Angewandte anman

Supporting Information
© Wiley-VCH 2006
69451 Weinheim, Germany

Mapping the Landscape of Potentially Primordial Informational Oligomers: Oligo-Dipeptides Tagged with 2,4-Disubstituted 5-amino-pyrimidines as Recognition Elements**

Gopi Kumar Mittapalli, Yazmin M. Osornio, Miguel A. Guerrero, Kondreddi Ravinder Reddy, Ramanarayanan Krishnamurthy* and Albert Eschenmoser*
[*] Prof. Dr. A. Eschenmoser
Laboratorium für Organische Chemie
Eidgenössische Technische Hochschule
HCI Hönggerberg CH-8093 Zürich Switzerland
Fax: (+41)1-632-1043
E-mail: Eschenmoser@org.chem.ethz.ch
Prof. Dr. A. Eschenmoser, Prof. Dr. R. Krishnamurthy, Dr. G. K. Mittapalli, Dr. Y. M. Osornio, Dr. M. A. Guerrero, Dr. K. R. Reddy
Department of Chemistry and The Skaggs Institute for Chemical Biology The Scripps Research Institute 10550 North Torrey Pines Road, La Jolla, CA 92037
Fax: (+1)858-784-9573
E-mail: rkrishna@scripps.edu
[**] Chemistry of α-aminonitriles Part 46. For part 45 see preceding paper [1]. This work was supported by the Skaggs Research Foundation. G. K. M., Y. M. O, M. A. G, and K. R. R. are Skaggs Postdoctoral Fellows.

Experimental Part

General. Solvents for extraction: ACS grade. Solvents for reaction: reagent grade. Reagents: unless otherwise noted, from Acros, Fluka, or Aldrich, highest quality available. TLC: silica gel $60 F_{254}$ aluminum plates, (Whatman, type $A l$ Sil $G / U V, 250 \mu \mathrm{~m}$ layer); visualization by UV absorption) and/or by dipping in a soln. anisaldehyde $/ \mathrm{H}_{2} \mathrm{SO}_{4} / \mathrm{AcOH} / \mathrm{EtOH} 5: 5: 1: 18$) cerium(IV)sulfate (3 mM)/ammonium molybdate (250 mM) in aq. $\mathrm{H}_{2} \mathrm{SO}_{4}$ (10%); followed by heating. Flash column chromatography (CC) was performed on silica gel $60(0.40-0.63 \mathrm{~mm}$, 230 - 440 mesh, EM Science) at low pressure (max. 2 bar). Melting points (uncorrected) MELTEMP II (Laboratory Devices Inc., USA). NMR: ${ }^{1} \mathrm{H}: \delta$ values in ppm (TMS as internal standard); $J[\mathrm{~Hz}]$, assignments of ${ }^{1} \mathrm{H}$ resonances were in some cases based on 2D experiments $\left({ }^{1} \mathrm{H},{ }^{1} \mathrm{H}\right.$-COSY); ${ }^{13} \mathrm{C}: \delta$ values in ppm (TMS as internal standard); $J[\mathrm{~Hz}]$; assignments and multiplicities were based on 2D experiments (${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$-COSY). ESI-MS (mode): m / z (intensity in \%); performed with Micromat-LCT. Matrix-assisted laser-desorption-ionization time-of-flight mass spectrometry (MALDI-TOF-MS) was performed on a Voyager-Elite mass spectrometer (Perseptive Biosystems) with delayed extraction with THAP or DHB as the matrix with ammonium citrate added to the sample. Oligo-dipeptides were synthesized on an Expedite 8909 Nucleic Acid Synthesis system (Perseptive Biosystems) in the PNA mode with the following modifications: 0.14 M dipeptide monomer in NMP/DMSO 4:1; 0.13M of HATU in NMP; washing soln. A: NMP/DMSO 4:1; washing soln. B: NMP/DMSO 4:1; deblocking soln. 30\% piperidine in NMP/DMSO 4:1; capping: 5\% $\mathrm{Ac}_{2} \mathrm{O}, 6 \%$ lutidine in NMP/DMSO 4:1; basemixture: 0.14 M DIPEA, 0.21 M lutidine in NMP; coupling time of 30 min ; in some cases double coupling step was used. Coupling efficiency was calculated by Fmoc-assay. For a majority of the synthesis, the average coupling efficiency was greater than 95%. HPLC purification of oligopeptides was achieved either by (a) ion-exchange: with MONO-Q HR 5/5 Pharmacia, 10 0.5 cm or Nucleogen-DEAE 60-7 Machery Nagel, 125 4, flow $1 \mathrm{ml} / \mathrm{min}$; mobile phase: eluant A: $10 \mathrm{mM} \mathrm{Na} 2 \mathrm{HPO}_{4}, \mathrm{H}_{2} \mathrm{O}, \mathrm{pH} 11.5$ (unless otherwise specified); eluant B: 10 mM $\mathrm{Na}_{2} \mathrm{HPO}_{4}, 1 \mathrm{M} \mathrm{NaCl}, \mathrm{H}_{2} \mathrm{O}, \mathrm{pH} 11.5$ (unless otherwise specified); or with Nucleogen-DEAE 607 Machery Nagel, 125 4, flow $1 \mathrm{ml} / \mathrm{min}$, mobile phase: eluant A: $10 \mathrm{mM} \mathrm{Na}_{2} \mathrm{HPO}_{4}, \mathrm{H}_{2} \mathrm{O}, \mathrm{pH}$ 7.0; eluant B: $10 \mathrm{mM} \mathrm{Na} 2 \mathrm{HPO}_{4}, 1 \mathrm{M} \mathrm{NaCl}, \mathrm{H}_{2} \mathrm{O}, \mathrm{pH} 7.0$ or by (b) reverse-phase: Aquapore ODS 20 micron Brownlee, 250 10.0 mm, flow $4 \mathrm{ml} / \mathrm{min}$. Mobile phase: eluant A: 0.1% TFA in $\mathrm{H}_{2} \mathrm{O}$; eluant B: 0.1% TFA in MeCN. UV Spectra were recorded on a Cary 1 C
spectrophotometer (Varian). Melting point (T_{m}) measurements of oligonucleotides were determined with Cary 1 Bio spectrophotometer (Varian). CD Spectrum was measured on an AVIV 61 DS CD spectropolarimeter. All measurements were made with the 'phosphate buffer', 10 mM aq. $\mathrm{NaH}_{2} \mathrm{PO}_{4}$ buffer containing 0.1 mM Na 2 EDTA, 150 mM (or 1 M) NaCl at pH 7.0 , with a total oligonucleotide concentration of $c a .10 \mu \mathrm{M}$, unless indicated otherwise, and the samples were thoroughly degassed, either by heating or by vacuum and ultrasonication. The following molar extinction coefficients were used for the heterocyclic bases at : ε_{260} (uracil) $=10,000, \varepsilon_{260}$ $($ thymine $)=10,000, \varepsilon_{260}($ adenine $)=15,000, \varepsilon_{260}(2,4$-diaminopurine $)=10,000, \varepsilon_{260}(2,4-$ diaminotriazine $)=4200, \varepsilon_{250}(2,4$-dioxotriazine $)=7500, \varepsilon_{287}(2,4,5$-triaminopyridine $)=5500$, $\varepsilon_{280}(2,4$-dioxo- 5 -aminopyrimidine $)=6550, \varepsilon_{283}(2,5$-diamino-4-oxoaminopyrimidine $)=6500$, $\varepsilon_{271}(4,5$-diamino-2-oxoaminopyrimidine $)=5400$. Abbreviations: Asp $=$ aspartic acid; $\mathrm{Bn}=$ Benzyl; $\mathrm{Boc}=$ tert-butyloxy carbonyl; $\mathrm{CBz}=$ carboxybenzyl; $\mathrm{DBU}=$ diazabicyclo undecane; DIPEA: diisopropylethylamine; EDCI = 1-ethyl-3-(3'-dimethylaminopropyl)carbodiimide; Fmoc $=9$-fluorenylmethyloxycarbonyl; Glu = glutamic acid; HATU $=2-(1 \mathrm{H}-7-$ azabenzotriazol-1-yl)-1,1,3,3-tetramethyl uronium hexafluorophosphate methanaminium; $\mathrm{HOBt}=1$-hydroxy benzotriazole; MBHA resin = 4-methylbenzhydrylamine resin; NMP $=\mathrm{N}$-methyl-2-pyrrolidone.

Figure 1. Synthesis of the four 5-amino-pyrimidine-tagged AspGlu-dipeptide building blocks used in the solid support synthesis of the oligomers. (a) 2.5 equiv (0.5 M) $\mathrm{Me}_{3} \mathrm{SiCl}$, Allyl alcohol, $0^{\circ} \mathrm{C}$, 24h. (b) 1.7 (0.24) $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{H}_{2} \mathrm{O}, 0^{\circ} \mathrm{C}$, 20 min . (c) 1.1 (0.07 M) FmocOSu, dioxane, RT, 8 h . (d) 2.5 (0.49) $\mathrm{NaHCO}_{3}, 2.5$ (0.58) $\mathrm{PhCH}_{2} \mathrm{Br}$, DMF, RT, 36 h. (e) 5.0 (2.0) 20% Piperidine in DMF, RT, 1h. (f) 1.0 (0.5 M) EDCI, 1 (0.5) HOBt, DMF, RT, 4 h . (g) 4.0 (0.12) $\mathrm{PhSiH}_{3}, 0.05$ $\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{4} \mathrm{Pd}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, RT, 5 h. (h) $1.5(0.54) \mathrm{HBTU}, 1(0.36) \mathrm{HOBt}, 2(0.72)$ of corresponding 5 -amino-pyrimidine, DMF, RT- $35^{\circ} \mathrm{C}, 36-60 \mathrm{~h}$. (i) $10 \% \mathrm{Pd} / \mathrm{C}, \mathrm{H}_{2}(1$ $\mathrm{atm}), \mathrm{MeOH} / \mathrm{DMF} / \mathrm{HCO}_{2} \mathrm{H}$ (4.8:4.8:0.4), $0^{\circ} \mathrm{C}, 2-3.5 \mathrm{~h}$.
(S)-2-amino-(5-allyloxy)-5-oxo-pentanoic acid. HCl salt ($\mathbf{s} 2$): ${ }^{[2]}$ To a stirred suspension of ($2 S$)-(+)-glutamic acid s1 $(22.1 \mathrm{~g}, 150 \mathrm{mmol}$, Aldrich) in 700 ml of allyl alcohol under nitrogen was added dropwise chlorotrimethylsilane $(40.8 \mathrm{~g}, 47.6 \mathrm{ml}, 375$ mmol) at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was allowed to warm to RT, and stirring was continued for 24 h .2000 ml of cold diethyl ether was added to give a white precipitate, which was collected by filtration, washed with cold diethyl ether ($2 \times 200 \mathrm{ml}$) and dried under h.v. to afford $21.2 \mathrm{~g}(63 \%)$ of $\mathbf{s 2}$ as a white solid. $\mathrm{TLC}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 75: 25\right): R_{f}$ $0.47 .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz},\left(\mathrm{D}_{6}\right) \mathrm{DMSO}\right): 13.77$ (br. s, COOH), 8.59 (br. s, NH_{3}), 5.91 (appears as $\left.d d d, J=16.210 .8,5.4, \mathrm{CH}_{2}=\mathrm{CH}\right), 5.29\left(d, J=16.2,1 \mathrm{H}, \mathrm{CH}_{2}=\mathrm{CH}\right), 5.20(d, J$ $\left.=10.8,1 \mathrm{H}, \mathrm{CH}_{2}=\mathrm{CH}\right), 4.55\left(d, J=5.4, \mathrm{CH}_{2} \mathrm{O}\right), 3.89(t, J=6.0, \mathrm{H}-\mathrm{C}(\alpha)), 2.48(\mathrm{~m}, \mathrm{H}-$ $\mathrm{C}(\gamma)$), 2.05-2.12 ($m, \mathrm{H}-\mathrm{C}(\beta)$). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(150 \mathrm{MHz},\left(\mathrm{D}_{6}\right) \mathrm{DMSO}\right): 171.31$ (COOH), $170.34(\mathrm{CO}), 132.51\left(\mathrm{CH}_{2}=\underline{\mathrm{CH}}\right)$, $117.75\left(\mathrm{CH}_{2}=\mathrm{CH}\right)$, $64.51\left(\mathrm{CH}_{2} \mathrm{O}\right), 51.06(\mathrm{C}(\alpha)), 29.16$ $(\mathrm{C}(\gamma)), 25.07(\mathrm{C}(\beta))$. ESI-MS: $210\left(10,[M+\mathrm{Na} \text { of free amine }]^{+}\right), 188\left(90,[M+\mathrm{H}]^{+}\right), 130$ ($\left.100,\left[\mathrm{M}-\left(\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{O}\right)\right]^{+}\right)$.
(S)-2-[((9H-fluoren-9-yl)ethoxy)carbonylamino]-5-(allyloxy)-5-oxopentanoic acid (s3): ${ }^{[2 b]}$ To an ice-cold stirred suspension of $\boldsymbol{?} \mathbf{2}(20.12 \mathrm{~g}, 90 \mathrm{mmol})$ in 640 ml of water was added $\mathrm{K}_{2} \mathrm{CO}_{3}(21.14 \mathrm{~g}, 153 \mathrm{mmol})$. After 20 minutes, a solution of FmocOSu (33.39 $\mathrm{g}, 99 \mathrm{mmol})$ in 640 ml of dioxane was added and the resulting solution was allowed to warm to RT, and stirred for 8 h . The reaction mixture was poured into 500 ml of water and dioxane was removed under reduced pressure. The aqueous solution was washed with diethyl ether (2 x 400 ml), acidified to pH 2 with $\mathrm{HCl}\left(1 \mathrm{M}\right.$ solution) at $0{ }^{\circ} \mathrm{C}$ and extracted with dichloromethane ($3 \times 500 \mathrm{ml}$). The organic phase was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and the solvent was removed under reduced pressure to give $36.3 \mathrm{~g}(98 \%)$ of $\mathbf{3}$ as a white solid, which was used without further purification. TLC $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 90: 10\right): R_{f} 0.48$. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz},\left(\mathrm{D}_{6}\right) \mathrm{DMSO}\right): 12.62$ (br. s, COOH), 7.88 ($d, J=7.2,2$ arom. H), 7.73 ($d d$ appearing as $t, J=7.2,2$ arom. H), $7.66(d, J=8.4, \mathrm{NH}(\mathrm{Fmoc})$), 7.41 ($d d$ appearing as $t, J=7.2,2$ arom. H), 7.32 ($d d$ appearing as $t, J=7.2,2$ arom. H), 5.91 (appears as $\left.d d d, J=16.210 .8,5.4, \mathrm{CH}_{2}=\mathrm{CH}\right), 5.29\left(d, J=16.2,1 \mathrm{H}, \mathrm{CH}_{2}=\mathrm{CH}\right), 5.20(d, J=10.8,1 \mathrm{H}$, $\left.\mathrm{CH}_{2}=\mathrm{CH}\right), 4.55\left(d, J=5.4, \mathrm{CH}_{2} \mathrm{O}\right), 4.21-4.30\left(m, 3 \mathrm{H}, \mathrm{HC}(\mathrm{Fmoc}), \mathrm{H}_{2} \mathrm{CC}(\mathrm{Fmoc})\right)$, 3.994.01 ($m, \mathrm{H}-\mathrm{C}(\alpha)$), 2.40-2.45 ($m, \mathrm{H}-\mathrm{C}(\gamma)$), 1.99-2.06 ($m, 1 \mathrm{H}, \mathrm{H}-\mathrm{C}(\beta)$), 1.81-1.87 ($m, 1 \mathrm{H}$, $\mathrm{H}-\mathrm{C}(\beta)$). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(150 \mathrm{MHz},\left(\mathrm{D}_{6}\right) \mathrm{DMSO}\right): 173.32(\mathrm{COOH}), 171.77$ (CO), 156.05
(CO (Fmoc)), 143.75 (arom. C), 140.63 (arom. C), $132.58\left(\mathrm{CH}_{2}=\underline{\mathrm{CH}}\right.$), 127.55 (arom. C), 126.97 (arom. C), 125.17 (arom. C), 120.01 (arom. C), 117.55 ($\mathrm{CH}_{2}=\mathrm{CH}$), 65.55 $\left(\mathrm{CH}_{2}(\mathrm{Fmoc})\right), 64.32\left(\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 52.87(\mathrm{C}(\alpha)), 46.59(\mathrm{CH}(\mathrm{Fmoc})), 29.96(\mathrm{C}(\gamma))$, $25.98(\mathrm{C}(\beta))$. ESI-MS: $432\left(100,[M+\mathrm{Na}]^{+}\right), 410\left(10,[M+\mathrm{H}]^{+}\right)$.
(S)-1-benzyl-4-tert-butyl 2-[((9H-fluoren-9-yl)methoxy)cabonylamino]succinate (s5): ${ }^{[3 \mathrm{za}]}$ To a stirred solution of $\mathbf{s 4}(20 \mathrm{~g}, 48.6 \mathrm{mmol}$, Novabiochem $)$ in 250 ml of dry DMF was added $\mathrm{NaHCO}_{3}(10.25 \mathrm{~g}, 122 \mathrm{mmol})$ and benzyl bromide $(24.97 \mathrm{~g}, 17.36 \mathrm{ml}$, 146 mmol). The reaction mixture was stirred at RT, for 36 h and then diluted with 400 ml of $\mathrm{H}_{2} \mathrm{O}$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 300 \mathrm{ml})$. The organic phase was washed sequentially with $\mathrm{H}_{2} \mathrm{O}(2 \times 300 \mathrm{ml}), 300 \mathrm{ml}$ of sat. aq. $\mathrm{NaHCO}_{3}, 300 \mathrm{ml}$ sat. aq. NaCl and evaporated in vacuo. To the resulting residue, 400 ml of cold hexane was added and the mixture stirred vigorously until precipitation of compound $\mathbf{s} 5$ was complete. Filtration and washing with hexane ($2 \times 200 \mathrm{ml}$) gave $23.16 \mathrm{~g}(95 \%)$ of $\mathbf{s 5}$ as a white solid. TLC (Hexane/AcOEt, 80:20): $R_{f} 0.48 .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz},\left(\mathrm{D}_{6}\right) \mathrm{DMSO}\right): 7.87-7.89$ ($m, 2$ arom. $\mathrm{H}, \mathrm{NH}(\mathrm{Fmoc})$), 7.68 ($d d$ appearing as $t, J=7.2,2$ arom. H), 7.41 ($d d$ appearing as $t, J=7.2,2$ arom. H), 7.29-7.32 ($m, 7$ arom. H), 5.12 ($s, \mathrm{PhCH}_{2} \mathrm{O}$), 4.46-4.49 ($m, \mathrm{H}-$ $\mathrm{C}(\alpha))$, 4.20-4.32 ($m, 3 \mathrm{H}, \mathrm{HC}(\mathrm{Fmoc}), \mathrm{H}_{2} \mathrm{CC}(\mathrm{Fmoc})$), 2.75 ($d d, J=16.2,5.4, \mathrm{H}-\mathrm{C}(\beta)$), $2.63(d d J=16.2,7.8, \mathrm{H}-\mathrm{C}(\beta)), 1.35\left(s, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(150 \mathrm{MHz},\left(\mathrm{D}_{6}\right) \mathrm{DMSO}\right)$: 170.68 (CO), 168.83 (CO), 155.72 (CO(Fmoc)), 143.62 (arom. C), 140.61 (arom. C), 135.65 (arom. C), 128.24 (arom. C), 127.89 (arom. C), 127.57 (arom. C), 127.51 (arom. C), 126.93 (arom. C), 125.02 (arom. C), 120.00 (arom. C), $80.36\left(\underline{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 66.11$ $\left(\mathrm{CH}_{2}\right.$ (Fmoc)), $65.66\left(\mathrm{PhCH}_{2} \mathrm{O}\right), 50.52(\mathrm{C}(\alpha)), 46.47(\mathrm{CH}(\mathrm{Fmoc})), 36.87(\mathrm{C}(\beta)), 27.51$
 224 (100, [M - (Fmoc - $\left.\left.{ }^{\mathrm{t}} \mathrm{Bu}+\mathrm{H}+\mathrm{H}\right)+\mathrm{H}\right)$.
(S)-1-benzyl-4-tert-butyl 2-aminosuccinate ($\mathbf{(5 6)}:{ }^{[33]}$ To a stirred solution of $\mathbf{~} 5$ (23 $\mathrm{g}, 45.8 \mathrm{mmol}$) in 90 ml of dry DMF under N_{2} was added piperidine ($19.5 \mathrm{~g}, 22.6 \mathrm{ml}, 229$ mmol). The reaction mixture was stirred at RT for 1 h , and DMF was removed under reduced pressure at RT The resulting residue was purified by $\mathrm{CC}\left(\mathrm{SiO}_{2}\right.$ eluted with Hexane/AcOEt, 100:0 $\rightarrow 20: 80$) to afford $11.64 \mathrm{~g}(91 \%)$ of $\mathbf{6}$ as a yellow oil. TLC (Hexane/AcOEt, 30:70): $R_{f} 0.56 .{ }^{1} \mathrm{H}-\mathrm{NMR}$ ($600 \mathrm{MHz},\left(\mathrm{D}_{6}\right.$)DMSO): 7.35-7.37 ($m, 5$ arom. H), 5.11 ($d, J=16.8, \mathrm{PhCH}_{2} \mathrm{O}$), 3.65-3.67 $(m, \mathrm{H}-\mathrm{C}(\alpha)), 2.56(d d, J=16.2,6.0,1 \mathrm{H}-$
$\mathrm{C}(\beta)), 2.51(d d, J=16.2,7.8,1 \mathrm{H}-\mathrm{C}(\beta)), 1.93$ (br. $\left.s, \mathrm{NH}_{2}\right), 1.35\left(s, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}$ (150 MHz , (D_{6})DMSO): 174.06 (CO), 169.76 (CO), 135.97 (arom. C), 128.25 (arom. C), 127.83 (arom. C), 127.64 (arom. C), $79.95\left(\underline{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 65.58\left(\mathrm{PhCH}_{2} \mathrm{O}\right), 51.09(\mathrm{C}(\alpha))$, $40.03(\mathrm{C}(\beta))$, $27.54\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$. ESI-MS: 205 (30, $\left.\left[M \text { - }^{\mathrm{t}} \mathrm{Boc}-\mathrm{H}\right]^{+}\right)$.

1-Benzyl-4-tert-butyl 2-[2-\{((9H-fluoren-9-yl)-methoxy)carbonylamino\}-5-(allyloxy)-5-oxopentanamido]succinate (s7): To a stirred solution of the acid $\mathbf{s 3}(17.1 \mathrm{~g}$, $41.76 \mathrm{mmol})$ in 73 ml of dry DMF was added EDCI ($8.0 \mathrm{~g}, 41.76 \mathrm{mmol}$) and HOBt (5.76 $\mathrm{g}, 41.76 \mathrm{mmol})$ followed by the addition of $\mathbf{s 6}(11.65 \mathrm{~g}, 41.76 \mathrm{mmol})$ in 10 ml of DMF. The reaction mixture was stirred for 4 h at RT, quenched with 400 ml of sat. aq. NaHCO_{3} solution and the aqueous phase was extracted with $\operatorname{AcOEt}(3 \times 200 \mathrm{ml})$. The combined organic extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo. The residue was purified by $\mathrm{CC}\left(\mathrm{SiO}_{2}\right.$, Hexane/EtOAc, 100:0 $\left.\rightarrow 70: 30\right)$ to afford $25.3 \mathrm{~g}(89 \%)$ of $\mathbf{s} 7$ as a white solid. TLC (Hexane/EtOAc, 70:30): $R_{f} 0.45 .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz},\left(\mathrm{D}_{6}\right) \mathrm{DMSO}\right)$: $8.43(d, J=7.8, \mathrm{NHCO}), 7.88(d, J=7.2,2$ arom. H), 7.73 ($d d$ appearing as $t, J=7.2,2$ arom. H), $7.59(d, J=8.4, \mathrm{NH}(\mathrm{Fmoc})), 7.41(d d$ appearing as $t, J=7.2,2$ arom. H), 7.327.34 ($m, 7$ arom. H), 5.90 (appears as $d d d, J=16.8,10.8,5.4, \mathrm{CH}_{2}=\mathrm{CH}$), $5.11(d, J=$ 19.8, $\mathrm{PhCH} \mathrm{H}_{2} \mathrm{O}$), 4.68-4.71 ($m, \mathrm{H}-\mathrm{C}(\alpha-\mathrm{Asp})$), $4.54\left(d, J=5.4, \mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{O}\right), 4.19-4.30$ ($\left.m, 3 \mathrm{H}, \mathrm{HC}(\mathrm{Fmoc}), \mathrm{H}_{2} \mathrm{CC}(\mathrm{Fmoc})\right)$, 4.07-4.10 ($m, \mathrm{H}-\mathrm{C}(\alpha \mathrm{Glu})$), 2.74 ($d d, J=16.8,5.7$, $1 \mathrm{H}-\mathrm{C}(\beta \mathrm{Asp}))$, 2.63 ($d d, J=16.8,7.0,1 \mathrm{H}-\mathrm{C}(\beta \mathrm{Asp})$), 2.36-2.39 ($m, 2 \mathrm{H}-\mathrm{C}(\gamma \mathrm{Glu})$), 1.911.96 ($m, 1 \mathrm{H}-\mathrm{C}(\beta \mathrm{Glu})$), 1.77-1.84 ($m, 1 \mathrm{H}-\mathrm{C}(\beta \mathrm{Glu})$), $1.33\left(s, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}(150$ $\mathrm{MHz},\left(\mathrm{D}_{6}\right) \mathrm{DMSO}$): 171.80 (CO), 171.22 (CO), 170.29 (CO), 168.83 (CO), 155.74 (CO (Fmoc)), 143.75 (arom. C), 140.59 (arom. C), 135.58 (arom. C), $132.57\left(\mathrm{CH}_{2}=\underline{\mathrm{CH}}\right.$), 128.23 (arom. C), 127.88 (arom. C), 127.59 (arom. C), 127.51 (arom. C), 126.93 (arom. C), 125.18 (arom. C), 119.97 (arom. C), $117.53\left(\mathrm{CH}_{2}=\mathrm{CH}\right), 80.49\left(\underline{\mathrm{C}}\left(\mathrm{CH}_{3}\right)_{3}\right), 66.15$ $\left(\mathrm{CH}_{2}(\mathrm{Fmoc})\right), 65.58\left(\mathrm{PhCH}_{2} \mathrm{O}\right), 64.27\left(\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 53.46(\mathrm{C}(\alpha$? ? ?)), $48.55(\mathrm{C}(\alpha-$ Glu)), 46.53 ($\mathrm{CH}(\mathrm{Fmoc})$), 36.72 ($\mathrm{C}\left(\beta\right.$? ? ?)), $29.85\left(\mathrm{C}(\gamma \mathrm{Glu})\right.$), $27.46\left(\mathrm{C}_{\left(\mathrm{CH}_{3}\right)_{3}, 27.18}\right.$ (C(BGlu)). ESI-MS: $693\left(100,[M+N a]^{+}\right), 671\left(40,[M+\mathrm{H}]^{+}\right)$.

4-[\{((9H-fluoren-9-yl)methoxy)carbonylamin\}-5-(1-benzyloxy)-4-tert-butoxy-1,4-dioxobutan-2-ylamino]-5-oxopentanoic acid (s8): To a stirred solution of the dipeptide $\mathbf{5 7}$ ($24 \mathrm{~g}, 35.7 \mathrm{mmol}$) and phenylsilane ($15.5 \mathrm{~g}, 17.6 \mathrm{ml}, 143.1 \mathrm{mmol}$) in 1200 ml of dry
$\mathrm{CH}_{2} \mathrm{Cl}_{2}$ under N_{2} was added tetrakis(triphenylphosphine) $\operatorname{Pd}(0)(280 \mathrm{mg}, 1.8 \mathrm{mmol})$ at 0 ${ }^{\circ} \mathrm{C}$. The reaction mixture was stirred for 5 h at RT (till no more starting material was detected by TLC). The solvent was removed under reduced pressure at RT, and the residue was purified by $\mathrm{CC}\left(\mathrm{SiO}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 90: 10\right)$ to afford $16.9 \mathrm{~g}(75 \%)$ of $\mathbf{s 8}$ as a white solid. TLC $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 94: 6\right): R_{f} 0.47 .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz},\left(\mathrm{D}_{6}\right) \mathrm{DMSO}\right)$: 12.14 (br. s, COOH), 8.41 ($d, J=7.8, \mathrm{NHCO}$), 7.89 ($d, J=7.2,2$ arom. H), 7.72 ($d d$ appearing as $t, J=7.2,2$ arom. H), $7.54-7.63(m, \mathrm{NH}(\mathrm{Fmoc}), 2$ arom. H), 7.41 ($d d$ appearing as $t, J=7.2,2$ arom. H), 7.31-7.34 ($m, 5$ arom. H), $5.11\left(d, J=19.8, \mathrm{PhCH}_{2} \mathrm{O}\right)$, 4.69-4.72 ($m, \mathrm{H}-\mathrm{C}(\alpha-\mathrm{Asp})$), 4.21-4.30 ($m, 3 \mathrm{H}, \mathrm{HC}(\mathrm{Fmoc}), \mathrm{H}_{2} \mathrm{CC}(\mathrm{Fmoc})$), 4.07-4.10 (m, $\mathrm{H}-\mathrm{C}(\alpha \mathrm{Glu})), 2.74(d d, J=16.2,6.0,1 \mathrm{H}-\mathrm{C}(\beta \mathrm{Asp})), 2.63(d d, J=16.2,6.6,1 \mathrm{H}-\mathrm{C}(\beta \mathrm{Asp}))$, 2.27-2.30 ($m, 2 \mathrm{H}-\mathrm{C}(\gamma \mathrm{Glu})$), 1.91-1.95 ($m, 1 \mathrm{H}-\mathrm{C}(\beta \mathrm{Glu})$), 1.74-1.80 (m, 1H-C($\beta \mathrm{Glu}$)), 1.33 $\left(s, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(150 \mathrm{MHz},\left(\mathrm{D}_{6}\right) \mathrm{DMSO}\right): 173.80(\mathrm{COOH}), 171.40(\mathrm{CO}), 170.32$ (CO), 168.84 (CO), 155.77 (CO(Fmoc)), 143.76 (arom. C), 140.59 (arom. C), 135.6 (arom. C), 128.25 (arom. C), 127.88 (arom. C), 127.62 (arom. C), 127.52 (arom. C), 126.94 (arom. C), 125.21 (arom. C), 119.98 (arom. C), $80.49\left(\underline{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 66.15$ $\left(\mathrm{CH}_{2}\right.$ (Fmoc)), $65.61 \quad\left(\mathrm{PhCH}_{2} \mathrm{O}\right), 53.61 \quad(\mathrm{C}(\alpha$? ? ?)), $48.54 \quad(\mathrm{C}(\alpha-\mathrm{Glu})), 46.53$ ($\mathrm{CH}(\mathrm{Fmoc})$), 36.76 ($\mathrm{C}\left(\beta\right.$? ? ?)), 30.08 ($\mathrm{C}(\gamma \mathrm{Glu})$), $27.46\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}, 27.26\right.$ ($\left.\mathrm{C}(\beta \mathrm{Glu})\right)$. ESIMS: $653\left(10,[M+\mathrm{Na}]^{+}\right), 631\left(4,[M+\mathrm{H}]^{+}\right), 279\left(100,[M-\mathrm{Glu}]^{+}\right)$.

1-benzyl-4-tert-butyl-2-\{2-[((9H-fluoren-9-yl)methoxy)carbonylamino)-5-(2,4-dioxo-1,2,3,4-tetrahydropyrimidin-5-ylamino)-5-oxopentanamidolsuccinate (s9): To a stirred solution of the acid $\mathbf{s 8}(2.75 \mathrm{~g}, 4.36 \mathrm{mmol})$ in 12 ml of dry DMF was added HBTU $(2.48 \mathrm{~g}, 6.54 \mathrm{mmol})$, $\mathrm{HOBt}(588 \mathrm{mg}, 4.36 \mathrm{mmol})$ and $2,4,5$-triaminopyrimidine $(1.1 \mathrm{~g}$, $8.72 \mathrm{mmol})$. The stirring was stirred at $35{ }^{\circ} \mathrm{C}$ for 36 h , diluted with 100 ml of $\mathrm{H}_{2} \mathrm{O}$, extracted with AcOEt ($3 \times 80 \mathrm{ml}$). The organic phase was washed with 150 ml of sat. aq. NaHCO_{3} solution, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo. The residue was purified by $\mathrm{CC}\left(\mathrm{SiO}_{2}\right.$, eluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 98: 2$ to $\left.90: 10\right)$ to afford $2.67 \mathrm{~g}(83 \%)$ of 9 as a white solid. TLC ($\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 9: 1$): $R_{f} 0.55 .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz},\left(\mathrm{D}_{6}\right) \mathrm{DMSO}\right): 8.87$ (br. s, NHCO), $8.42(d, J=7.8, \mathrm{NHCO}), 7.89(d, J=7.2,2$ arom. H), $7.71(d, J=7.2,2$ arom. H), $7.61(s, \mathrm{H}-(\mathrm{C} 6)), 7.59(d, J=8.4 \mathrm{~Hz}, N H F m o c), 7.41$ ($d d$ appearing as $t, J=$ 7.2, 2 arom. H), 7.29-7.34 ($m, 7$ arom. H), 6.36 (br. s, NH_{2}), 6.06 (br. s, NH_{2}), 5.11 (d, J $\left.=18.8, \mathrm{PhCH}_{2} \mathrm{O}\right), 4.69-4.72(m, \mathrm{H}-\mathrm{C}(\alpha-\mathrm{Asp})), 4.20-4.26(m, 3 \mathrm{H}, \mathrm{HC}(\mathrm{Fmoc})$,
$\mathrm{H}_{2} \mathrm{CC}($ Fmoc $)$), 4.07-4.11 ($m, \mathrm{H}-\mathrm{C}(\alpha \mathrm{Glu})$), 2.75 ($d d, J=16.8,6.0,1 \mathrm{H}-\mathrm{C}(\beta$ Asp $)$), 2.63 ($(d d$, $J=16.8,6.6,1 \mathrm{H}-\mathrm{C}(\beta \mathrm{Asp}))$, 2.33-2.37 ($m, 2 \mathrm{H}-\mathrm{C}(\gamma \mathrm{Glu})$), 1.99-2.01 ($m, 1 \mathrm{H}-\mathrm{C}(\beta \mathrm{Glu})$), 1.80-1.82 ($m, 1 \mathrm{H}-\mathrm{C}(\beta \mathrm{Glu})$), $1.33\left(s, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(150 \mathrm{MHz},\left(\mathrm{D}_{6}\right) \mathrm{DMSO}\right): 171.59$ (CO), 171.36 (CO), $170.34(\mathrm{CO}), 168.89(\mathrm{CO}), 160.32$ (C(4)), 159.86 (C(2)), 155.86 (NHCOFmoc), 151.12 (C(6)), 143.70 (arom. C), 140.59 (arom. C), 135.62 (arom. C), 128.26 (arom. C), 127.89 (arom. C), 127.61 (arom. C), 127.54 (arom. C), 126.98 (arom. C), 125.24 (arom. C), 120.00 (arom. C), $107.29(\mathrm{C}(5)), 80.49\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 66.14$ $\left(\mathrm{CH}_{2}(\mathrm{Fmoc})\right), \quad 65.72\left(\mathrm{PhCH}_{2} \mathrm{O}\right), \quad 53.95(\mathrm{C}(\alpha$? ? ? $)), 48.54(\mathrm{C}(\alpha-\mathrm{Glu})), 46.52$ $(\mathrm{CH}(\mathrm{Fmoc}))$, $36.80\left(\mathrm{C}\left(\beta\right.\right.$? ? ?)), 31.71 ($\mathrm{C}(\gamma \mathrm{Glu})$), 27.67 ($\mathrm{C}($ (Glu$)$), $27.47\left(\mathrm{C}_{\left.\left(\mathrm{CH}_{3}\right)_{3}\right) .}\right.$ ESI-MS: $760\left(10,[M+\mathrm{Na}]^{+}\right), 738\left(100,[M+\mathrm{H}]^{+}\right)$.

2-\{2-[((9H-fluoren-9-yl)methoxy)carbonylamino)-5-(2,4-diaminopyrimidin-5-ylamino)-5-oxopentanamido\}-4-tert-butoxy-4-oxobutanoic acid (s10): To a stirred suspension of $10 \% \mathrm{Pd}-\mathrm{C}(150 \mathrm{mg})$ in 15 ml of DMF/MeOH 1:3 was added s9 (500 mg , $0.67 \mathrm{mmol})$ in 5 ml of DMF, followed by formic acid ($800 \mu \mathrm{l}$) at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred under H_{2} atmosphere (balloon) for 3.5 h at $0-5{ }^{\circ} \mathrm{C}$, filtered through celite and washed with hot $\mathrm{MeOH}(2 \times 30 \mathrm{ml})$. The washings were combined with the filtrate and concentrated in vacuo. The residue was purified on reverse phase CC (C18silica gel; $\left.\mathrm{H}_{2} \mathrm{O} / \mathrm{DMF} 100: 0 \rightarrow 20: 80\right)$ to afford $312 \mathrm{mg}(72 \%)$ of $\mathbf{s 1 0}$ as a brown solid. ($\mathrm{AcOEt} / \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O} / \mathrm{CH}_{3} \mathrm{COOH} 75: 15: 6: 2$): $R_{f} 0.54$. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}\right.$, (D_{6})DMSO): 12.78 (br. s, COOH), 8.99 (br. s, NHCO), $8.12(d, J=7.8, \mathrm{NHCO}$), $7.89(d, J=7.2,2$ arom. H), 7.73 ($d d$ appearing as $t, J=7.2,2$ arom. H), 7.65 ($d, J=6.0, \mathrm{H}-(\mathrm{C} 6)$), $7.56(d, J$ $=8.4 \mathrm{~Hz}, N H F m o c), 7.41(d d$ appearing as $t, J=7.2,2$ arom. H), 7.33 ($d d$ appearing as t, $J=7.2,2$ arom. H), 6.48 (br. s, NH_{2}), 6.22 (br. s, NH_{2}), 4.51-4.54 ($m, \mathrm{H}-\mathrm{C}(\alpha-\mathrm{Asp}$)), 4.214.25 ($m, 3 \mathrm{H}, \mathrm{HC}(\mathrm{Fmoc}), \mathrm{H}_{2} \mathrm{CC}(\mathrm{Fmoc})$), 4.05-4.08 ($m, \mathrm{H}-\mathrm{C}(\alpha \mathrm{Glu})$), 2.67 ($d d, J=16.2$, $6.0,1 \mathrm{H}-\mathrm{C}(\beta \mathrm{Asp})$), $2.54(d d, J=16.2,7.2,1 \mathrm{H}-\mathrm{C}(\beta \mathrm{Asp})$), 2.33-2.37 ($m, 2 \mathrm{H}-\mathrm{C}(\gamma \mathrm{Glu})$), 1.99-2.01 ($m, 1 \mathrm{H}-\mathrm{C}(\beta \mathrm{Glu})$), 1.81-1.83 ($m, 1 \mathrm{H}-\mathrm{C}(\beta \mathrm{Glu})$), $1.36\left(s, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}$ ($\left.150 \mathrm{MHz},\left(\mathrm{D}_{6}\right) \mathrm{DMSO}\right): 173.00(\mathrm{COOH}), 171.50(\mathrm{CO}), 171.01$ (CO), 169.49 (CO), 160.06 (C(4)), 159.90 (C(2)), 155.77 (NHCOFmoc), 148.37 (C(6)), 143.75 (arom. C), 140.59 (arom. C), 127.77 (arom. C), 126.99 (arom. C), 125.26 (arom. C), 119.98 (arom. C), $107.66(\mathrm{C}(5)), 79.92\left(\underline{\mathrm{C}}\left(\mathrm{CH}_{3}\right)_{3}\right), 65.71\left(\mathrm{CH}_{2}(\mathrm{Fmoc})\right), 54.02(\mathrm{C}(\alpha$? ? ? $)), 49.37(\mathrm{C}(\alpha-$

Glu)), 46.55 ($\mathrm{CH}(\mathrm{Fmoc}))$, 37.62 ($\mathrm{C}(\beta$? ? ?)), 31.75 ($\mathrm{C}(\gamma \mathrm{Glu})$), 27.85 ($\mathrm{C}(\beta \mathrm{Glu}))$, 27.55 $\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$. ESI-MS: $670\left(10,[M+\mathrm{Na}]^{+}\right), 648\left(100,[M+\mathrm{H}]^{+}\right)$.

1-benzyl-4-tert-butyl-2-\{2-[((9H-fluoren-9-yl)methoxy)carbonylamino)-5-(4-
amino-2-oxo-1,2-dihydropyrimidin-5-ylamino)-5-oxopentanamido)succinate (s11): To a stirred solution of the acid $\mathbf{s 8}(2.75 \mathrm{~g}, 4.36 \mathrm{mmol})$ in 12 ml of dry DMF was added HBTU $(2.48 \mathrm{~g}, 6.54 \mathrm{mmol})$, $\mathrm{HOBt}(588 \mathrm{mg}, 4.36 \mathrm{mmol})$ and 5 -aminocytosine $(1.09 \mathrm{~g}, 8.72$ mmol). The reaction mixture was stirred a RT, for 36 h , diluted with 100 ml of $\mathrm{H}_{2} \mathrm{O}$ and extracted with $\operatorname{AcOEt}(3 \times 80 \mathrm{ml})$. The organic phase was washed with 150 ml of sat. aq. NaHCO_{3} solution, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo. The residue was purified by $\mathrm{CC}\left(\mathrm{SiO}_{2}\right.$, eluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 100: 0$ to $\left.85: 15\right)$ to afford $1.28 \mathrm{~g}(40 \%)$ of $\mathbf{s} 11$ as a white solid. TLC $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 9: 1\right): R_{f} 0.46 .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz},\left(\mathrm{D}_{6}\right) \mathrm{DMSO}\right)$: 10.41 (br. s, NH), 8.77 (s, NHCO), 8.43 ($d, J=7.8, \mathrm{NHCO}$), 7.89 ($d, J=7.2,2$ arom. H), $7.72(d, J=7.2,2$ arom. H), $7.59(d, J=8.4 \mathrm{~Hz}, N H F m o c), 7.41(d d$ appearing as $t, J=$ 7.2, 2 arom. H), 7.29-7.36 ($m, 7$ arom. H, H-C(6)), 6.73 (br. s, NH_{2}), 5.11 ($d, J=19.8$, $\left.\mathrm{PhCH} \mathrm{H}_{2} \mathrm{O}\right), 4.69-4.72$ ($m, \mathrm{H}-\mathrm{C}(\alpha-\mathrm{Asp})$), 4.21-4.25 ($m, 3 \mathrm{H}, \mathrm{HC}(\mathrm{Fmoc}), \mathrm{H}_{2} \mathrm{CC}(\mathrm{Fmoc})$), 4.06-4.09 ($m, \mathrm{H}-\mathrm{C}(\alpha \mathrm{Glu})$), 2.76 ($d d, J=16.8,6.6,1 \mathrm{H}-\mathrm{C}(\beta \mathrm{Asp})$), 2.63 ($d d, J=16.8,7.2$, $1 \mathrm{H}-\mathrm{C}(\beta$ Asp $)$), 2.32-2.38 ($m, 2 \mathrm{H}-\mathrm{C}(\gamma \mathrm{Glu})$), 1.99-2.01 ($m, 1 \mathrm{H}-\mathrm{C}(\beta \mathrm{Glu})$), 1.78-1.81 ($m, 1 \mathrm{H}-$ $\mathrm{C}\left(\right.$ (BGlu)), $1.33\left(s, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(150 \mathrm{MHz},\left(\mathrm{D}_{6}\right) \mathrm{DMSO}\right): 171.65$ (CO), 171.55 (CO), 170.32 (CO), $168.88(\mathrm{CO}), 163.38(\mathrm{C}(4)), 155.85(\mathrm{NHCOFmoc}), 155.60(\mathrm{C}(2))$, 143.70 (arom. C), 140.59 (arom. C), 139.05 (C(6)), 135.61 (arom. C), 128.26 (arom. C), 127.82 (arom. C), 127.67 (arom. C), 127.60 (arom. C), 126.98 (arom. C), 125.24 (arom. C), 120.00 (arom. C), $104.3(\mathrm{C}(5)), 80.50\left(\underline{\mathrm{C}}\left(\mathrm{CH}_{3}\right)_{3}\right), 66.15\left(\mathrm{CH}_{2}(\mathrm{Fmoc})\right), 65.73$ $\left(\mathrm{PhCH}_{2} \mathrm{O}\right), 53.88(\mathrm{C}(\alpha$? ? ?)), $48.55(\mathrm{C}(\alpha-\mathrm{Glu})), 46.53(\mathrm{CH}(\mathrm{Fmoc})), 36.80(\mathrm{C}(\beta$? ? ?)), 31.67 ($\mathrm{C}(\gamma \mathrm{Glu})$), $27.48\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$, 25.13 (C($\left.\beta \mathrm{Glu}\right)$). ESI-MS: 761 (5, $\left.[M+\mathrm{Na}]^{+}\right), 739$ (50, $\left.[M+\mathrm{H}]^{+}\right), 775$ (50), 553 (100).

2-\{2-[((9H-fluoren-9-yl)methoxy)carbonylamino)-5-(4-amino-2-oxo-1,2-dihydropyrimidin-5-ylamino)-5-oxopentanamido $\}$-4-tert-butoxy-4-oxobutanoic acid (s12): To a stirred suspension of $10 \% \mathrm{Pd}-\mathrm{C}(150 \mathrm{mg})$ in 15 ml of $\mathrm{DMF} / \mathrm{MeOH} 1: 3$ was added the compound s11 $(500 \mathrm{mg}, 0.67 \mathrm{mmol})$ in 5 ml of DMF, followed by formic acid $(800 \mu \mathrm{l})$ at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred under H_{2} atmosphere (balloon) for 2 h at $0-5^{\circ} \mathrm{C}$, filtered through celite and washed with hot $\mathrm{MeOH}(2 \times 30 \mathrm{ml})$. The washings
were combined with the filtrate and concentrated in vacuo. The residue was purified on reverse phase $\mathrm{CC}\left(\mathrm{C} 18\right.$-silica gel; $\left.\mathrm{H}_{2} \mathrm{O} / \mathrm{MeOH} 100: 0 \rightarrow 40: 60\right)$ to afford $351 \mathrm{mg}(80 \%)$ of $\mathbf{s 1 2}$ as a white solid. TLC $\left(\mathrm{AcOEt} / \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O} / \mathrm{CH}_{3} \mathrm{COOH} 75: 15: 6: 2\right): \mathrm{R}_{\mathrm{f}} 0.47 .{ }^{1} \mathrm{H}-\mathrm{NMR}$ ($600 \mathrm{MHz},\left(\mathrm{D}_{6}\right.$)DMSO): 12.79 (br. s, COOH), 10.41 (br. s, NH), 8.81 (s, NHCO), 8.18 ($d, J=7.8, \mathrm{NHCO}$), $7.89(d, J=7.2,2$ arom. H), $7.72(d d$ appearing as $t, J=7.2,2$ arom. H), 7.57 ($d, J=8.4 \mathrm{~Hz}$, NHFmoc), 7.39-7.42 ($m, 2$ arom. H, H-C(6)), 7.33 ($d d$ appearing as $t, J=7.2 \mathrm{~Hz}, 2$ arom. H), 6.75 (br. s, NH_{2}), 4.51-4.58 ($m, \mathrm{H}-\mathrm{C}(\alpha-\mathrm{Asp})$), 4.20-4.25 (m, $3 \mathrm{H}, \mathrm{HC}(\mathrm{Fmoc}), \mathrm{H}_{2} \mathrm{CC}(\mathrm{Fmoc})$), 4.06-4.07 ($m, \mathrm{H}-\mathrm{C}(\alpha \mathrm{Glu})$), 2.68 ($d d, J=16.2,6.0,1 \mathrm{H}-$ $\mathrm{C}(\beta \mathrm{Asp})$), 2.56 ($d d, J=16.2,7.2,1 \mathrm{H}-\mathrm{C}(\beta$ Asp $)$), 2.32-2.34 ($m, 2 \mathrm{H}-\mathrm{C}(\gamma \mathrm{Glu})$), 1.97-1.99 ($m, 1 \mathrm{H}-\mathrm{C}(\beta \mathrm{Glu})$), 1.77-1.80 ($m, 1 \mathrm{H}-\mathrm{C}(\beta \mathrm{Glu})$), $1.37\left(s, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}(150 \mathrm{MHz}$, (D_{6})DMSO): 172.12 (COOH), 171.72 (CO), 171.24 (CO), 169.19 (CO), 163.31 (C4), 155.82 (NHCOFmoc), 155.50 (C2), 143.74 (arom. C), 140.59 (arom. C), 139.05 (C-6), 127.55 (arom. C), 127.00 (arom. C), 125.27 (arom. C), 120.00 (arom. C), 104.38 (C5), $80.22\left(\underline{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 65.73\left(\mathrm{CH}_{2}(\mathrm{Fmoc})\right), 53.93(\mathrm{C}(\alpha$? ? ?)), $48.68(\mathrm{C}(\alpha-\mathrm{Glu})), 46.54$ $(\mathrm{CH}(\mathrm{Fmoc}))$, 37.17 ($\mathrm{C}\left(\beta\right.$? ? ?)), $31.66(\mathrm{C}(\gamma \mathrm{Glu}))$, $27.54\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}, \mathrm{C}(\beta \mathrm{Glu})\right)$. ESI-MS: $671\left(10,[\mathrm{M}+\mathrm{Na}]^{+}\right), 649\left(100,[\mathrm{M}+\mathrm{H}]^{+}\right)$.

1-benzyl-4-tert-butyl-2-\{2-[((9H-fluoren-9-yl)methoxy)carbonylamino)-5-(2,4-dioxo-1,2,3,4-tetrahydropyrimidin-5-ylamino)-5-oxopentanamido)succinate (s13): To а stirred solution of the acid $\mathbf{s 8}(2.75 \mathrm{~g}, 4.36 \mathrm{mmol})$ in 12 ml of dry DMF was added HBTU $(2.48 \mathrm{~g}, 6.54 \mathrm{mmol}), \operatorname{HOBt}(588 \mathrm{mg}, 4.36 \mathrm{mmol})$ and 5 -aminouracil ($1.1 \mathrm{~g}, 8.72 \mathrm{mmol}$). The reaction mixture was stirred a RT, for 60 h . At the end of the reaction the remaining 5 -aminouracil was filtered and the solid was washed with 15 ml of DMF. The filtrate was combined with the washings and diluted with 100 ml of $\mathrm{H}_{2} \mathrm{O}$, extracted with AcOEt (3 x 80 ml). The organic phase was washed with 150 ml of sat. aq. NaHCO_{3} solution, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo. The residue was purified by $\mathrm{CC}\left(\mathrm{SiO}_{2}\right.$, eluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 98: 2$ to $\left.90: 10\right)$ to afford $1.96 \mathrm{~g}(61 \%)$ of $\mathbf{s 1 3}$ as a white solid. TLC $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 92: 8\right): R_{f} 0.56 .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz},\left(\mathrm{D}_{6}\right) \mathrm{DMSO}\right): 11.40$ (br. s, NHCO), 10.63 (br. s, NHCO), 8.98 (br. s, NHCO), 8.38 ($d, J=7.8, \mathrm{NHCO}$), 8.05 ($s, \mathrm{H}-(\mathrm{C} 6$)), 7.89 $(d, J=7.2,2$ arom. H), 7.71 ($d d$ appearing as $t, J=7.2,2 \operatorname{arom} . \mathrm{H}), 7.51(d, J=8.4 \mathrm{~Hz}$, $N H F m o c), 7.41$ ($d d$ appearing as $t, J=7.2,2$ arom. H), 7.27-7.34 ($\mathrm{m}, 7$ arom. H), 5.11 (d, $J=18, \mathrm{PhCH}_{2} \mathrm{O}$), 4.67-4.71 ($m, \mathrm{H}-\mathrm{C}(\alpha-\mathrm{Asp})$), 4.19-4.29 ($m, 3 \mathrm{H}, \mathrm{HC}(\mathrm{Fmoc})$,
$\mathrm{H}_{2} \mathrm{CC}($ Fmoc $)$), 4.02-4.06 ($m, \mathrm{H}-\mathrm{C}(\alpha \mathrm{Glu})$), 2.73 ($d d, J=16.8,6.6,1 \mathrm{H}-\mathrm{C}(\beta$ Asp $)$), $2.62(d d$, $J=16.8,7.2,1 \mathrm{H}-\mathrm{C}(\beta \mathrm{Asp})$), 2.31-2.45 ($m, 2 \mathrm{H}-\mathrm{C}(\gamma \mathrm{Glu})$), 1.91-1.95 ($m, 1 \mathrm{H}-\mathrm{C}(\beta \mathrm{Glu})$), 1.74-1.81 ($m, 1 \mathrm{H}-\mathrm{C}(\beta \mathrm{Glu})$), $1.33\left(s, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(150 \mathrm{MHz},\left(\mathrm{D}_{6}\right) \mathrm{DMSO}\right): 171.53$ (CO), 170.92 (CO), $170.36(\mathrm{CO}), 168.87(\mathrm{CO}), 160.58(\mathrm{C}(4)), 155.76$ (NHCOFmoc), 149.52 (C(2)), 143.66 (arom. C), 140.60 (arom. C), 135.60 (arom. C), 129.19 (C(6)), 128.23 (arom. C), 127.85 (arom. C), 127.65 (arom. C), 127.54 (arom. C), 126.97 (arom. C), 125.10 (arom. C), 119.99 (arom. C), $113.15(\mathrm{C}(5)), 80.50\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 66.17$ $\left(\mathrm{CH}_{2}(\mathrm{Fmoc})\right), \quad 65.61 \quad\left(\mathrm{PhCH}_{2} \mathrm{O}\right), \quad 53.92(\mathrm{C}(\alpha$? ? ? $)), 48.55(\mathrm{C}(\alpha-\mathrm{Glu})), 46.55$ $(\mathrm{CH}(\mathrm{Fmoc})), 36.79\left(\mathrm{C}\left(\beta\right.\right.$? ? ?)), 32.28 ($\mathrm{C}(\gamma \mathrm{Glu})$), $28.00(\mathrm{C}(\mathrm{\beta Glu}))$, $27.48\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$. ESI-MS: $762\left(5,[M+N a]^{+}\right), 740\left(100,[M+H]^{+}\right)$.

2-\{2-[((9H-fluoren-9-yl)methoxy)carbonylamino)-5-(2,4-dioxo-1,2,3,4-
tetrahydropyrimi din-5-ylamino)-5-oxopentanamido\}-4-tert-butoxy-4-oxobutanoic acid (s14): To a stirred suspension of $10 \% \mathrm{Pd}-\mathrm{C}(150 \mathrm{mg})$ in 15 ml of DMF/MeOH 1:3 was added the compound $\mathbf{s 1 3}$ ($500 \mathrm{mg}, 0.67 \mathrm{mmol}$) in 5 ml of DMF, followed by formic acid $(800 \mu \mathrm{l})$ at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred under H_{2} atmosphere (balloon) for 3.5 h at $0-5{ }^{\circ} \mathrm{C}$, filtered through celite and washed with hot $\mathrm{MeOH}(2 \times 30 \mathrm{ml})$. The washings were combined with the filtrate and concentrated in vacuo. The residue was purified on reverse phase $\mathrm{CC}\left(\mathrm{C} 18\right.$-silica gel; $\left.\mathrm{H}_{2} \mathrm{O} / \mathrm{MeOH} 100: 0 \rightarrow 20: 80\right)$ to afford $283 \mathrm{mg}(65 \%)$ of s14 as a white solid. TLC $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 4: 6\right): R_{f} 0.51 .{ }^{1} \mathrm{H}-\mathrm{NMR}(600 \mathrm{MHz}$, (D_{6})DMSO): 12.78 (br. s, COOH), 11.41 (br. s, NHCO), 10.61 ($d, J=6.0 \mathrm{~Hz}, \mathrm{NHCO}$), $8.99(s, \mathrm{NHCO}), 8.15(d, J=7.8, \mathrm{NHCO}), 8.03(d, J=6.0, \mathrm{H}-(\mathrm{C} 6)), 7.89(d, J=7.2,2$ arom. H), 7.71 ($d d$ appearing as $t, J=7.2,2$ arom. H), 7.51 ($d, J=8.4 \mathrm{~Hz}, N H F m o c$), 7.41 ($d d$ appearing as $t, J=7.2,2$ arom. H), 7.33 (dd appearing as $t, J=7.2,2$ arom. H), 4.52-4.56 ($m, \mathrm{H}-\mathrm{C}(\alpha-\mathrm{Asp})$), 4.20-4.25 ($m, 3 \mathrm{H}, \mathrm{HC}(\mathrm{Fmoc}), \mathrm{H}_{2} \mathrm{CC}(\mathrm{Fmoc})$), 4.00-4.04 (m, $\mathrm{H}-\mathrm{C}(\alpha \mathrm{Glu})), 2.66(d d, J=16.2,6.0,1 \mathrm{H}-\mathrm{C}(\beta \mathrm{Asp})), 2.56(d d, J=16.2,7.2,1 \mathrm{H}-\mathrm{C}(\beta \mathrm{Asp}))$, 2.32-2.45 ($m, 2 \mathrm{H}-\mathrm{C}(\gamma \mathrm{Glu})$), 1.90-1.96 ($m, 1 \mathrm{H}-\mathrm{C}(\beta \mathrm{Glu})$), 1.74-1.80 ($m, 1 \mathrm{H}-\mathrm{C}(\beta \mathrm{Glu})$), 1.36 $\left(s, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(150 \mathrm{MHz},\left(\mathrm{D}_{6}\right) \mathrm{DMSO}\right): 172.16(\mathrm{COOH}), 171.38(\mathrm{CO}), 171.09$ (CO), 169.21 (CO), 160.69 (C4), 155.83 (NHCOFmoc), 149.62 (C2), 143.82 (arom. C), 140.66 (arom. C), 129.48 (C-6), 127.61 (arom. C), 127.06 (arom. C), 125.28 (arom. C), 120.26 (arom. C), 113.16 (C5), $80.32\left(\underline{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 65.66\left(\mathrm{CH}_{2}(\mathrm{Fmoc})\right), 54.03(\mathrm{C}(\alpha$? ? ?)),
48.64 ($\mathrm{C}(\alpha-\mathrm{Glu})$), 46.61 ($\mathrm{CH}(\mathrm{Fmoc}))$, 37.13 ($\mathrm{C}(\beta$? ? ?)), 32.31 ($\mathrm{C}(\gamma \mathrm{Glu})$), 28.05 (C(BGlu)), $27.57\left(\mathrm{C}\left(\underline{\mathrm{C}}_{3}\right)_{3}\right)$. ESI-MS: $672\left(30,[M+\mathrm{Na}]^{+}\right), 650\left(100,[M+\mathrm{H}]^{+}\right)$.

1-benzyl-4-tert-butyl-2-\{2-[((9H-fluoren-9-yl)methoxy)carbonylamino)-5-(2-amino-6-oxo-1,6-dihydropyrimidin-5-ylamino)-5-oxopentanamido ${ }^{\text {ssuccinate (}} \mathbf{(\mathbf { s 1 5 }) \text { : To a }}$ stirred solution of the acid $\mathbf{s 8}(2.75 \mathrm{~g}, 4.36 \mathrm{mmol})$ in 12 ml of dry DMF was added HBTU $(2.48 \mathrm{~g}, 6.54 \mathrm{mmol})$, HOBt ($588 \mathrm{mg}, 4.36 \mathrm{mmol}$) and 5 -aminoisocytosine ($1.1 \mathrm{~g}, 8.72$ mmol). The stirring was stirred at $35{ }^{\circ} \mathrm{C}$ for 36 h , diluted with 100 ml of $\mathrm{H}_{2} \mathrm{O}$ and extracted with $\operatorname{AcOEt}(3 \times 80 \mathrm{ml})$. The organic phase was washed with 150 ml of sat. aq. NaHCO_{3} solution, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo. The residue was purified by $\mathrm{CC}\left(\mathrm{SiO}_{2}\right.$, eluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 98: 2$ to $\left.88: 12\right)$ to afford $2.41 \mathrm{~g}(75 \%)$ of $\mathbf{s 1 5}$ as a white solid. TLC $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 92: 8\right): R_{f} 0.53 .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz},\left(\mathrm{D}_{6}\right) \mathrm{DMSO}\right)$: 11.39 (br. s, NH), 8.74 (br. s, NHCO), 8.39 ($d, J=7.8, \mathrm{NHCO}$), 8.15 ($s, \mathrm{H}-(\mathrm{C} 6)$), 7.88 (d, $J=7.2,2$ arom. H), $7.71(d d$ appearing as $t, J=7.2,2 \operatorname{arom} . \mathrm{H}), 7.53(d, J=8.4 \mathrm{~Hz}$, $N H F m o c), 7.41$ ($d d$ appearing as $t, J=7.2,2$ arom. H), 7.28-7.33 ($m, 7$ arom. H), 6.49 (br. s, NH_{2}), $5.11\left(d, J=17.4, \mathrm{PhCH}_{2} \mathrm{O}\right), 4.67-4.73$ ($m, \mathrm{H}-\mathrm{C}(\alpha-\mathrm{Asp})$), 4.21-4.30 ($m, 3 \mathrm{H}$, $\left.\mathrm{HC}(\mathrm{Fmoc}), \mathrm{H}_{2} \mathrm{CC}(\mathrm{Fmoc})\right)$, 4.03-4.06 ($m, \mathrm{H}-\mathrm{C}(\alpha \mathrm{Glu})$), 2.73 ($d d, J=16.8,6.0,1 \mathrm{H}-$ $\mathrm{C}(\beta \mathrm{Asp})$), 2.62 ($d d, J=16.8,6.6,1 \mathrm{H}-\mathrm{C}(\beta$ Asp)), 2.29-2.40 ($m, 2 \mathrm{H}-\mathrm{C}(\gamma \mathrm{Glu})$), 1.93-1.95 ($m, 1 \mathrm{H}-\mathrm{C}(\beta \mathrm{Glu})$), 1.78-1.80 ($\mathrm{m}, 1 \mathrm{H}-\mathrm{C}(\beta \mathrm{Glu})$), $1.33\left(s, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}(150 \mathrm{MHz}$, (D_{6})DMSO): $171.55(\mathrm{CO}), 170.59(C O), 170.37(\mathrm{CO}, \mathrm{C}(4)), 168.86(\mathrm{CO}), 155.75$ (NHCOFmoc, C(2)), 152.75 (C(6)), 143.66 (arom. C), 140.59 (arom. C), 135.59 (arom. C), 128.23 (arom. C), 127.85 (arom. C), 127.66 (arom. C), 127.52 (arom. C), 126.97 (arom. C), 125.20 (arom. C), 119.98 (arom. C), 115.91 (C(5)), $80.49\left(\underline{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 66.16$ $\left(\mathrm{CH}_{2}\right.$ (Fmoc)), $65.60\left(\mathrm{PhCH}_{2} \mathrm{O}\right), 53.96$ ($\mathrm{C}(\alpha$? ? ?)), 48.53 ($\mathrm{C}(\alpha-\mathrm{Glu})), 46.54$ ($\mathrm{CH}(\mathrm{Fmoc})$), 36.79 ($\mathrm{C}\left(\beta\right.$? ? ?)), 32.43 ($\mathrm{C}(\gamma \mathrm{Glu})$), 28.10 ($\mathrm{C}(\mathrm{\beta Glu})$), $27.47\left(\mathrm{C}_{\left.\left(\mathrm{CH}_{3}\right)_{3}\right) \text {. }}\right.$ ESI-MS: $761\left(28,[M+\mathrm{Na}]^{+}\right), 739\left(35,[M+\mathrm{H}]^{+}\right)$.

2-\{2-[((9H-fluoren-9-yl)methoxy)carbonylamino)-5-(2-amino-6-oxo-1,6-
dihydropyrimi din-5-ylamino)-5-oxopentanamido\}-4-tert-butoxy-4-oxobutanoic acid (s16): To a stirred suspension of $10 \% \mathrm{Pd}-\mathrm{C}(150 \mathrm{mg})$ in 15 ml of DMF/MeOH 1:3 was added the compound $\mathbf{s 1 5}(500 \mathrm{mg}, 0.67 \mathrm{mmol})$ in 5 ml of DMF, followed by formic acid $(800 \mu \mathrm{l})$ at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred under H_{2} atmosphere (balloon) for 3.5 h at $0-5{ }^{\circ} \mathrm{C}$, filtered through celite and washed with hot $\mathrm{MeOH}(2 \times 30 \mathrm{ml})$. The washings
were combined with the filtrate and concentrated in vacuo. The residue was purified on reverse phase $\mathrm{CC}\left(\mathrm{C} 18\right.$-silica gel; $\left.\mathrm{H}_{2} \mathrm{O} / \mathrm{MeOH} 100: 0 \rightarrow 30: 70\right)$ to afford $364 \mathrm{mg}(83 \%)$ of s16 as a white solid. TLC ($\mathrm{AcOEt} / \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O} / \mathrm{CH}_{3} \mathrm{COOH} 75: 15: 6: 2$): $R_{f} 0.54 .{ }^{1} \mathrm{H}-\mathrm{NMR}$ ($600 \mathrm{MHz},\left(\mathrm{D}_{6}\right.$)DMSO): 12.77 (br. s, COOH), 11.31 (br. s, NHCO), 8.75 (s, NHCO), 8.17 ($d, J=7.8, \mathrm{NHCO}$), 8.11 ($s, \mathrm{H}-(\mathrm{C} 6)$), 7.88 ($d, J=7.2,2$ arom. H), 7.72 ($d d$ appearing as $t, J=7.2,2$ arom. H), $7.52(d, J=8.4 \mathrm{~Hz}, N H F m o c), 7.41$ ($d d$ appearing as $t, J=7.2,2$ arom. H), 7.33 ($d d$ appearing as $t, J=7.2,2$ arom. H), 6.45 (br. s, NH_{2}), 4.524.56 ($m, \mathrm{H}-\mathrm{C}\left(\alpha-\mathrm{Asp}\right.$)), 4.20-4.28 ($m, 3 \mathrm{H}, \mathrm{HC}(\mathrm{Fmoc}), \mathrm{H}_{2} \mathrm{CC}(\mathrm{Fmoc})$), 4.00-4.04 ($m, \mathrm{H}-$ $\mathrm{C}(\alpha \mathrm{Glu})$), 2.66 ($d d, J=16.2,6.0,1 \mathrm{H}-\mathrm{C}(\beta$ Asp $)$), 2.56 ($d d J=16.2,7.2,1 \mathrm{H}-\mathrm{C}(\beta$ Asp $)$), 2.32-2.40 ($m, 2 \mathrm{H}-\mathrm{C}(\gamma \mathrm{Glu})$), 1.92-1.97 ($m, 1 \mathrm{H}-\mathrm{C}(\beta \mathrm{Glu})$), 1.75-1.82 ($m, 1 \mathrm{H}-\mathrm{C}(\beta \mathrm{Glu})$), 1.36 $\left(s, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(150 \mathrm{MHz},\left(\mathrm{D}_{6}\right) \mathrm{DMSO}\right): 172.19(\mathrm{COOH}), 171.31(\mathrm{CO}), 170.67$ (CO, C(4)), 169.12 (CO), 155.74 (NHCOFmoc, C(2)), 152.89 (C(6)), 143.77 (arom. C), 140.59 (arom. C), 127.53 (arom. C), 126.98 (arom. C), 125.20 (arom. C), 119.99 (arom. $\mathrm{C}), 115.90(\mathrm{C} 5), 80.24\left(\underline{\mathrm{C}}\left(\mathrm{CH}_{3}\right)_{3}\right), 65.61\left(\mathrm{CH}_{2}(\mathrm{Fmoc})\right), 54.03(\mathrm{C}(\alpha$? ? ?)), $48.62(\mathrm{C}(\alpha-$ Glu)), 46.56 ($\mathrm{CH}(\mathrm{Fmoc})$), 37.11 ($\mathrm{C}(\beta$? ? ?)), 32.39 ($\mathrm{C}(\gamma \mathrm{Glu})$), 28.10 ($\mathrm{C}(\beta \mathrm{Glu}))$, 27.53 $\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$. ESI-MS: $649\left(100,[M+\mathrm{H}]^{+}\right)$.

Figure 2. Synthesis of the three members of the 5-amino-pyrimidine family. (j) Raney® 2800 nickel, H_{2} (ballon), DMF, RT, 24h.(k) $\mathrm{HNO}_{3} / \mathrm{H}_{2} \mathrm{SO}_{4}(5: 1), 80^{\circ} \mathrm{C}$, 18 h . (l) $\mathrm{H}_{2},(7 \% \mathrm{wt}) \mathrm{Pd} / \mathrm{C}(10 \%), \mathrm{H}_{2} \mathrm{O} / \mathrm{EtOH}(2: 1)$, rt, 3h. (m) $\mathrm{HNO}_{3} / \mathrm{H}_{2} \mathrm{SO}_{4}(1: 1), 90^{\circ} \mathrm{C}$, 1h. (n) $\mathrm{H}_{2},(10 \% \mathrm{wt}) \mathrm{Pd} / \mathrm{C}(10 \%), \mathrm{H}_{2} \mathrm{O} / \mathrm{EtOH}$ (9:1), rt, 5 h . (o) 0.5 M of $\mathbf{s 2 4}, 15.18 \mathrm{~N}, \mathrm{~N}$-dimethylformamide dimethylacetal, $105^{\circ} \mathrm{C}$. (p) 0.05 M of $\mathbf{s 2 5}, \mathrm{NH}_{4} \mathrm{OH}, \mathrm{RT}, 60 \mathrm{~h}$.

2,4,5-triaminopyrimidine ($\mathbf{s 1 8}$): ${ }^{[4]}$ To a suspension of Raney® 2800 nickel (4 g wet, Aldrich) in 100 ml of DMF was added 5-nitro-2,4-diaminopyrimidine s17 (5 g, 32.2 mmol, TRC Biomedical Research Chemicals) and stirred under H_{2} atmosphere (Balloon) for 24 h at RT The suspension was filtered over celite and washed with DMF ($2 \times 50 \mathrm{ml}$) and $\mathrm{MeOH}(2 \mathrm{x} 40 \mathrm{ml})$. The washings were combined with the filtrate and removed in vacuo to afford 3.7 g (92%) of $\mathbf{s 1 8}$ as a purple solid. TLC $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{OH} 7: 3\right)$: $\mathrm{R}_{f} 0.48$. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz},\left(\mathrm{D}_{6}\right) \mathrm{DMSO}\right): 7.23$ (s, H-(C6)), 5.96 (br. s, NH_{2}), 5.14 (br. s, NH_{2}), 3.75 (br. s, NH_{2}). ${ }^{13} \mathrm{C}-\mathrm{NMR}$ ($150 \mathrm{MHz},\left(\mathrm{D}_{6}\right) \mathrm{DMSO}$): 157.12 ($\mathrm{C}(4)$), 155.84 ($\mathrm{C}(2)$), 140.12 (C(6)), 118.09 (C(5)). ESI-MS: $148\left(5,[M+\mathrm{Na}]^{+}\right), 126\left(100,[M+\mathrm{H}]^{+}\right) . \mathrm{UV}$ $\left(1.25 \mathrm{mmol} \mathrm{NaH}_{2} \mathrm{PO}_{4}, 12.5 \mu \mathrm{M} \mathrm{Na} 2 \mathrm{EDTA}, \mathrm{pH} 7\right): \lambda_{\max }=226(\varepsilon=8200), \lambda_{\max }=295(\varepsilon=$ $4170), \lambda_{\text {min }}=267(\varepsilon=2650)$.

4-amino-5-nitropyrimidin-2(1H)-one (s20): ${ }^{[5]}$ 4-aminopyrimidin-2(1 H)-one $\mathbf{~} \mathbf{1 9}$ ($20 \mathrm{~g}, 180 \mathrm{mmol}$, Acros) was added over 30 min to a stirred mixture of anhydrous nitric acid (125 ml) and conc. sulfuric acid $(25 \mathrm{ml})$. The resulting mixture was heated at $80^{\circ} \mathrm{C}$ for 18 h . The mixture was poured onto ice (1 kg), neutralized with sat. aq. NaOH . When the mixture reached pH 7 a white solid start to precipitate. The solid was filtered off and washed with water ($2 \times 300 \mathrm{ml}$). The crude solid was dissolved in 700 ml of hot water and the pH adjusted to 12 with sat. aq. NaOH , followed by neutralization with conc. acetic acid. The mixture was cooled on ice bath for 3 h , the resulting solid filtered, washed with ice-cold water ($2 \times 400 \mathrm{ml}$) and dried in h.v. to give $25.85 \mathrm{~g}(92 \%)$ of $4-$ amino-5-nitropyrimidin- $2(1 \mathrm{H})$-one $\mathbf{s 2 0}$ as a pale yellow solid. TLC $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{OH}\right.$ 8:2): $\mathrm{R}_{f} 0.55 .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz},\left(\mathrm{D}_{6}\right) \mathrm{DMSO}\right): 8.88(s, \mathrm{H}-\mathrm{C}(6)), 7.95$ (br. s, NH_{2}). ${ }^{13} \mathrm{C}-$ NMR (75 MHz, (D_{6})DMSO): 163.40 (C(2)), 158.59 (C(4)), 157.47 (C(6)), 116.78 (C(5)).

4,5-diaminopyrimidin- $2(1 \mathrm{H})$-one ($\mathbf{s 2 1}$): ${ }^{[5]} \mathrm{A}$ suspension of $\mathbf{s 2 0}(10 \mathrm{~g}, 64 \mathrm{mmol})$ and $10 \% \mathrm{Pd}-\mathrm{C}(700 \mathrm{mg})$ in 105 ml of $\mathrm{H}_{2} \mathrm{O} / \mathrm{EtOH}(2: 1)$ was shaken under H_{2} atmosphere (55 psi .) in a Parr apparatus until no more hydrogen was absorbed (3 h at RT). The suspension was filtered over celite and washed with hot water ($2 \times 200 \mathrm{ml}$), the washings were combined with the filtrate and concentrated in vacuo. The residue was dissolved in 60 ml of hot water in an attempt to crystallize, but instead gave $7.2 \mathrm{~g}(89 \%)$ of $\mathbf{s} 21$ as an amorphous yellow solid. TLC $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{OH} 7: 3\right): \mathrm{R}_{f} 0.41 .{ }^{1} \mathrm{H}-\mathrm{NMR}(600 \mathrm{MHz}$, (D_{6})DMSO): 6.79 (s, H-(C6)), 3.84 (br. s, NH_{2}), 3.36 (br. s, NH_{2}). ${ }^{13} \mathrm{C}-\mathrm{NMR}(150 \mathrm{MHz}$, (D_{6})DMSO): 161.62 ($\mathrm{C}(4)$), 155.64 ($\mathrm{C}(2)$), 123.79 ($\mathrm{C}(6)$), 114.94 (C(5)). ESI-MS: 149 $\left(5,\left[\mathrm{M}+\mathrm{Na}^{+}\right]\right), 127\left(100,\left[\mathrm{M}+\mathrm{H}^{+}\right]\right) . \mathrm{UV}\left(\mathrm{c}=68.2 \times 10^{-6} \mathrm{M}\right.$ in $\left(1.25 \mathrm{mmol} \mathrm{NaH}_{2} \mathrm{PO}_{4}, 12.5\right.$ $\mu \mathrm{M} \mathrm{Na} 2 \mathrm{EDTA}, \mathrm{pH} 7$): $\lambda_{\max }=290 \mathrm{~nm}(\varepsilon=4500) ; \lambda_{\max }=220 \mathrm{~nm}(\varepsilon=11900) ; \lambda_{\min }=260 \mathrm{~nm}$ $(\varepsilon=2700)$. Spectra data were identical with those reported before. ${ }^{[4]}$

2-amino-5-nitropyrimidin-4(3H)-one ($\mathbf{s 2 3}$): ${ }^{[5]} 2$-aminopyrimidin-4(3H)-one $\mathbf{s 2 2}$ (6 g, 54 mmol, TRC Biomedical Research Chemicals) was added over 30 min to a stirred mixture of anhydrous nitric acid (18 ml) and conc. sulfuric acid (18 ml). The resulting mixture was heated at $80^{\circ} \mathrm{C}$ for 1.5 h and then was poured onto 100 ml of ice-water. The clear yellow solution was made slightly alkaline with aq. 5 M NaOH soln. The mixture was cooled on ice bath for 3 h , the resulting solid filtered, washed with ice-cold water (2 $\mathrm{x} 100 \mathrm{ml})$ and dried in hv to afford $7.41 \mathrm{~g}(88 \%)$ of 2-amino-5-nitropyrimidin-4(3H)-one
s23 as a pale yellow solid. TLC $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{OH} 8: 2\right)$: $\mathrm{R}_{f} 0.50 .{ }^{1} \mathrm{H}-\mathrm{NMR}(600 \mathrm{MHz}$, (D_{6})DMSO): 8.64 ($s, \mathrm{H}-(\mathrm{C} 6)$), 6.35 (br. s, NH_{2}). ${ }^{13} \mathrm{C}-\mathrm{NMR}$ ($150 \mathrm{MHz},\left(\mathrm{D}_{6}\right) \mathrm{DMSO}$): 165.06 (C(4)), 164.62(C(2)), 158.07 (C(6)), 125.47 (C(5)). ESI-MS: 179 [100, $[\mathrm{M}+$ $\left.\left.\mathrm{Na}^{+}\right]\right), 157\left(60,\left[\mathrm{M}+\mathrm{H}^{+}\right]\right)$.

2,5-diaminopyrimidin-4(3H)-one ($\mathbf{s} 24$): ${ }^{[6]}$ A suspension of $\mathbf{s 2 3}(6 \mathrm{~g}, 38.4 \mathrm{mmol})$ and $10 \% \mathrm{Pd}-\mathrm{C}(600 \mathrm{mg})$ in 200 ml of $\mathrm{H}_{2} \mathrm{O} / \mathrm{EtOH}(9: 1)$ was shaken under H_{2} atmosphere (55 psi .) in a Parr apparatus until no more hydrogen was absorbed (5 h at RT). The suspension was filtered over celite and washed with hot water ($2 \times 100 \mathrm{ml}$), the washings were combined with the filtrate. The solvents were removed in vacuo to afford 4.55 g (94 \%) of $\mathbf{s} 24$ as a yellow solid. TLC $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{OH} 7: 3\right)$: $\mathrm{R}_{f} 0.63$. ${ }^{1} \mathrm{H}-\mathrm{NMR}(600 \mathrm{MHz}$, (D_{6})DMSO): 6.88 ($s, \mathrm{H}-\left(\mathrm{C} 6\right.$)), 4.96 (br. s, NH_{2}), 3.40 (br. $s, \mathrm{NH}, \mathrm{NH}_{2}$). ${ }^{13} \mathrm{C}-\mathrm{NMR}(150$ MHz, (D_{6})DMSO): 168.78 (C(4)), 157.66 (C(2)), 134.17 (C(6)), 123.71 (C(5)). ESI-MS: $149\left(10,[M+N a]^{+}\right), 127\left(100,[M+H]^{+}\right) . \mathrm{UV}\left(1.25 \mathrm{mmol} \mathrm{NaH}{ }_{2} \mathrm{PO}_{4}, 12.5 \mu \mathrm{M}\right.$ $\left.\mathrm{Na}_{2} E D T A, ~ p H ~ 7 ; ~ F i g u r e ~ 4\right): ~ \lambda_{\max }=287 \mathrm{~nm}(\varepsilon=4000) ; \lambda_{\max }=239 \mathrm{~nm}(\varepsilon=6100) ; \lambda_{\max }=217$ $\mathrm{nm}(\varepsilon=10,280) ; \lambda_{\min }=266 \mathrm{~nm}(\varepsilon=3400)$.
(1E, 1'E)-N', $N^{\prime \prime}$-(1-methyl-6-oxo-1,6-dihydropyrimidine-2,5-diyl)bis(N,N-
dimethylformimidamide) ($\mathbf{s 2 5}$): A stirred suspension of 5 -aminoisocytosine (200 mg , $1.58 \mathrm{mmol}, 0.5 \mathrm{M}$) in N, N-dimethylformamide dimethylacetal ($3.2 \mathrm{ml}, 24.0 \mathrm{mmol}$) was heated to boiling for 30 h (after 4 h a clear solution resulted) under nitrogen atmosphere. The N,N-dimethylformamide dimethylacetal was removed in vacuo to give 383 mg (97% yield) of $\mathbf{s} \mathbf{2 5}$ as a yellow solid. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz},\left(\mathrm{D}_{6}\right) \mathrm{DMSO}\right): 8.52(s, \mathrm{HC}=\mathrm{N}), 8.44$ ($s, \mathrm{HC}=\mathrm{N}$), 7.03 ($s, \mathrm{H}-\mathrm{C}(6)$), 3.43 ($s, 3 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{3}$), 3.14 ($s, 3 \mathrm{H},=\mathrm{C}-\mathrm{N}-\mathrm{CH}_{3}$), $3.03(s, 3 \mathrm{H}$, $=\mathrm{C}-\mathrm{N}_{-} \mathrm{CH}_{3}$), 2.88 (br. $s, 6 \mathrm{H},=\mathrm{C}-\mathrm{N}_{-}-\mathrm{CH}_{3}$). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(150 \mathrm{MHz},\left(\mathrm{D}_{6}\right) \mathrm{DMSO}\right)$: $160.31(\mathrm{C}(4)), 156.86(\mathrm{C}(2)), 153.88$ (=C- of side chain), 153.62 (=C- of side chain), $141.06(\mathrm{C}(6)), 129.04(\mathrm{C}(5)), 40.36\left(\mathrm{CH}_{3}\right.$ at $\left.\mathrm{N}-1\right), 34.45\left(\mathrm{CH}_{3}\right.$ of side chain), $29.16\left(\mathrm{CH}_{3}\right.$ of side chain). ESI-MS: $273\left(33[M+\mathrm{Na}]^{+}\right), 251\left(100[M+\mathrm{H}]^{+}\right)$.

A mixture of the $\mathbf{s} 25(200 \mathrm{mg}, 0.8 \mathrm{mmol}, 0.05 \mathrm{M})$ and concentrated ammonium hydroxide solution (16 ml) was stirred at room temperature for 50 h . The reaction mixture was concentrated in vacuo. The resulting residue was purified by $\mathrm{CC}\left(\mathrm{SiO}_{2}\right.$, eluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 95: 05$ to $70: 30$) to afford 69.5 mg ($0.49 \mathrm{mmol}, 62 \%$) of $\mathbf{s 2 6}$ as a pale yellow solid and $28.22 \mathrm{mg}(0.16 \mathrm{mmol}, 21 \%)$ of $\mathbf{s} \mathbf{2 7}$ as a yellow solid.

2,5-diamino-3-methylpyrimidin-4(3H)-one (s26): TLC $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{OH} 8: 2\right)$: R_{f} $0.36 .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz},\left(\mathrm{D}_{6}\right) \mathrm{DMSO}\right): 7.02$ ($s, \mathrm{H}-\mathrm{C}(6)$), 6.13 (br. $s, 2 \mathrm{H}, \mathrm{NH}_{2}-\mathrm{C}(2)$), 3.89 (br. $s, 2 \mathrm{H}, \mathrm{NH}_{2}-\mathrm{C}(5)$), 3.28 ($s, 3 \mathrm{H}, \mathrm{N}^{2}-\mathrm{CH}_{3}$). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(150 \mathrm{MHz},\left(\mathrm{D}_{6}\right) \mathrm{DMSO}\right)$: $158.66(\mathrm{C}(4)), 149.24(\mathrm{C}(2)), 131.22(\mathrm{C}(6))$, $124.39(\mathrm{C}(5))$. ESI-MS: $141\left(100[M+\mathrm{H}]^{+}\right)$. UV (c= $97.1 \times 10^{-6} \mathrm{M}$ in $1.25 \mathrm{mmol} \mathrm{NaH}_{2} \mathrm{PO}_{4}, 12.5 \mu \mathrm{M} \mathrm{Na} 2$ EDTA, pH 7; Figure 4): $\lambda_{\text {max }}$ $=308(\varepsilon=7300)$ and $\lambda_{\max }=242(\varepsilon=6900)$.

N-(2-amino-1-methyl-6-oxo-1,6-dihydropyrimidin-5-yl)formamide (s27): TLC (DCM/Methanol 8:2): $\mathrm{R}_{f} 0.50 .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz},\left(\mathrm{D}_{6}\right) \mathrm{DMSO}\right): 9.33$ (br. $s, 1 \mathrm{H}, \mathrm{NH}$), $8.30(s, \mathrm{O}=\mathrm{C}-\mathrm{H}), 8.16$ (H-C(6)), 7.02 (br. $s, 2 \mathrm{H}, \mathrm{NH}_{2}$), $3.30\left(s, \mathrm{~N}^{2} \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}(150$ MHz, (D_{6})DMSO): 160.09 (H-C=O), 157.79 (C(4)), 153.03 (C(2)), 143.02 (C(6)), 114.24(C(5)), $28.87\left(\mathrm{~N}^{2} \mathrm{CH}_{3}\right)$. ESI-MS: $169\left(100[\mathrm{M}+\mathrm{H}]^{+}\right)$. UV ($\mathrm{c}=94.5 \times 10^{-6} \mathrm{M}$ in $1.25 \mathrm{mmol} \mathrm{NaH}{ }_{2} \mathrm{PO}_{4}, 12.5 \mu \mathrm{M} \mathrm{Na} 2$ EDTA, pH 7; Figure 4): $\lambda_{\text {max }}=295(\varepsilon=8800)$ and $\lambda_{\text {max }}$ $=235$ ($\varepsilon=6900$).
(E)-N-(2-((dimethylamino)methyleneamino)-1-methyl-6-oxo-1,6-dihydropyrimidin-5yl)formamide ($\mathbf{s 2 8}$): A suspension of $\mathbf{s 2 5}(20 \mathrm{mg}, 0.08 \mathrm{mmol})$ in $300 \mu \mathrm{l}$ of DMFdimethylacetal was heated in an open vial for 30 seconds at $120^{\circ} \mathrm{C}$, until a clear solution was obtained. The vial was covered with a small portion of cotton and left at room temperature for 4 days until no more DMF-dimethylacetal was observed (slow evaporation of DMF dimethylacetal was observed, b.p. $=102^{\circ} \mathrm{C}$), to give two clearly differentiable solids (mixed with each other): pale yellow crystals ($\mathbf{s 2 8}$) and a yellow powder (that looks very much like the starting material $\mathbf{s 2 5}$). A pale yellow crystal was carefully separated and given for x-ray analysis. Very small quantities of pale yellow crystals were separated and submitted for mass spectroscopy.

The remaining mixture of solids ($\mathbf{s} 25$ and $\mathbf{s 2 8}$) was characterized by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}$-NMR spectroscopy; by elimination of the signals corresponding to the known compound $\mathbf{~ 2 5}$, signals corresponding to $\mathbf{~} \mathbf{2 8}$ were assigned. s28: ${ }^{1} \mathrm{H}-\mathrm{NMR}(600 \mathrm{MHz}$, (D_{6})DMSO): 9.52 (s, HN), 8.58 ($\mathrm{s}, \mathrm{HC=O}$), 8.54 ($s, \mathrm{HC=N}$), 8.24 ($\mathrm{s}, \mathrm{H}-\mathrm{C}(6)$), 3.47 (s , $3 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{3}$), 3.17 ($\mathrm{s}, 3 \mathrm{H},=\mathrm{C}-\mathrm{N}-\mathrm{CH}_{3}$), 3.05 ($\mathrm{s}, 3 \mathrm{H},=\mathrm{C}-\mathrm{N}-\mathrm{CH}_{3}$). ${ }^{13} \mathrm{C}-\mathrm{NMR}(150 \mathrm{MHz}$, (D_{6})DMSO): $159.76(\mathrm{CH}=0), 158.13(\mathrm{C}(4)), 157.60(\mathrm{C}(2)), 154.5(\mathrm{CH}=\mathrm{N}$ of side chain), $139.02(\mathrm{C}(6)), 118.51(\mathrm{C}(5)), 40.57\left(\mathrm{CH}_{3}\right.$ at $\left.\mathrm{N}-1\right), 34.63\left(\mathrm{CH}_{3}\right.$ of side chain), $29.40\left(\mathrm{CH}_{3}\right.$ of side chain). ESI-MS: $246\left(5[M+N a]^{+}\right), 224\left(100[M+H]^{+}\right)$.

Figure 3: X-ray structure of $\mathbf{s 2 8}$. ${ }^{[7]}$

Figure 4. UV-spectra of 5-amino-isocytosine and its derivatives. Measurements were made in 1.25 mmol aq. $\mathrm{NaH}_{2} \mathrm{PO}_{4}, 12.5 \mu \mathrm{M} \mathrm{Na} \mathrm{Na}_{2}$ EDTA, pH 7 .

Table 1. HPLC and MS Data of 5-aminopyrimidine Tagged Oligo-dipeptide Sequences. ${ }^{[a]}$

No.	Sequences ${ }^{\text {[a] }}$	Deprotection ${ }^{[b]}$ Method	Analytical HPLC ${ }^{\text {[c] }}$		MALDI-TOF-M ${ }^{\text {[]] }}$	
			$\begin{aligned} & 0 \rightarrow 100 \% \mathrm{~B}, \\ & \mathrm{t}_{\mathrm{R}} \text { [min.] } \end{aligned}$	pH	$\begin{gathered} {[\mathrm{M}+\mathrm{H}]^{+}} \\ (\text {obs. }) \end{gathered}$	$\begin{array}{r} {[\mathrm{M}+\mathrm{H}]^{+}} \\ \text {(calc.) } \end{array}$
1	${ }^{\mathrm{HOOC}}$ AspGlu $\left({ }^{\text {AP }} \mathrm{OO}\right)_{12}$	A	30.39	11.0	4297	4296
2	${ }^{\text {HoOC }}$ AspGlu $\left.{ }^{\text {AP }} \mathrm{O} \mathrm{OO}\right)_{16}$	A	$16.24{ }^{\text {[d] }}$	11.0	5671	5664
3	${ }^{\mathrm{HOOC}}$ AspGlu $\left.{ }^{\text {AP }}{ }^{\text {P }} \mathrm{NN}\right)_{12}$	A	$13.60{ }^{\text {[d] }}$	8.0	4233	4232
4	${ }^{\mathrm{HOOC}}$ AspGlu [$\left.\left({ }^{\mathrm{AP}} \mathrm{NN}\right)\left({ }^{\text {AP }} \mathrm{OO}\right)\right]_{6}$	A	26.81	11.0	4244	4242
5	${ }^{\mathrm{HoOC}} \mathbf{A s p G I u}\left({ }^{\text {AP }} \mathrm{NN}\right)_{6}\left({ }^{\text {AP }} \mathrm{OO}\right)_{6}$	A	25.92	8.5	4248	4242
6	${ }^{\mathrm{HOOC}} \mathbf{A s p G l u}\left({ }^{\mathrm{AP}} \mathrm{OO}\right)_{4}\left({ }^{\mathrm{AP}} \mathrm{ON}\right)_{4}\left({ }^{\mathrm{AP}} \mathrm{OO}\right)_{4}$	A	$14.90{ }^{\text {[d] }}$	11.0	4249	4251
7	${ }^{\mathrm{HOOC}} \mathbf{A s p G l u}\left({ }^{\mathrm{AP}} \mathrm{OO}\right)_{4}\left({ }^{\mathrm{AP}} \mathrm{NO}\right)_{4}\left({ }^{\mathrm{AP}} \mathrm{OO}\right)_{4}$	A	29.09	11.0	4256	4251
8	${ }^{\mathrm{HOOC}}$ AspGlu [${ }^{\text {AP }} \mathrm{ON}$) $\left.\left({ }^{\mathrm{AP}} \mathrm{NO}\right)\right]_{6}$	A	$12.83{ }^{[\mathrm{d}]}$	11.0	4239	4243
9	${ }^{\mathrm{HOOC}}$ AspGlu $\left({ }^{\text {AP }} \mathrm{NO}\right)_{6}\left({ }^{\mathrm{AP}} \mathrm{ON}\right)_{6}{ }^{\mathrm{NHAc}}$	A	23.17	7.8	4285	4285

[a] All sequences refer to 5-aminopyrimidine tagged oligo-dipeptide backbone sequences (Figure 1 in main paper). N,N = 2,4,5-triaminopyrimidin-5-yl; O,O $=2,4$-dioxo-5-aminopyrimidin-5-yl; $\mathrm{N}, \mathrm{O}=4$-oxo-2,5-diaminopyrimidin-5-yl; $\mathrm{O}, \mathrm{N}=2$-oxo-4,5-diaminopyrimidin-5-yl;AcNH = end NH_{2} group was acetylated after final FMOC-deprotection. [b] Method A: TFA/m-cresol (95:5); [c] MONO-Q HR 5/5 Pharmacia, 100.5 cm or Nucleogen-DEAE 60-7 Machery Nagel, 125 4, flow $1 \mathrm{ml} / \mathrm{min}$. Mobile phase: eluant A: $10 \mathrm{~mm} \mathrm{Na}_{2} \mathrm{HPO}_{4}, \mathrm{H}_{2} \mathrm{O}$; eluant B: $10 \mathrm{~mm} \mathrm{Na}_{2} \mathrm{HPO}_{4}, 1 \mathrm{~m} \mathrm{NaCl}, \mathrm{H}_{2} \mathrm{O}$. [d] Nucleogen-DEAE 60-7 Machery Nagel, 125 4, flow $1 \mathrm{ml} / \mathrm{min}$. Mobile phase: eluant A: $10 \mathrm{~mm} \mathrm{Na}_{2} \mathrm{HPO}_{4}, \mathrm{H}_{2} \mathrm{O}, \mathrm{pH} 7.0$; eluant $\mathrm{B}: 10 \mathrm{~mm} \mathrm{Na}_{2} \mathrm{HPO}_{4}, 1 \mathrm{~m} \mathrm{NaCl}, \mathrm{H}_{2} \mathrm{O}, \mathrm{pH} 7.0$. [e] Matrix assisted laser-desorption ionization time-of-flight mass spectroscopy; matrix: 3-hydropicolinic acid or α-cyanohdroxycinnamic acid or 2,4,6trihydroxyacetophenone and ammonium citrate buffer.

Figure 5. Temperature dependent CD-spectrum of the duplexes formed by AspGlu($\left.{ }^{\mathrm{AP}} \mathrm{OO}\right)_{12}$ with DNA $\left(\mathbf{d A}_{12}\right)$. Measurements were made with $c^{\sim} 10 \mu \mathrm{M}(1: 1)$ in $1 \mathrm{M} \mathrm{NaCl}, 10 \mathrm{mM}$ aq. $\mathrm{NaH}_{2} \mathrm{PO}_{4}, 0.1 \mathrm{mM}$ Na_{2} EDTA, pH 7.0. CD-Temperature increments in $5^{\circ} \mathrm{C}$ steps.

Figure 6. Job-plot of showing the 1:1 ratio of the pairing partners in the homo-duplex formed at 0° (Table 1, entry 17 of main manuscript). Measurements were made with a total c $\sim 10 \mu \mathrm{M}(1: 1)$ in 1 M NaCl , 10 mM aq. $\mathrm{NaH}_{2} \mathrm{PO}_{4}, 0.1 \mathrm{mM} \mathrm{Na} 2$ EDTA, pH 7.0.

Figure 7. Temperature dependent CD-spectra documenting the ambiguous behavior of (${ }^{\mathrm{AP}} \mathrm{NO}$) with guanine (G). Measurements were made with a total c $\sim 10 \mu \mathrm{M}(1: 1)$ in $1 \mathrm{M} \mathrm{NaCl}, 10 \mathrm{mM}$ aq. $\mathrm{NaH}_{2} \mathrm{PO}_{4}, 0.1$ $\mathrm{mM} \mathrm{Na} \mathrm{N}_{2}$ EDTA, pH 7.0 . CD-Temperature increments in $5^{\circ} \mathrm{C}$ steps.

Figure 8. The possible modes of Watson-Crick (WC) and Reverse-Watson-Crick (RWC) base-pairing available for the two isomeric oxo-amino-members when pairing with with guanine and isoguanine.

References:

[1] G. K. Mittapalli, K. R. Reddy, H. Xiong, O. Munoz, B. Han, F. De Riccardis, R. Krishnamurthy, A. Eschenmoser, Angew. Chem. Int. Ed. 2006, $x x$, xxxx.
[2] (a) P. Wipf, A. Cunningham, R. L. Rice, J. S. Lazo. Bioorg. Med. Chem. 1997, 5, 165. (b) Procedure used in the preparation for the (D)-enantiomer was used: K. L. Webster, A. B. Maude, M. E. O'Donnell, A. P. Mehorotra, D. Gani. J. Chem. Soc., Perkin Trans. 2001, 1,1673
[3] Procedure used in the preparation of Fmoc-Asp($\left.\mathrm{O}^{\mathrm{t}} \mathrm{Bu}\right)-\mathrm{OBzl}$ was used: S . Nakabayashi, C. D. Warren, R. W. Jeanloz. Carbohydrate Research. 1988, 174, 279.
[4] P. Ratsep, R. Pless. J. Org. Chem. 1998, 53, 3241.
[5] G. Andresen, L. L. Gundersen, M. Lundmark, F. Rise, S. Sundell, Tetrahedron. 1995, 51, 3655. (b) A. Holy, Coll. Czech. Chem. Commun. 1979, 44, 2846.
[6] T. B. Johnson, C. O. Johns, Am. Chem. Soc. 1905, 34, 554.
[7] X-ray analysis was carried out by Dr. Raj Chada, TSRI. Crystallographic data for the structure has been deposited with the Cambridge Crystallographic Data Centre as deposition No. CCDC 613878. Copies of the data can be obtained, free of charge, on application to the CCDC, 12 Union Road, Cambridge CB12 1EZ UK (fax: + 44(1233)336 0333; e-mail: deposit@ccdc.cam.ac.uk).

