02	0.1	$0.08 / 0.03^{\text {b }}$	0.0
C32	2.57/2.50	2.50/2.43	2.58/2.50	2.48/2.42	37.7	37.8	37.8	37.8	0.02/0.01	0.0	-0.02/0.0	-0.1
C51	2.54	2.47	2.54	2.48	18.2	18.1	18.2	18.0	-0.01	0.1	0.00	0.0
C71	2.57/2.18	2.40/1.98	2.59/2.20	2.41/1.93	45.7	45.7	45.9	45.6	-0.01/0.05	0.1	-0.02/-0.02	-0.2
C81	2.00/0.99	1.83/0.87	2.02	1.85/0.94	28.8	28.5	28.8	28.5	-0.02/-0.07	0.0	-0.02	0.0
C82	1.82/1.01	1.70/1.03	1.85/1.02	1.72/1.05	34.4	34.4	34.6	34.5	-0.02/-0.02	-0.1	-0.03/-0.01	-0.2
C131	2.03/1.96	2.04/1.96	1.98	2.02/1.95	30.8	30.4	30.8	30.4	0.02/0.01	0.0	$0.05 /-0.02^{\text {b }}$	0.0
C132	2.64	2.58	2.63	2.59	37.5	37.6	37.5	37.5	-0.01	0.1	0.01	0.0
C151	2.56	2.43	2.57	2.45	17.9	18.0	18.0	18.1	-0.02	-0.1	-0.01	-0.1
C171	2.51/2.16	2.4/2.12	2.51/1.82	2.47/1.78	35.0	34.1	35.3	34.5	-0.07/0.34	-0.4	0.00/0.34	-0.3
C172	2.62/1.86	2.48/1.81	2.66/2.12	2.43/2.09	34.6	34.2	34.3	34.4	0.05/-0.28	-0.2	-0.04/-0.26	0.3
C175	3.64/3.26	3.56/3.33	3.61/2.96	3.55/3.08	43.1	42.7	48.3	47.5	0.01/0.25	-4.8	0.03/0.30	-5.2
C176	4.04/3.95	4.04/3.89	4.30	4.32	68.1	68.2	75.8	75.5	-0.28/-0.43 ${ }^{\text {b) }}$	-7.3	$-0.26 /-0.35^{\text {b }}$	-7.7
C181	2.75/2.68	2.69/2.64	2.75/2.68	2.67/2.64	34.4	34.6	35.0	34.6	0.02/0.00	0.0	0.00/0.00	-0.6
C1R	6.33	6.22	6.36	6.26	89.4	88.6	89.8	89.5	-0.04	-0.9	-0.04	-0.4
C2R	4.32	4.26	4.28	4.25	71.7	71.9	71.7	71.6	0.01	0.3	0.04	0.0
C3R	4.77	4.73	4.73	4.71	76.0	76.0	75.9	75.7	0.02	0.3	0.04	0.1
C4R	4.11	4.12	4.04	4.07	84.6	83.9	84.9	84.0	0.05	-0.1	0.07	-0.3
C5R	3.92/3.77	3.87/3.74	3.93/3.75	3.9/3.75	63.1	63.0	63.3	63.0	-0.03/-0.01	0.0	-0.01/0.02	-0.2
C2N	7.14	7.05	7.10	6.98	144.7	144.5	144.7	144.4	0.07		0.04	
C4N	6.50	6.28	6.51	6.29	119.2	121.0	119.3	120.9	-0.01	0.1	-0.01	-0.1
C5N					136.1	134.3	135.8	134.1		0.2		0.3
C6N					138.0	136.5	137.9	136.3		0.2		0.1
C7N	7.28	7.17	7.28	7.19	114.2	113.1	114.3	113.1	-0.02	0.0	0.00	-0.1
C8N					132.9	133.5	132.8	133.0		0.5		0.1
C9N					139.5	140.9	139.5	140.7		0.2		0.0
C10N	2.26	2.21	2.27	2.21	22.7	22.2	22.8	22.3	0.00	-0.1	-0.01	-0.1
C11N	2.26	2.21	2.26	2.23	22.0	22.0	22.1	22.2	-0.02	-0.2	0.00	-0.1

${ }^{\text {a) }}$ carboxamide resonances $\mathrm{C} 22, \mathrm{C} 33, \mathrm{C} 72, \mathrm{C} 83, \mathrm{C} 133, \mathrm{C} 173, \mathrm{C} 182$ were not completely assigned.
${ }^{\text {b) }}$ These diastereotopic protons were not assigned specifically; both possible differences are shown.

Table S2: Crystallographic data for norvitamin $\mathrm{B}_{12}(\mathbf{1})$

	norvitamin B_{12}
empirical formula	$\mathrm{C}_{62} \mathrm{H}_{86} \mathrm{~N}_{14} \mathrm{O}_{14} \mathrm{PCo} \cdot \mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O} \cdot 14 \mathrm{H}_{2} \mathrm{O}$
acetone sites	1
$\mathrm{H}_{2} \mathrm{O}$ sites	5 fully, 18 partially occ.
formula weight	1651.65
crystal system	orthorhombic
space group	$P 2{ }_{1} 2_{1} 2_{1}$
unit cell dimensions	
$a[\AA]$	15.573(3)
$b[\AA]$	22.846(5)
$c[\AA]$	24.583(5)
$V\left[\AA^{3}\right]$	8746(3)
Z	4
$D_{\text {calc }}\left[\mathrm{g} \mathrm{cm}^{-3}\right]$	1.254
$\mu\left[\mathrm{mm}^{-1}\right]$	0.295
$F(000)$	3528
crystal size $\left[\mathrm{mm}^{3}\right]$	$0.3 \times 0.1 \times 0.1$
θ-range for data collection [$\left.{ }^{\circ}\right]$	1.84-29.74 (0.85 Å resol.)
wavelength [\AA]	0.8426
reflections collected	40787
data reduction programs	Denzo/Scalepack
independent reflections	7744
R (int)	0.039
completeness to $\theta=29.74^{\circ}(0.85 \AA)$	94.9\%
data/restraints/parameters	7744/1693/1131
final R indices (all data)	
R_{1}	0.0796
$w R_{2}$	0.2137
largest diff. peak/hole (e \AA^{-3})	0.89/-1.00

Figure S1: Structural formula of cobalamins and atom numbering used here (see ${ }^{[\mathrm{S} 8]}$).

References

[S1] R. Bonnet, J. M. Godfrey, D. G. Redman, J. Chem. Soc. C 1969, 8, 1163.
[S2] K. L. Brown, J. M. Hakimi, J. Am. Chem. Soc. 1986, 108, 496.
[S3] W. Friedrich, G. Gross, K. Bernhauer, P. Zeller, Helv. Chim. Acta 1960, 43, 704.
[S4] A. M. Calafat, L. G . Marzilli, J. Am. Chem. Soc. 1993, 115, 9182.
[S5] M. Tollinger, T. Dérer, R. Konrat, B. Kräutler, J. Mol. Cat. A: Chemical 1997, 116, 147.
[S6] Z. Otwinowski, W. Minor, Meth. Enzymol. 1997, 276, 307.
[S7] G. M. Sheldrick, SHELXL-97, a program for the refinement of crystal structures from diffraction data, University of Göttingen, 1997.
[S8] C. Kratky, B. Kräutler in Chemistry and Biochemistry of B_{12} (Ed.: R. Banerjee) John Wiley \& Sons, New York, 1999, pp. 9.

