Angewandte
 Eine Zeitschrijt der Gesellschaft Deutscher Chemiker Chemie

Supporting Information

© Wiley-VCH 2007
69451 Weinheim, Germany

Enantioselective Alkylation of Acyclic α, α-Disubstituted Tributyltin Enolates Catalyzed by a Cr(salen) Complex

Abigail G. Doyle and Eric N. Jacobsen*
Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachsetts 02138

Supporting Information

General Procedures. Alkylation reactions were performed in flame-dried 10 mL schlenk flasks. All other reactions were performed in flame dried round bottom flasks. The flasks were fitted with rubber septa and reactions were conducted under a positive pressure of nitrogen, unless otherwise noted. Stainless steel syringes or cannulae were used to transfer air- and moisture-sensitive liquids.

Materials. Commercial reagents were purchased from Sigma Aldrich, Alfa Aesar, or Lancaster, and used as received with the following exceptions: dichloromethane was distilled from calcium hydride at 760 Torr; toluene was distilled from sodium at 760 Torr; o-xylene was distilled from calcium chloride at 760 Torr and stored over $4 \ddot{A}$ MS; TBME and tetrahydrofuran were distilled from sodium benzophenone ketyl at 760 Torr; ethyl iodoacetate was filtered through a plug of basic alumina before use. Flash chromatography was performed using silica gel 60 (230-400 mesh), purchased from EM Science. Tin enolates were stored at $-30^{\circ} \mathrm{C}$ under a nitrogen atmosphere for up to 4 weeks and subsequently re-distilled before use.

Instrumentation. Proton nuclear magnetic resonance (${ }^{1} \mathrm{H}$ NMR) spectra and carbon nuclear magnetic resonance $\left({ }^{13} \mathrm{C}\right.$ NMR) spectra were recorded on Varian-Mercury-400 (400 MHz). Chemical shifts for protons are reported in parts per million downfield from tetramethylsilane and are referenced to residual protium in the NMR solvent $\left(\mathrm{CHCl}_{3}: \delta 7.26\right)$. Chemical shifts for carbon are reported in parts per million downfield from tetramethylsilane and are referenced to the carbon resonances of the solvent $\left(\mathrm{CDCl}_{3}: \delta 77.16\right)$. Data are represented as follows: chemical shift, integration, multiplicity (br = broad, $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet), coupling constants in Hertz (Hz). Gas Chromatographic (GC) analyses were performed on Hewlett-Packard 5890 Series II instruments equipped with FID detectors and HP 3396 integrators. Infrared (IR) spectra were obtained using a Mattson Galaxy Series FTIR 3000 spectrophotometer referenced to a polystyrene standard. Data are represented as follows: frequency of absorption $\left(\mathrm{cm}^{-1}\right)$, intensity of absorption ($\mathrm{s}=\mathrm{strong}, \mathrm{m}=$ medium, $\mathrm{w}=$ weak). Optical rotations were measured using a 1 mL cell with a 0.5 dm path length on a Jasco DIP 370 digital polarimeter. The mass spectral data were obtained at the Harvard University mass spectrometry facility. Chiral gas chromatography (GC) analysis was performed on a Hewlett-Packard 5890 gas chromatograph using a Chiraldex γ-TA (30 m x 0.25 mm). Chiral HPLC analysis was performed on a Shimadzu VP-series instrument.

Representative Experimental Procedures:
 (A) Preparation of catalyst 1e:

Catalyst 1a was prepared according to the following procedure. ${ }^{1}$
2-tert-Butyl-4-thexyldimethylsilanyloxyphenol.

To a flame-dried 100 mL round bottom flask was added $1.66 \mathrm{~g} t$-butylhydroquinone (10 mmol , 1 equiv.) in 20 mL dichloromethane and 20 mL DMF. To the solution was added 1.38 g imidazole ($20 \mathrm{mmol}, 2$ equiv.) and 120 mg DMAP (0.1 $\mathrm{mmol}, 10 \mathrm{~mol} \%$), followed by $2.36 \mathrm{~mL} \mathrm{ThMe}_{2} \mathrm{SiCl}(12 \mathrm{mmol}, 1.2$ equiv.) via syringe. The reaction was stirred at room temperature for 7 hours at which time the stir bar was removed and the reaction was concentrated in vacuo to the DMF solution. The DMF solution was partitioned between $100 \mathrm{~mL} 25 \%$ ethyl acetate/ hexanes and 100 mL water. The organic layer was separated and washed three times with water $(100 \mathrm{~mL})$, once with saturated aqueous $\mathrm{NaCl}(100 \mathrm{~mL})$, and once with saturated aqueous $\mathrm{NaHCO}_{3}(100 \mathrm{~mL})$. The organic phase was dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated in vacuo. Purification by column chromatography on silica gel, eluting with $2 \% \rightarrow 5 \% \mathrm{Et}_{2} \mathrm{O} /$ pentane provided 3.08 g of a light yellow oil (10 mmol , quantitative yield). IR (thin film, cm^{-1}) 3492 (br), 2959 (s , 2870 (m), 1499 (s$), 1411$ (s$), 962$ (s), 861 (s); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.75(1 \mathrm{H}, \mathrm{d}, J=1.2 \mathrm{~Hz}), 6.52-6.51(2 \mathrm{H}, \mathrm{m}), 4.47(1 \mathrm{H}, \mathrm{s}), 1.73(1 \mathrm{H}$, septet, $J=5.4 \mathrm{~Hz}), 1.38(9 \mathrm{H}$, s), 0.95-0.94 ($12 \mathrm{H}, \mathrm{m}$), $0.20(6 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 149.1,148.6,137.3,119.2,117.7,117.1,34.7,34.4$, 29.7, 25.2, 20.4, 18.8, -2.3; LRMS (CI): 309 [M+].

3-tert-Butyl-2-hydroxy-5-thexyldimethylsilanyloxybenzaldehyde

A flame-dried 100 mL 3-neck round bottom flask, equipped with an oven-dried reflux condenser, stir bar, rubber septum, and glass stopper, was charged with 3.08 g phenol ($10 \mathrm{mmol}, 1$ equiv.) in 30 mL toluene. The solution was cooled to $0^{\circ} \mathrm{C}$ (icewater bath) and $2.33 \mathrm{~mL} 2,6-\mathrm{lutidine}(20 \mathrm{mmol}, 2$ equiv.) was added by syringe in one portion. Tin(IV) chloride ($585 \mu \mathrm{~L}, 5$ mmol, 0.5 equiv) was then added over 20 seconds via syringe, resulting in a bright yellow solution. The reaction mixture was stirred for 1 hour under nitrogen atmosphere while the temperature was maintained at $0{ }^{\circ} \mathrm{C}$. Solid paraformaldehyde $(2.70 \mathrm{~g}, 90 \mathrm{mmol}, 9$ equiv.) was then added in one portion. The flow of nitrogen was stopped and replaced by a balloon filled with nitrogen, attached with a needle through the septum. The reaction mixture was heated to $90^{\circ} \mathrm{C}$ for 24 hours, then cooled to room temperature and filtered through a frit filled with Celite ${ }^{\circledR}$. The filter pad was washed with ethyl acetate (100 mL). The combined filtrates were concentrated in vacuo and the yellow residue was redissolved in ethyl acetate (100 mL), washed with water $(100 \mathrm{~mL})$ and $1 \mathrm{M} \mathrm{HCl}(100 \mathrm{~mL})$. The organic phase was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated in vacuo. The oil was purified by column chromatography on silica gel eluting with 2% ethyl acetate in hexanes to yield 2.93 g of aldehyde (8.7 mmol, 87% yield). IR (thin film, cm^{-1}) 3035 (w), 2960 (s), 2871 (m), 1657 (s), 1435 (s), 1322 (s), 1256 (m), 1234 (m), 1148 $(\mathrm{m}), 1001(\mathrm{~m}), 857(\mathrm{~s}) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 11.41(1 \mathrm{H}, \mathrm{s}), 9.78(1 \mathrm{H}, \mathrm{s}), 7.05(1 \mathrm{H}, \mathrm{d}, J=3.2 \mathrm{~Hz}), 6.90(1 \mathrm{H}, \mathrm{d}, J=2.8$ $\mathrm{Hz}), 1.73(1 \mathrm{H}$, septet, $J=7.0 \mathrm{~Hz}), 1.40(9 \mathrm{H}, \mathrm{s}), 0.96-0.95(12 \mathrm{H}, \mathrm{m}), 0.22(6 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 196.9$, $156.2,147.6,139.8,128.0,120.5,120.5,35.0,34.3,29.3,25.3,20.4,18.8,-2.3$; LRMS (CI) 337 (100\%) [M] ${ }^{+}$.

[^0](R, R)- N, N '-Bis(3-tert-butyl-5-thexyldimethylsilanyloxysalicylidene)-1,2-cyclohexanediamine

To a 100 mL 3-neck round bottom flask equipped with a reflux condenser, addition funnel (10 mL), glass stopper, and stirbar, was added $1.10 \mathrm{~g}(R, R)$-diaminocyclohexane tartrate salt (4.16 mmol , 1 equiv.), $1.15 \mathrm{~g} \mathrm{~K}_{2} \mathrm{CO}_{3}$ ($8.32 \mathrm{mmol}, 2$ equiv.), and 5.6 $\mathrm{mL} \mathrm{H} \mathrm{H}_{2} \mathrm{O}$. The solution was stirred at room temperature until all of the solids had dissolved and then 22.3 mL EtOH was added, resulting in a cloudy solution which was heated to $75^{\circ} \mathrm{C}$. A solution of aldehyde ($2.80 \mathrm{~g}, 8.32 \mathrm{mmol}, 2$ equiv.) in 9.3 mL EtOH was added dropwise through the addition funnel over 5 minutes and the addition funnel was rinsed with 2 mL EtOH. The reaction was heated at $80^{\circ} \mathrm{C}$ for 2 hours and then cooled slowly to room temperature (1 hour) and further to $4^{\circ} \mathrm{C}$ (3 hours). The yellow solid was collected by vacuum filtration, rinsed with cold EtOH and then redissolved in dichloromethane (150 mL). The solution was washed with water ($2 \times 150 \mathrm{~mL}$) and saturated aqueous $\mathrm{NaCl}(2 \mathrm{x} 150 \mathrm{~mL})$. The organic phase was dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated in vacuo. Recrystallization from hot EtOH ($\sim 30 \mathrm{~mL}$) provided 2.50 g of yellow crystals ($3.33 \mathrm{mmol}, 80 \%$ yield). $[\alpha]^{24}{ }_{\mathrm{D}}=-244.1^{\circ}\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right.$); IR (thin film, $\left.\mathrm{cm}^{-1}\right) 2958(\mathrm{~s})$, 2867 (s), 1632 (s), 1596 (s), 1463 (s), 1438 (s), 1321 (s), 1255 (s), 858 (s); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.17$ (2H, s), 6.76 $(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.4 \mathrm{~Hz}), 6.43(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.4 \mathrm{~Hz}), 3.30-3.27(2 \mathrm{H}, \mathrm{m}), 1.98-1.62(8 \mathrm{H}, \mathrm{m}), 1.50-1.41(2 \mathrm{H}, \mathrm{m}), 1.38(18 \mathrm{H}, \mathrm{s}), 0.93-0.91$ $(24 \mathrm{H}, \mathrm{m}),, 0.13(6 \mathrm{H}, \mathrm{s}), 0.12(6 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 165.5,154.9,146.6,138.3,122.5,119.4,118.5,72.6$, $34.9,34.3,33.3,29.5,25.2,24.5,20.4,18.8,-2.3$; LRMS (FAB) $750(100 \%)[\mathrm{M}-\mathrm{H}]+, 773(80 \%)[\mathrm{M}-\mathrm{H}+\mathrm{Na}]$.

An oven dried 50 mL round bottom flask with stir bar was charged with $270 \mathrm{mg} \mathrm{Cr}(\mathrm{II}) \mathrm{Cl}_{2}$ (2.2 mmoles, 1.1 equiv.) in an inert atmosphere box. The flask was sealed with a rubber septa and taken out of the box. 5.0 mL THF was added to the flask, followed by a de-gassed solution of $1.50 \mathrm{~g} \quad(R, R)-N, N$ '-Bis(3-tert-butyl-5-thexyldimethylsilanyloxysalicylidene)-1,2cyclohexanediamine (2 mmoles , 1 equiv.) in 22 mL THF (followed by one 5 mL THF rinse of the flask containing the ligand). The solution immediately turned a deep brown color upon addition. The reaction was stirred under nitrogen for 4.5 hours and was then opened to the atmosphere and stirred for an additional 10 hours. The solution was diluted with 100 mL TBME and was washed with sat. aqueous $\mathrm{NH}_{4} \mathrm{Cl}(4 \times 150 \mathrm{~mL})$ and with sat. aqueous $\mathrm{NaCl}(1 \times 150 \mathrm{~mL}) .{ }^{2}$ The organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo. The brown residue was re-dissolved in $100 \mathrm{~mL} \mathrm{CH}_{3} \mathrm{CN}$ and 750 mg NaI (5 mmoles, 2.5 equiv.) was added. The mixture was stirred for 3 hours and then concentrated in vacuo. The redbrown residue was re-dissolved in TBME $(200 \mathrm{~mL})$ and was washed with water ($3 \times 200 \mathrm{~mL}$). The organic phase was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered through a pad of Celite ${ }^{\circledR}$, and concentrated in vacuo. The solid was dried overnight on the high vacuum pump to provide a red-brown solid ($1.77 \mathrm{~g}, 1.87$ mmoles, 94% yield). IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$) 3120 (br), 2957 (s), 2867 (s), 1625 (s), 1537 (s), 1466 (s), 1433 (s), 1411 (s), 1337 (s), 1230 (s), 1203 (s), 1006 (m), 875 (s), 856 (s). LRMS (FAB) 800 (100\%) [M -$\mathrm{I}-\mathrm{H}_{2} \mathrm{O}$.

[^1]
(B) General procedure for the preparation of tributyltin enolates: ${ }^{3}$

2-Tributylstannyloxy-3-methyl-pent-2-ene (2a):

To tributyltin methoxide ($9.30 \mathrm{~mL}, 33.4 \mathrm{mmol}, 1$ equiv.) at $0^{\circ} \mathrm{C}$ under N_{2} was added acetic acid 1,2-dimethyl-but-1-enyl ester ($4.75 \mathrm{~g}, 33.4 \mathrm{mmol}, 1.3: 1$ mixture, 1 equiv. $)^{4}$ dropwise over 5 minutes. After the addition was complete, the mixture was allowed to warm to room temperature and was stirred for 36 hours until ${ }^{1} \mathrm{H}$ NMR analysis of a reaction aliquot showed complete consumption of starting material. The byproduct, methyl acetate, was removed in vacuo for 1 hour at 0.2 mmHg . Distillation of the crude material at 0.04 mmHg and $85^{\circ} \mathrm{C}$ provided a clear oil $(11.02 \mathrm{~g}, 28.3 \mathrm{mmol}, 85 \%$ yield $)$ as a $1.8: 1$ mixture of geometric isomers determined by ${ }^{1} \mathrm{H}$ NMR integration (minor $\delta 2.07 \mathrm{CH}_{2} \mathrm{CH}_{3}$ and major $\delta 1.94 \mathrm{CH}_{2} \mathrm{CH}_{3}$). ${ }^{5}{ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}): major $\delta 1.94(2 \mathrm{H}, \mathrm{q}, \mathrm{J}=7.6 \mathrm{~Hz}), 1.71(3 \mathrm{H}, \mathrm{s}), 1.62-1.54(9 \mathrm{H}, \mathrm{m}), 1.39-1.29(6 \mathrm{H}, \mathrm{m}), 1.16-1.12$ $(6 \mathrm{H}, \mathrm{m}), 0.91-0.90(12 \mathrm{H}, \mathrm{m})$; minor $\delta 2.07(2 \mathrm{H}, \mathrm{q}, \mathrm{J}=7.6 \mathrm{~Hz}), 1.70(3 \mathrm{H}, \mathrm{s}), 1.62-1.54(9 \mathrm{H}, \mathrm{m}), 1.39-1.29(6 \mathrm{H}, \mathrm{m}), 1.16-1.12$ $(6 \mathrm{H}, \mathrm{m}), 0.91-0.90(12 \mathrm{H}, \mathrm{m}) ;:{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$, signals corresponding to both isomers: δ 145.7, 145.1, 111.7, $111.3,28.1,27.4,26.8,24.1,20.3,19.6,16.6,16.4,15.8,15.0,13.8,13.6$. Note: tributyltin enolates are TOXIC and extremely air and moisture sensitive; they should be handled with care.

2-Tributylstannyloxy-3-methyl-hept-2-ene (2b):

1.5:1 mixture

The general procedure described above was followed on a 20 mmol scale. After 40 hours at ambient temperature, workup as described above and distillation at 0.04 mmHg and $95-100^{\circ} \mathrm{C}$ yielded the product as a clear oil ($6.6 \mathrm{~g}, 15.8 \mathrm{mmol}, 79 \%$) as a 1.5: 1 mixture of geometric isomers determined by ${ }^{1} \mathrm{H}$ NMR integration (minor $\delta 2.03 \mathrm{CH}_{2} n-\operatorname{Pr}$ and major $\delta 1.92 \mathrm{CH}_{2} n-\mathrm{Pr}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): major $\delta 1.92(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}), 1.71(3 \mathrm{H}, \mathrm{s}), 1.63-1.47(9 \mathrm{H}, \mathrm{m}), 1.36-1.25(10 \mathrm{H}, \mathrm{m}), 1.16-$ $1.11(6 \mathrm{H}, \mathrm{m}), 0.92-0.86(12 \mathrm{H}, \mathrm{m})$; minor $\delta 2.03(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}), 1.70(3 \mathrm{H}, \mathrm{s}),)_{, ~ 1.63-1.47}(9 \mathrm{H}, \mathrm{m}), 1.36-1.25(10 \mathrm{H}, \mathrm{m})$, 1.16-1.11 ($6 \mathrm{H}, \mathrm{m}$), 0.92-0.86 ($12 \mathrm{H}, \mathrm{m}$); ${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$, signals corresponding to both isomers: $\delta 146.2,145.5$, $110.3,110.0,33.6,31.3,31.2,30.6,28.1,27.4,23.3,22.8,20.3,19.8,17.1,16.6,15.8,15.5,14.3,13.8$.

2-Tributylstannyloxy-3,4-dimethyl-pent-2-ene (2c):

[^2]

The general procedure described above was followed on a 10 mmol scale. After 40 hours at ambient temperature, workup as described above and distillation at 0.04 mmHg and $85-90{ }^{\circ} \mathrm{C}$ yielded the product as a clear oil ($2.81 \mathrm{~g}, 7.0 \mathrm{mmol}, 69 \%$) as a 1.2: 1 mixture of geometric isomers determined by ${ }^{1} \mathrm{H}$ NMR integration (minor $\delta 3.18 \mathrm{CHMe}_{2}$ and major $\delta 2.59 \mathrm{CHMe}_{2}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): major $\delta 2.59(1 \mathrm{H}, \mathrm{s}, \mathrm{J}=7.2 \mathrm{~Hz}), 1.74-1.73(3 \mathrm{H}, \mathrm{m}), 1.64-1.56(6 \mathrm{H}, \mathrm{m}), 1.49-1.48(3 \mathrm{H}, \mathrm{m})$, $1.38-1.28(6 \mathrm{H}, \mathrm{m}), 1.16-1.11(6 \mathrm{H}, \mathrm{m}), 0.92-0.86(15 \mathrm{H}, \mathrm{m})$; minor $\delta 3.18(1 \mathrm{H}, \mathrm{s}, \mathrm{J}=7.2 \mathrm{~Hz}), 1.70-1.69(3 \mathrm{H}, \mathrm{m})$,), 1.64-1.56 $(6 \mathrm{H}, \mathrm{m}), 1.44-1.42(3 \mathrm{H}, \mathrm{m}), 1.38-1.28(6 \mathrm{H}, \mathrm{m}), 1.16-1.11(6 \mathrm{H}, \mathrm{m}), 0.92-0.86(15 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$), signals corresponding to both isomers: $\delta 144.8,144.2,115.4,114.9,30.0,28.0,27.4,26.4,21.5,20.9,20.5,19.6,15.7,13.8,11.3$, 9.3.

(C) General procedure for the $\mathbf{C r}($ salen $) \mathrm{Cl}$-catalyzed alkylation of tributyltin enolates with alkyl halides.

 3-Ethyl-3-methyl-hex-5-en-2-one (3a):

A 10 mL schlenk flask was flame-dried in vacuo, cooled to $23^{\circ} \mathrm{C}$ and charged with catalyst $(R, R)-1 \mathbf{e}(23.7 \mathrm{mg}, 0.0025 \mathrm{mmol}$, $5 \mathrm{~mol} \%$) under nitrogen. The flask was evacuated for 10 minutes and then flushed with nitrogen. To the schlenk was added o-xylene ($500 \mu \mathrm{~L}$) and allyl iodide ($91 \mu \mathrm{~L}, 1 \mathrm{mmol}, 2$ equiv.) via syringe. The stirred solution was cooled to $-27^{\circ} \mathrm{C}$ under nitrogen in an immersion cooler for 10 minutes. A solution of tin enolate ($195 \mathrm{mg}, 0.5 \mathrm{mmol}, 1$ equiv.), tributyltin methoxide $(7 \mu \mathrm{~L}, 0.025 \mathrm{mmol}, 5 \mathrm{~mol} \%)$ in o-xylene $(0.75 \mathrm{~mL})$ was prepared in a flame-dried two dram vial. The solution was cooled to $-27^{\circ} \mathrm{C}$ in an acetone-dry ice bath with vigorous stirring under nitrogen for 5 minutes and was then added in one portion by syringe to the schlenk flask. The rubber septum on the schlenk was exchanged for a greased glass stopper and the nitrogen inlet was sealed shut as the reaction was stirred at $-27^{\circ} \mathrm{C}$ for 48 hours. The reaction was diluted with pentane (2 mL) and transferred into a $18 \times 150 \mathrm{~mm}$ Durex ${ }^{\mathrm{TM}}$ borosilicate glass disposable test tube containing saturated NaCl solution (0.5 mL) cooled to $0{ }^{\circ} \mathrm{C}$. Solid potassium fluoride ($\sim 1 \mathrm{~g}$) was added, accompanied by the formation of white precipitate. The mixture was filtered through a bed of sodium sulfate (rinsing with pentane) into a flask cooled to $0{ }^{\circ} \mathrm{C}$ and was concentrated to ~ 1.5 mL by rotary evaporation with a $4^{\circ} \mathrm{C}$ bath. The residue was purified by column chromatography on silica gel, eluting with 2% diethyl ether in pentane. Concentration of the desired fractions was again performed with a $4{ }^{\circ} \mathrm{C}$ bath yielding the product as a clear oil ($58.2 \mathrm{mg}, 83 \%$ yield). The enantiomeric excess was determined to be 82% by chiral GC analysis ($\gamma-\mathrm{TA} 50{ }^{\circ} \mathrm{C}$ isothermal, $\mathrm{t}_{\mathrm{r}}($ minor $)=61.1 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}($ major $\left.)=58.0 \mathrm{~min}\right) ;[\alpha]_{\mathrm{D}}^{24}=-0.65^{\circ}\left(\mathrm{c}=6.7, \mathrm{CHCl}_{3}\right)$; IR (thin film, $\left.\mathrm{cm}^{-1}\right) 3070(\mathrm{w}), 2955$ (m), 2910 (m), 2860 (w), 1706 (s), 1461 (w), 1355 (m); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.71-5.61$ ($1 \mathrm{H}, \mathrm{m}$), 5.07-5.02 (2H, m), $2.34(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=14.4,7.6 \mathrm{~Hz}), 2.19(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=12.8,7.6 \mathrm{~Hz}), 2.10(3 \mathrm{H}, \mathrm{s}), 1.65(1 \mathrm{H}, \mathrm{dq}, \mathrm{J}=14,7.6 \mathrm{~Hz}), 1.50(1 \mathrm{H}, \mathrm{dq}, \mathrm{J}=$ $14 \mathrm{~Hz}, 7.6 \mathrm{~Hz}), 1.07(3 \mathrm{H}, \mathrm{s}), 0.79(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 208.6,134.2,118.1,51.8,42.2,31.0$, 22.6, 20.5, 8.9; LRMS (ES): 141 (100\%) [M+H] ${ }^{+}$.

3-Benzyl-3-methyl-pentan-2-one (3b):

The reaction was performed on a 0.5 mmol scale using $5 \mathrm{~mol} \%(R, R)-\mathbf{1 e}(23.7 \mathrm{mg}, 0.025 \mathrm{mmol})$ and 2 equiv. benzyl bromide $(119 \mu \mathrm{~L})$ at $-27^{\circ} \mathrm{C}$ for 48 hours. The product was obtained as a clear oil after chromatography on silica gel, eluting with 2% diethyl ether in pentane $(81.5 \mathrm{mg}, 86 \%$ yield). The enantiomeric excess was determined to be 81% by chiral GC analysis $\left(\gamma-\mathrm{TA} 100^{\circ} \mathrm{C}\right.$ isothermal, t_{r} (minor) $=42.0 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}($ major $\left.)=43.2 \mathrm{~min}\right) ;[\alpha]_{\mathrm{D}}^{24}=-3.89^{\circ}\left(\mathrm{c}=2.5, \mathrm{CHCl}_{3}\right)$; IR (thin film, cm^{-1}) 3029 (w), 2970 (s), 2937 (m), 2881 (w), 1704 (s), 1496 (m), 1455 (s), 1355 (s), 1117 (w), 749 (m), 703 (s); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.27-7.18(3 \mathrm{H}, \mathrm{m}), 7.09-7.07(2 \mathrm{H}, \mathrm{m}), 2.94(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=13.4 \mathrm{~Hz}), 2.69(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=13.0 \mathrm{~Hz}), 2.09(3 \mathrm{H}, \mathrm{s})$, $1.75(1 \mathrm{H}, \mathrm{dq}, \mathrm{J}=14.4,7.6 \mathrm{~Hz}), 1.46(1 \mathrm{H}, \mathrm{dq}, \mathrm{J}=14.8,7.2 \mathrm{~Hz}), 1.06(3 \mathrm{H}, \mathrm{s}), 0.85(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \mathrm{NMR}(100 \mathrm{MHz}$, CDCl_{3}) $\delta 209.1,138.0,130.5,128.2,126.6,52.8,44.1,31.4,26.9,20.6,9.2 ;$ LRMS (ES): 191 (100\%) $[\mathrm{M}+\mathrm{H}]^{+}$.

3-Ethyl-3-methyl-4-oxo-pentanoic acid ethyl ester (3c): ${ }^{6}$

[^3]

The reaction was performed on a 0.5 mmol scale using $5 \mathrm{~mol} \%(R, R)-\mathbf{1 e}(23.7 \mathrm{mg}, 0.025 \mathrm{mmol})$ and 2 equiv. ethyl iodoacetate $(118 \mu \mathrm{~L})$ at $-27^{\circ} \mathrm{C}$ for 48 hours. The product was obtained as a light yellow oil after chromatography on silica gel, eluting with $5 \% \rightarrow 10 \%$ diethyl ether in pentane ($68.0 \mathrm{mg}, 73 \%$ yield). The enantiomeric excess was determined to be 76 $\%$ by chiral GC analysis $\left(\gamma-\mathrm{TA} 100{ }^{\circ} \mathrm{C}\right.$ isothermal, $\mathrm{t}_{\mathrm{r}}($ minor $)=20.1 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}($ major $\left.)=18.6 \mathrm{~min}\right) ;[\alpha]_{\mathrm{D}}^{24}=+14.1^{\circ}(\mathrm{c}=3.2$, CHCl_{3}); IR (thin film, cm^{-1}) $2974(\mathrm{~m}), 2933(\mathrm{~m}), 2884(\mathrm{w}), 1735(\mathrm{~s}), 1708(\mathrm{~s}), 1463(\mathrm{~m}), 1369(\mathrm{~m}), 1346(\mathrm{~m}), 1200(\mathrm{~m}), 1163$ $(\mathrm{m}), 1032(\mathrm{~m}) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.09(2 \mathrm{H}, \mathrm{q}, \mathrm{J}=7.2 \mathrm{~Hz}), 2.75(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=15.6 \mathrm{~Hz}), 2.37(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=15.6 \mathrm{~Hz})$, $2.17(3 \mathrm{H}, \mathrm{s}), 1.68-1.49(2 \mathrm{H}, \mathrm{m}), 1.23(3 \mathrm{H}, \mathrm{s}), 1.23(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}), 0.82(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 209.1, 171.8, 60.6, 49.9, 42.2, 31.7, 26.0, 21.2, 14.4, 8.7; LRMS (ES): 187 (100\%) [M+ H] ${ }^{+}$, 141 (30\%) [M-OEt] ${ }^{+}$.

3-Allyl-3-methyl-heptan-2-one (3d):

The reaction was performed on a 0.5 mmol scale using $5 \mathrm{~mol} \%(R, R)-1 \mathbf{e}(23.7 \mathrm{mg}, 0.025 \mathrm{mmol})$ and 2 equiv. allyl iodide (91 $\mu \mathrm{L}$) at $-27^{\circ} \mathrm{C}$ for 48 hours. The product was obtained as a clear oil after chromatography on silica gel, eluting with 2% diethyl ether in pentane ($78.0 \mathrm{mg}, 92 \%$ yield). The enantiomeric excess was determined to be 87% by chiral GC analysis (γ TA $80^{\circ} \mathrm{C}$ isothermal, $\mathrm{t}_{\mathrm{r}}($ minor $)=19.1 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}($ major $\left.)=19.6 \mathrm{~min}\right) ;[\alpha]_{\mathrm{D}}^{24}=-1.03^{\circ}\left(\mathrm{c}=10.0, \mathrm{CHCl}_{3}\right)$; IR (thin film, $\left.\mathrm{cm}^{-1}\right) 3078$ (w), 2960 (m), 2934 (m), 2873 (w), 1706 (s), 1465 (w), 1355 (m), 915 (m); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.65$ ($1 \mathrm{H}, \mathrm{m}$), 5.06-5.01 ($2 \mathrm{H}, \mathrm{m}$), $2.33(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=14.4,7.2 \mathrm{~Hz}), 2.18(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=14.0,7.6 \mathrm{~Hz}), 2.09(3 \mathrm{H}, \mathrm{s}), 1.58(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=13.0,12.0$, $3.2 \mathrm{~Hz}), 1.44(1 \mathrm{H}, \operatorname{app} \mathrm{dt}, \mathrm{J}=12.4,4.8 \mathrm{~Hz}), 1.31-1.00(4 \mathrm{H}, \mathrm{m}), 1.08(3 \mathrm{H}, \mathrm{s}), 0.87(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}){ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 213.5,134.2,118.1,51.5,42.6,38.3,26.7,25.8,23.5,21.0,14.1$; LRMS (ES): $169.1(100 \%)[\mathrm{M}+\mathrm{H}]^{+}$.

3-Benzyl-3-methyl-heptan-2-one (3e):

The reaction was performed on a 0.5 mmol scale using $5 \mathrm{~mol} \%(R, R)-1 \mathbf{e}(23.7 \mathrm{mg}, 0.025 \mathrm{mmol})$ and 2 equiv. benzyl bromide $(120 \mu \mathrm{~L})$ at $-27^{\circ} \mathrm{C}$ for 48 hours. The product was obtained as a clear oil after chromatography on silica gel, eluting with $2 \% \rightarrow 5 \%$ diethyl ether in pentane ($91.1 \mathrm{mg}, 83 \%$ yield). The enantiomeric excess was determined to be 86% by chiral GC analysis $\left(\gamma\right.$-TA $100{ }^{\circ} \mathrm{C}$ isothermal, $\mathrm{t}_{\mathrm{r}}($ minor $)=105.1 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}($ major $\left.)=107.3 \mathrm{~min}\right) ;[\alpha]_{\mathrm{D}}^{24}=-0.45^{\circ}\left(\mathrm{c}=10.0, \mathrm{CHCl}_{3}\right)$; IR (thin film, cm^{-1}) 3029 (w), 2958 (m), 2933 (m), 2861 (w), 1703 (s), 1465 (m), 1455 (m), 1354 (m), 753 (m), 703 (s); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.27-7.18(3 \mathrm{H}, \mathrm{m}), 7.09-7.06(2 \mathrm{H}, \mathrm{m}), 2.94(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=13.6 \mathrm{~Hz}), 2.68(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=13.6 \mathrm{~Hz}), 2.08(3 \mathrm{H}, \mathrm{s})$, $1.68(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=16.8,12.4,4.8 \mathrm{~Hz}), 1.40(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=13.6,12.0,4.8 \mathrm{~Hz}), 1.32-1.11(4 \mathrm{H}, \mathrm{m}), 1.07(3 \mathrm{H}, \mathrm{s}), 0.89(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=$ $7.4 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 214.0,138.0,130.5,128.2,126.6,52.5,44.4,38.7,27.0,26.9,23.5,21.0,14.2$; LRMS (ES): 219.2 (100\%) [M+H] ${ }^{+}$.

3-Acetyl-3-methyl-heptanoic acid ethyl ester (3f):

The reaction was performed on a 0.5 mmol scale using $5 \mathrm{~mol} \%(R, R)-1 \mathbf{e}(23.7 \mathrm{mg}, 0.025 \mathrm{mmol})$ and 2 equiv. ethyl iodoacetate $(119 \mu \mathrm{~L})$ at $-27^{\circ} \mathrm{C}$ for 48 hours. The product was obtained as a clear oil after chromatography on silica gel, eluting with $5 \% \rightarrow 10 \%$ diethyl ether in pentane ($82.5 \mathrm{mg}, 77 \%$ yield). The enantiomeric excess was determined to be 84% by chiral HPLC analysis on the corresponding Weinreb amide (see below); $[\alpha]_{\mathrm{D}}^{24}=+16.7^{\circ}\left(\mathrm{c}=1.8, \mathrm{CHCl}_{3}\right.$); IR (thin film, cm^{-} ${ }^{1}$) 2960 (m), 2936 (m), 2879 (w), 2866 (w), 1735 (s), 1708 (s), 1467 (w), 1369 (w), 1345 (w), 1195 (m), 1160 (m), 1032 (m); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.08(2 \mathrm{H}, \mathrm{q}, \mathrm{J}=7.2 \mathrm{~Hz}), 2.74(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=15.6 \mathrm{~Hz}), 2.37(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=16 \mathrm{~Hz}), 2.17(3 \mathrm{H}, \mathrm{s}), 1.60-$ $1.42(2 \mathrm{H}, \mathrm{m}), 1.30-1.10(4 \mathrm{H}, \mathrm{m}), 1.24(3 \mathrm{H}, \mathrm{s}), 1.22(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}), 0.87(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 212.5,171.8,60.6,49.6,42.6,38.9,26.5,26.0,23.4,21.7,14.3,14.1$; LRMS (ES): $215.1(100 \%)[\mathrm{M}+\mathrm{H}]^{+}, 169.1(80 \%)[\mathrm{M}-$ $\mathrm{OEt}]^{+}$.

3-Acetyl-3-methyl-heptanoic acid methoxy-methyl-amide: ${ }^{7}$

To a flame-dried 2 dram vial, charged with 20 mg ketone $\mathbf{3 f}(0.09 \mathrm{mmol}$, 1 equiv) in 0.5 mL THF, was added Weinreb amine HCl salt ($14 \mathrm{mg}, 0.14 \mathrm{mmol}, 1.55$ equiv.). The solution was cooled to $-20^{\circ} \mathrm{C}$ (acetone-dry ice bath) and $i-\mathrm{PrMgCl}(135 \mu \mathrm{~L}$, 2 M in THF, $0.27 \mathrm{mmol}, 3$ equiv) was added dropwise via syringe over 5 minutes. The reaction was stirred at $-10^{\circ} \mathrm{C}$ for 20 minutes and then 0.5 mL saturated aqueous ammonium chloride was added. The reactions were warmed to room temperature, diluted with 1.0 mL water and 1.0 mL diethyl ether. The organic phase was separated and the aqueous phase was washed with $2 \times 1 \mathrm{~mL}$ ether. The combined organics were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated in vacuo. The material was purified by silica gel chromatography eluting with 25% ethyl acetate in hexanes to provide a clear oil ($20.1 \mathrm{mg}, 98 \%$ yield). The enantiomeric excess was determined to be 84% by chiral HPLC analysis (Chiralcel OD, 99:1 hexane: iPrOH, 1.0 $\mathrm{mL} / \mathrm{min}, \lambda=208 \mathrm{~nm}) \mathrm{t}_{\mathrm{r}}($ minor $)=28.3 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}($ major $\left.)=20.9 \mathrm{~min}\right) ;[\alpha]_{\mathrm{D}}^{24}=+24.8^{\circ}\left(\mathrm{c}=1.3, \mathrm{CHCl}_{3}\right)$; IR (thin film, $\left.\mathrm{cm}^{-1}\right) 2959$ (s), 2936 (s$), 2873$ (m), 1705 (s$), 1664$ (s$), 1465$ (m), 1421 (m), 1376 (m), 1005 (m); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.64(3 \mathrm{H}$, s), $3.12(3 \mathrm{H}, \mathrm{s}), 2.90(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=16.8 \mathrm{~Hz}), 2.57(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=16.4 \mathrm{~Hz}), 2.20(3 \mathrm{H}, \mathrm{s}), 1.57(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=13.6,12.0,5.2 \mathrm{~Hz}), 1.46$ $(1 \mathrm{H}$, app dt, $\mathrm{J}=12.0,4.8 \mathrm{~Hz}), 1.30-1.10(4 \mathrm{H}, \mathrm{m}), 1.27(3 \mathrm{H}, \mathrm{s}), 0.88(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 213.7$, $209.1,61.3,48.9,41.1,39.6,31.8,26.8,26.4,23.5,21.8,14.2$; LRMS (ES): 230.1 (100\%) [M] ${ }^{+}$, 169 (30\%) [M$\mathrm{N}(\mathrm{OMe}) \mathrm{Me}]^{+}$.

3-Methyl-3-(3-trimethylsilanyl-prop-2-ynyl)-heptan-2-one (3g):

The reaction was performed on a 0.5 mmol scale using $5 \mathrm{~mol} \%(R, R)-1 \mathbf{e}(23.7 \mathrm{mg}, 0.025 \mathrm{mmol})$ and 2 equiv. TMS propargyl bromide $(145 \mu \mathrm{~L})$ at $-27^{\circ} \mathrm{C}$ for 48 hours. The product was obtained as a clear oil after chromatography on silica gel, eluting with 2% diethyl ether in pentane ($115.2 \mathrm{mg}, 97 \%$ yield). The enantiomeric excess was determined to be 78% by chiral GC analysis on the deprotected product (see below). $[\alpha]^{24}{ }_{\mathrm{D}}=+7.90^{\circ}\left(\mathrm{c}=3.7, \mathrm{CHCl}_{3}\right)$; IR (thin film, cm^{-1}) $2960(\mathrm{~s}), 2935(\mathrm{~s}), 2974$ (w), 2862 (w), 2176 (s), 1709 (s), 1250 (m), 1037 (m), 843 (s), $760(\mathrm{~m}) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.40(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=17$ $\mathrm{Hz}), 2.37(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=16.8 \mathrm{~Hz}), 2.13(3 \mathrm{H}, \mathrm{s}), 1.68(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=14.4,12.0,5.6 \mathrm{~Hz}), 1.49(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=14.0,12.0,5.2 \mathrm{~Hz})$, 1.31-1.23 ($2 \mathrm{H}, \mathrm{m}$), $1.19(3 \mathrm{H}, \mathrm{s}), 1.14-1.01(2 \mathrm{H}, \mathrm{m}), 0.87(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}), 0.11(9 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $212.2,104.2,87.4,51.0,37.4,27.9,26.8,25.9,23.4,22.1,14.0,0.2 ;$ LRMS (ES) $239(80 \%)[\mathrm{M}+\mathrm{H}]^{+}$.

3-Methyl-3-prop-2-ynyl-heptan-2-one:

[^4]

To a scintillation vial containing 27.0 mg TMS ketone (0.12 mmol , 1 equiv.) in 2 mL MeOH was added $33 \mathrm{mg} \mathrm{K}_{2} \mathrm{CO}_{3}(0.24$ $\mathrm{mmol}, 2$ equiv.). The reaction was stirred for 2 hours at room temperature and was then diluted with 2 mL water and 2 mL diethyl ether. The organic phase was separated and was washed with saturated aqueous $\mathrm{NaCl}(2 \times 5 \mathrm{~mL})$. The organic phase was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and concentrated in vacuo. The crude material was purified by silica gel chromotagraphy eluting with 2% diethyl ether in pentane to provide a clear oil ($18.7 \mathrm{mg}, 95 \%$ yield). The enantiomeric excess was determined to be 78% by chiral GC analysis $\left(\gamma-\mathrm{TA} 80^{\circ} \mathrm{C}\right.$ isothermal, t_{r} (minor) $=27.4 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}($ major $\left.)=26.4 \mathrm{~min}\right) ;[\alpha]_{\mathrm{D}}^{24}=+12.4^{\circ}(\mathrm{c}=1.0$, CHCl_{3}); IR (thin film, cm^{-1}) 3289 (m), 3274 (m), 2960 (m), 2935 (m), 2874 (m), 2862 (m), 2180 (w), 1707 (s), 1462 (m), $1356(\mathrm{~m}), 1124(\mathrm{~m}) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.40-2.36(2 \mathrm{H}, \mathrm{m}), 2.14(3 \mathrm{H}, \mathrm{s}), 1.97(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=2.4 \mathrm{~Hz}), 1.69(1 \mathrm{H}$, ddd, J $=13.6,12.0,4.8 \mathrm{~Hz}), 1.53(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=14.0,12.0,4.8 \mathrm{~Hz}), 1.33-1.22(2 \mathrm{H}, \mathrm{m}), 1.22(3 \mathrm{H}, \mathrm{s}), 1.19-1.00(2 \mathrm{H}, \mathrm{m}), 0.88(3 \mathrm{H}, \mathrm{t}, \mathrm{J}$ $=7.2 \mathrm{~Hz}$); ${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 212.2,81.4,70.8,50.9,37.4,26.8,26.4,25.7,23.4,22.1,14.1 ;$ LRMS (ES): 167 $[\mathrm{M}+\mathrm{H}]^{+}$.

Procedures for the elaboration of the methyl ketones

(a) Haloform Reaction

2-Ethyl-2-methyl-pent-4-enoic acid

To a 50 mL round bottom flask containing $\mathrm{NaOH}\left(2.70 \mathrm{~g}, 67.5\right.$ mmoles, 22 equiv) in $18.8 \mathrm{~mL} \mathrm{H} \mathrm{H}_{2} \mathrm{O}$ at $0{ }^{\circ} \mathrm{C}$ was added Br_{2} ($1.42 \mathrm{~mL}, 27.6$ mmoles, 9 equiv) via syringe dropwise over 10 minutes. The bright yellow solution was stirred at $0^{\circ} \mathrm{C}$ for 10 minutes and then a solution of 430 mg ketone 3 ($3.07 \mathrm{mmoles}, 1$ equiv) in 2.13 mL dioxane was added dropwise over 10 minutes. The reaction was stirred at $0^{\circ} \mathrm{C}$ for 2 hours, then at room temperature for 5 hours, and finally at $50^{\circ} \mathrm{C}$ for 3 hours. The reaction was cooled to room temperature and any residual yellow color was quenched with an aqueous solution of sodium sulfite. The reaction was then acidified to pH 4 with 3 N aqueous HCl solution and the solution was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 50 \mathrm{~mL})$. The combined organics were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated in vacuo. The crude material was dissolved in 6 mL MeOH and $\mathrm{KOH}\left(1.13 \mathrm{~g}, 9\right.$ mmoles, 3 equiv) was added. The solution was heated at $60{ }^{\circ} \mathrm{C}$ for 20 hours, then cooled to room temperature and concentrated in vacuo. The crude material was acidified to pH 4 with 3 N aqueous HCl , and was extracted with diethyl ether ($3 \times 20 \mathrm{~mL}$); the organic phase was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and concentrated in vacuo. Purification by column chromatography, eluting with $20 \% \mathrm{Et}_{2} \mathrm{O}$ in pentane provided a clear oil (306 mg , 70% yield). The enantiomeric excess was determined to be 82% by chiral GC analysis on reduced 4 a ; $[\alpha]^{24}{ }_{\mathrm{D}}=-5.64^{\circ}\left(\mathrm{c}=0.99, \mathrm{CHCl}_{3}\right)$; IR (thin film, cm^{-1}) 3305 (br), 3079 (m), 2973 (s), 2940 (s), 2882 (s$), 1702$ (s), 1463 (m), 1258 (m), 918 (m); ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.81-5.71(1 \mathrm{H}, \mathrm{m}), 5.10-5.08(1 \mathrm{H}, \mathrm{m}), 5.06-5.05(1 \mathrm{H}, \mathrm{m}), 2.40(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=14.0,6.8 \mathrm{~Hz}), 2.21(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=$ $14.0,7.6 \mathrm{~Hz}), 1.69(1 \mathrm{H}, \mathrm{dq}, \mathrm{J}=14.4,7.2 \mathrm{~Hz}), 1.52(1 \mathrm{H}, \mathrm{dq}, \mathrm{J}=14.0,7.6 \mathrm{~Hz}), 1.13(3 \mathrm{H}, \mathrm{s}), 0.89(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 183.5,134.1,118.3,46.4,42.8,31.6,20.8,9.1 ;$ LRMS (ES): $142(100 \%)[\mathrm{M}]^{+}$
ee analysis:

A 1 dram vial was charged with $16 \mathrm{mg} \mathrm{LiAlH}_{4}(0.42 \mathrm{mmol}, 3$ equiv) in 0.3 mL dry THF. A solution of 4 a ($19.8 \mathrm{mg}, 0.14$ mmol, 1 equiv.) in 0.7 mL THF was added via syringe and the reaction was stirred at rt for 5 hours. The reaction was quenched with 10% aqueous $\mathrm{H}_{2} \mathrm{SO}_{4}(1 \mathrm{~mL})$ and was extracted with ether (3 x 2 mL). The combined organics were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated in vacuo. The crude material was purified by silica gel chromatography eluting with 10% $\mathrm{Et}_{2} \mathrm{O}$ in pentane to provide a clear oil ($17.4 \mathrm{mg}, 97 \%$ yield). The primary alcohol was treated with 1 mL trifluoroacetic anhydride and the solution was concentrated in vacuo. The enantiomeric excess was determined to be 82% by chiral GC analysis $\left(\gamma-\mathrm{TA} 40^{\circ} \mathrm{C}\right.$ isothermal, $\mathrm{t}_{\mathrm{r}}($ minor $)=23.2 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}($ major $\left.)=22.2 \mathrm{~min}\right)$.

Determination of Absolute Configuration ${ }^{8}$

[^5]
(S): $>95 \%$ ee, $[\alpha]_{D}=+13.3(c=0.6,95 \%$ EtOH $)$
(b) Baeyer-Villiger Rearrangement

2-Methyl-1-phenyl-butan-2-ol

To a scintillation vial containing ketone $\mathbf{3 b}(61.1 \mathrm{mg}, 0.32$ mmoles, 1 equiv.) in 2.6 mL dichloromethane was added 295 mg $m C P B A\left(75 \mathrm{wt} . \%, 1.28\right.$ mmoles, 4 equiv.) and $61.3 \mathrm{mg} \mathrm{Na}_{2} \mathrm{HPO}_{4}$ (0.32 mmoles, 1 equiv). The reaction was stirred at room temperature for 3 days and then diluted with 20 mL diethyl ether. The solution was washed with saturated aqueous $\mathrm{NaCl}(2 \mathrm{x}$ 10 mL) and 10% aqueous $\mathrm{NaOH}(1 \times 10 \mathrm{~mL})$. The organic phase was dried over MgSO_{4}, filtered, and concentrated in vacuo. The material was purified by column chromatography on silica gel eluting with 2% diethyl ether in pentane to provide 63.7 mg of acetate (85% yield, 0.27 mmoles) and 6.0 mg recovered $\mathbf{3 b}$. The intermediate acetate was dissolved in 1.5 mL MeOH and 252 mg KOH (4.5 mmoles, 18 equiv.) was added. The reaction was stirred at $50{ }^{\circ} \mathrm{C}$ for 15 hours and was then diluted with 20 mL dichloromethane and acidified with 3 N aqueous HCl to pH 4 . The organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo. Purification by column chromatography, eluting with $10 \% \mathrm{Et}_{2} \mathrm{O}$ in pentane provided a clear oil $(43.3 \mathrm{mg}, 97 \%$ yield). The enantiomeric excess was determined to be 80% by chiral HPLC analysis (Chiralcel AD-H, 99.5:0.5 hexane: $i \operatorname{PrOH}, 1.0 \mathrm{~mL} / \mathrm{min}, \lambda=208 \mathrm{~nm}) \mathrm{t}_{\mathrm{r}}($ minor $)=40.8 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}($ major $\left.)=36.5 \mathrm{~min}\right) ;[\alpha]_{\mathrm{D}}^{24}=-6.5^{\circ}(\mathrm{c}=1.97$, CHCl_{3}); IR (thin film, cm^{-1}) 3440 (br), 3028 (m), 2970 (s), 2936 (s), 2881 (m), 1495 (m), 1453 (m), 1377 (m), 1149 (m), 923 (m), $716(\mathrm{~m}), 701(\mathrm{~m}) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.33-7.21(5 \mathrm{H}, \mathrm{m}), 2.77(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=13.2 \mathrm{~Hz}), 2.73(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=13.2 \mathrm{~Hz})$, $1.51(2 \mathrm{H}, \mathrm{q}, \mathrm{J}=7.6 \mathrm{~Hz}), 1.29(1 \mathrm{H}, \mathrm{s}), 1.14(3 \mathrm{H}, \mathrm{s}), 0.98(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 137.9,130.8$,
 (40\%) $\left[\mathrm{M}-\mathrm{PhCH}_{2}\right]^{+}$.
\%ee analysis for 3a:

Chiral GC: γ-TA $50^{\circ} \mathrm{C}$ isothermal

82\% ee
FID2 B, (AGDVAGD-IV-18.D)

\%ee analysis for 3c:

3c
Chiral GC: γ-TA $100^{\circ} \mathrm{C}$ isothermal racemic

76% ee
FID2 B, (AGDVAGD-III-235.D)

\%ee analysis for 3d:

Chiral GC: γ-TA $80^{\circ} \mathrm{C}$ isothermal
racemic

\%ee analysis for 3e:

Chiral GC: γ-TA $100^{\circ} \mathrm{C}$ isothermal
Racemic

\%ee analysis for 3f:

Chiralcel OD-H, 99:1 hexane: $\mathrm{iPrOH}, 1.0 \mathrm{~mL} / \mathrm{min}$ racemic

Reteation Time	Area	Area \%	Height	Height \%	
20.900	11110355	48.27	193309	53.04	
28.258	11905579	51.73	171131	46.96	
Totals					
	23015934	100.00	364440	100.00	

84\% ее

| Reteation Time | Area | Area \% | Height | Height \% |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 20.083 | 13309150 | 91.64 | 242525 | 92.51 |
| 27.200 | 1213968 | 8.36 | 19625 | 7.49 |
| Totals | 14523118 | 100.00 | 262150 | 100.00 |

\%ee analysis for 3g:

Chiral GC: γ-TA $80^{\circ} \mathrm{C}$ isothermal racemic

78\% ее

\%ee analysis for 4a:

racemic

FID2 B, (AGDVAGD-IV-95.D)

$1 \quad 21.920 \mathrm{MM} \quad 0.3396 \quad 8.99910 e 4 \quad 4416.27539 \quad 91.25156$
$\begin{array}{llllll}2 & 23.133 \mathrm{MM} & 0.2711 & 8627.59082 & 530.32660 & 8.74844\end{array}$
\%ee analysis for 4b:

4b
Chiralcel AD-H, 99.5:0.5 hexane: $\mathrm{iPrOH}, 1.0 \mathrm{~mL} / \mathrm{min}$ racemic

SPD-10Avp
Chl-208nm
Results

Retention Time	Area	Area $\%$	Height	Height $\%$
36.475	14120927	89.80	306975	90.20
40.883	1604775	10.20	33348	9.80
Totals				

Optimization Studies:

I. Catalyst Structure Optimization

1.8: 1 mixture

$$
\text { benzene }(0.4 \mathrm{M}), 0^{\circ} \mathrm{C}, 2 \mathrm{~h}
$$

Me

\boldsymbol{R}_{1}	\boldsymbol{R}_{2}	GC Yield	ee
$t \mathrm{Bu}$	$t \mathrm{Bu}$	80%	21%
$t \mathrm{Bu}$	Br	67%	20%
$t \mathrm{Bu}$	OPiv	85%	31%
$t \mathrm{Bu}$	OMe	61%	20%
$t \mathrm{Bu}$	OTIPS	$\mathbf{8 4 \%}$	$\mathbf{3 6 \%}$
$t \mathrm{Bu}$	NPiv	13%	20%

II. Catalyst Counterion Dependences for Acyclic and Cyclic Tin Enolates

III. Solvent Screen

IV. Monitoring the ee and isomeric ratio over time of a poorly enantioselective substrate

1.2: 1 mixture

95\% GC yield 32\% ee

[^0]: ${ }^{1}$ S. E. Schaus, J. Branalt, E. N. Jacobsen, J. Org. Chem. 1998, 63, 403-405.

[^1]: ${ }^{2}$ Note: Shaking the separatory funnel causes significant emulsions. Instead, the funnel was rocked back and forth.

[^2]: ${ }^{3}$ For the general procedure, see: (a) M. Pereyre, B. Bellegarde, J. Mendelsohn, J. Valade, J. Organomet. Chem. 1968, 11, 97110. (b) S. S. Labadie, J. K. Stille, Tetrahedron, 1984, 40, 2329-2336. Note that slight fluctuations in the isomeric ratio of enolate mixtures were observed from batch to batch but the variation did not have an effect on the chromium catalyzed alkylations.
 ${ }^{4}$ Enol acetates were prepared as described in: (a) S. S. Labadie, J. K. Stille, Tetrahedron, 1984, 40, 2329-2336; or (b) N. J. Leonard, F. H. Owens, J. Am. Chem. Soc. 1958, 80, 6039-6045. Characterization data can be found in: (a) W. G. Dauben, R. E. Wolf, J. Org. Chem. 1970, 35, 2361-2367; (b) T. C. Clarke, R. G. Bergman, J. Am. Chem. Soc. 1974, 96, 7934. They were distilled immediately prior to use.
 ${ }^{5}$ Do not cool the short path distillation head during the tin enolate distillation.

[^3]: ${ }^{6}$ A. A. Asselin, L. G. Humber, T. A. Dobson, J. Komlossy, R. R. Martel, J. Med. Chem. 1976, 19, 787-792.

[^4]: ${ }^{7}$ Procedure as described in: J. M. Williams, R. B. Jobson, N. Yasuda, G. Marchesini, U.-H. Dolling, E. J. J. Grabowski, Tet. Lett. 1995, 36, 5461-5464.

[^5]: ${ }^{8}$ Procedure taken from: J. M. Manthorpe, J. L. Gleason, Angew. Chem. Int. Ed. 2002, 41, 2338-2341. For characterization data, see: A. Arpin, J. M. Manthorpe, J. L. Gleason, Org. Lett. 2006, 8, 1359-1362

