Angewandte
 Eine Zeitschrijt der Gesellschaft Deutscher Chemiker Chemie

Supporting Information

© Wiley-VCH 2007
69451 Weinheim, Germany

Nucleophilicity Parameters for Alkyl and Aryl Isocyanides

Vasily V. Tumanov, Alexander A. Tishkov, and Herbert Mayr*

[*] Prof. Dr. H. Mayr, Dr. A. A. Tishkov Department Chemie und Biochemie Ludwig-Maximilians-Universität München Butenandstr. 5-13 (Haus F), 81377 München, Germany Fax: (+49) 89-2180-77717
E-mail: herbert.mayr@cup.uni-muenchen.de
V. V. Tumanov
N. D. Zelinsky Institute of Organic Chemistry

Russian Academy of Sciences
Leninsky prosp. 47
119991 Moscow, Russia

General. All synthetic experiments were carried out under dry nitrogen, using anhydrous solvents purified following the standard methods. TLC analysis was carried out on plates with silica gel (Merck, $\mathrm{SiO}_{2}, 60$ mesh ASTM). Column chromatography was performed on Merck silica gel (220-240 mesh ASTM).

All kinetic experiments were carried out at $20^{\circ} \mathrm{C}$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ in the atmosphere of dry nitrogen. First-order rate constants $k_{\text {obs }}\left(\mathrm{s}^{-1}\right)$ were determined photometrically using a $J \& M$ TiDAS diode array spectrometer. As the reactions of the colored $\mathrm{Ar}_{2} \mathrm{CH}^{+}$ions 2 with isocyanides 1 gave rise to colorless products, the reactions could be followed by employing UV-vis spectroscopy. The rates were determined by using a J\&M TiDAS diode array spectrophotometer, which was controlled by Labcontrol Spectacle software and connected to a Hellma 661.502-QX quartz Suprasil immersion probe (5 mm light path) via fiber optic cables and standard SMA connectors. The temperature of solutions during all kinetic studies was kept constant (usually $20.0 \pm 0.2{ }^{\circ} \mathrm{C}$) by using a circulating bath thermostat and monitored with a thermocouple probe that was inserted into the reaction mixture. Isocyanide concentrations at least 10 times higher than the $\mathrm{Ar}_{2} \mathrm{CH}^{+}$ions concentrations were usually employed, resulting in first-order kinetics with an exponential decay of the $\mathrm{Ar}_{2} \mathrm{CH}^{+}$concentration. First-order rate constants $k_{\text {obs }}\left(\mathrm{s}^{-1}\right)$ were obtained by least-squares fitting of the single-exponential $A_{t}=A_{0} \exp \left(-k_{\mathrm{obs}} t\right)+C$ to the absorbance data.

Concentrations and rate constants of the individual measurements are given below (Tables S1-S17). In all cases when benzhydrylium cations were generated from corresponding precursors (Tables S10-S11, S13-S17) by treatment with TMSOTf, 2,6-di-tert-butylpyridine (2,6-DTBP) was used as scavenger of triflic acid. The optimal ratio [TMSOTf]/[2,6-DTBP] was determined empirically: a solution of TMSOTf was added gradually to the precursor in the kinetic flask up to the moment of the maximal absorbance value (UV monitoring). Then, a solution of 2,6-DTBP was added gradually until the absorbance value started to decrease. At that point an additional amount of TMSOTf was added to restore the absorbance. The ratio [TMSOTf]/[2,6-DTBP] thus determined was found to be valid for the whole series of kinetic runs for the prepared solutions of the reactants.

Bis(4-methoxyphenyl)acetonitrile (6). ${ }^{[\mathrm{S} 1]}$ To a stirred solution of 2a-Cl ($262 \mathrm{mg}, 1.00 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ a solution of $0.20 \mathrm{M} \mathrm{ZnCl} / \mathrm{Et}_{2} \mathrm{O}(1.0 \mathrm{~mL}, 0.20 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added at $-30^{\circ} \mathrm{C}$. A deep-red precipitate was immediately formed. tert-BuNC (1a) ($118 \mu \mathrm{~L}, 1.00 \mathrm{mmol}$) was added slowly at $-30^{\circ} \mathrm{C}$ up to the point of an almost complete decoloration. Then the reaction mixture was rapidly warmed up to $20^{\circ} \mathrm{C}$, quenched with 1-methoxy-2-methyl-1-(trimethylsiloxy)propene (4) ($300 \mu \mathrm{~L}, 1.50 \mathrm{mmol}$), filtered through silica gel (ether) and evaporated in vacuo to give 190 mg of a pale yellow oil (75%). Crystallization from benzene afforded 6 ($167 \mathrm{mg}, 66 \%$) as colorless needles. R_{f} (petroleum ether : ethyl acetate $\left.=10: 1\right)=0.16 . \mathrm{mp} .148-149{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $(250$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 3.80(\mathrm{~s}, 3 \mathrm{H}), 5.06(\mathrm{~s}, 1 \mathrm{H}), 6.89,7.24(2 \mathrm{~d}, \mathrm{~J}=8.5) .{ }^{13} \mathrm{C}$ NMR ($62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 40.89, 55.17, 114.34, 119.95, 128.14, 128.63, 159.25. MS HR (ESI): m/z (\%): 227.106 (100) [MCN], 228.109 (7). Anal. Calcd. for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{NO}_{2}$: C, 75.87; H, 5.97; N, 5.53. Found: C, 75.62; H, 6.15; N, 5.30.

4,4-Bis(4-methoxyphenyl)-3-(4-cyanophenylimino)-2,2-dimethylbutanoic acid methyl ester (5e). To a stirred solution of $\mathbf{2 a - C l}(262 \mathrm{mg}, 1.00 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ a solution of 0.20 $\mathrm{M} \mathrm{ZnCl} 2 / \mathrm{Et}_{2} \mathrm{O}(1.0 \mathrm{~mL}, 0.20 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added at $-30^{\circ} \mathrm{C}$. A deep-red precipitate was immediately formed. A solution of 4-cyanophenyl isocyanide (1e) ($154 \mathrm{mg}, 1.20 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(2.0 \mathrm{~mL})$ was added slowly at $-15^{\circ} \mathrm{C}$ up to the point of an almost complete decoloration. After stirring for 5 min the reaction mixture was quenched with 1-methoxy-2-methyl-1-(trimethylsiloxy)propene (4) ($300 \mu \mathrm{~L}, 1.50 \mathrm{mmol}$) at $-15{ }^{\circ} \mathrm{C}$, kept for an additional 15 min at room temperature, filtered through silica gel (ether) and evaporated in vacuo to give 365 mg of a pale red oil (80\%).
[S1] a) K. Saito, S. Kagabu, Y. Horie, K. Takahashi, Org. Prep. Proc. Int. 1989, 21, 354-355. b) Y. Tamura, H. D. Choi, M. Mizutani, Y. Ueda, H. Ishibashi, Chem. Pharm. Bull. 1982, 30, 3574-3579. c) D. K. Bates, J. Org. Chem. 1977, 42, 3452-3454.

Crystallization from benzene afforded $5 \mathbf{~ e}(296 \mathrm{mg}, 65 \%)$ as colorless needles. R_{f} (petroleum ether : ethyl acetate $=2: 1)=0.26 \mathrm{mp} .151-152{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.36(\mathrm{~s}, 6 \mathrm{H}), 3.44(\mathrm{~s}$, 3H), 3.64 (s, 3H), $3.81(\mathrm{~s}, 6 \mathrm{H}), 5.45(\mathrm{~s}, 1 \mathrm{H}), 6.55,6.57$ (2d, $J=8.6,4 \mathrm{H}$), 6.84, 6.97 (2d, $J=8.5$, $4 \mathrm{H}), 7.10,7.20(2 \mathrm{~d}, J=8.5,4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 25.77,49.45,51.87,54.87$, 55.04, 99.38, 112.93, 113.23, 113.56, 120.14, 130.24, 131.17, 132.84, 133.01, 134.33, 134.93, 136.95, 148.86, 157.98, 158.83, 176.17. MS HR (ESI): m/z (\%): 457.211 (100) [M+H], 458.215 (21), 479.193 (6) $[\mathrm{M}+\mathrm{Na}]$. Anal. Calcd. for $\mathrm{C}_{28} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{4}$: C, 73.66; H, 6.18; N, 6.14. Found: C, 73.42; H, 6.35; N, 6.26.

4,4-Bis(4-methoxyphenyl)-3-(tosylmethylimino)-2,2-dimethylbutanoic acid methyl ester (5d). To a stirred solution of $2 \mathrm{a}-\mathrm{Cl}(262 \mathrm{mg}, 1.00 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ a solution of 0.20 M $\mathrm{ZnCl}_{2} / \mathrm{Et}_{2} \mathrm{O}(1.0 \mathrm{~mL}, 0.20 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added at $-30{ }^{\circ} \mathrm{C}$. Deep-red precipitate was immediately formed. A solution of p-tosylmethyl isocyanide (1d) ($195 \mathrm{mg}, 1.00 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(2.0 \mathrm{ml})$ was added slowly at $-20^{\circ} \mathrm{C}$ up to the point of an almost complete decoloration. After stirring for 5 min the reaction mixture was quenched with 1-methoxy-2-methyl-1-(trimethylsiloxy)propene (4) ($300 \mu \mathrm{~L}, 1.50 \mathrm{mmol}$) at $-20^{\circ} \mathrm{C}$, kept for an additional 15 min at room temperature, filtered through silica gel (ether) and evaporated in vacuo to give 434 mg of a pale yellow oil (83%). Crystallization from benzene afforded $5 \mathbf{5 d}$ ($361 \mathrm{mg}, 69 \%$) as a colorless powder. $R_{f}($ petroleum ether : ethyl acetate $=2: 1)=0.33 \mathrm{mp} .151-152{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ 1.34 (s, 6H), 2.47 (s, 3H), 3.41 (s, 3H), 3.79 (s, 6H), 4.22 (s, 2H), 5.28 (s, 1H), 6.81 (s, 4H), 7.60, 7.81 (2d, $J=8.5,4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 21.49,24.33,51.67,52.62,54.23,55.06$, 74.25, 114.23, 129.09, 129.44, 129.57, 129.97, 134.65, 144.38, 158.48, 174.93, 175.91. MS HR (ESI): m/z (\%): 524.208 (100) [M+H], 525.211 (21), 546.190 (26) [M+Na], 547.193 (7). Anal. Calcd. for $\mathrm{C}_{29} \mathrm{H}_{33} \mathrm{NO}_{6} \mathrm{~S}$: C, 66.52; H, 6.35; N, 2.67. Found: C, 66.71; H, 6.61; N, 2.78.

Reaction of $2 \mathrm{a}-\mathrm{Cl}$ with 1 c in the presence of $\mathbf{Z n C l}_{2} / \mathrm{Et}_{2} \mathrm{O}: 4,4$ - Bis (4-methoxyphenyl)-3-(2,6-dimethylphenylimino)-2,2-dimethylbutanoic acid methyl ester (5c).

Method A: To a stirred solution of 2a-Cl ($262 \mathrm{mg}, 1.00 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ a solution of $0.20 \mathrm{M} \mathrm{ZnCl}_{2} / \mathrm{Et}_{2} \mathrm{O}(1.0 \mathrm{~mL}, 0.20 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added at $-30^{\circ} \mathrm{C}$. A deep-red precipitate was immediately formed. A solution of 2,6-dimethylphenyl isocyanide (1c) ($131 \mathrm{mg}, 1.00 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5.0 \mathrm{~mL})$ was added slowly at $-30^{\circ} \mathrm{C}$ up to the point of an almost complete decoloration. The resulting solution was rapidly warmed up to $-20^{\circ} \mathrm{C}$ and 1-methoxy-2-methyl-1-(trimethylsiloxy)propene (4) ($300 \mu \mathrm{~L}, 1.50 \mathrm{mmol}$) was added at $-20^{\circ} \mathrm{C}$. After stirring for an additional 15 min at room temperature the mixture was poured into $\mathrm{NaHCO}_{3} / \mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ and extracted with ether ($3 \times 10 \mathrm{~mL}$). After filtration through silica gel (ether) and evaporation in vacuo 450 mg of a dark red oil ($\sim 100 \%$) was isolated. The crude product was dissolved in petroleum ether (5 mL) and filtered through silica gel (petroleum ether) to separate upper fraction (red) which contains predominantly isonitrile oligomers. The main fraction was collected using CHCl_{3} as the eluent. Removal of the solvent furnished a mixture of the imine $\mathbf{5 c}$ and ester 7 ($290 \mathrm{mg}, \mathrm{ca} .65 \%$) in a $3 / 2$ ratio (determined from ${ }^{1} \mathrm{H}$ NMR). R_{f} (petroleum ether : ethyl acetate $\left.=10: 1\right)=0.24 .{ }^{1} \mathrm{H}$ NMR $(250$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$): 5c: $\delta 1.30$ (s, 6H), 1.90 (s, 6H), 3.40 (s, 3H), 3.77 (s, 6H), 5.02 (s, 1), 6.71-7.42 (set of multiplets, 11H); 7: $\delta 1.27$ (s, 6H), 3.54 (s, 3H), 3.77 (s, 6H), 4.32 (s, 1), 6.71-7.42 (set of multiplets, 11 H).
Method B: To a stirred solution of 2a-Cl ($262 \mathrm{mg}, 1.00 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ a solution of $0.20 \mathrm{M} \mathrm{ZnCl} 2 / \mathrm{Et}_{2} \mathrm{O}(1.0 \mathrm{~mL}, 0.20 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added at $-30^{\circ} \mathrm{C}$. Deep-red precipitate was immediately formed. A solution of 2,6-dimethylphenyl isocyanide (1c) ($131 \mathrm{mg}, 1.00 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5.0 \mathrm{ml})$ was added slowly at $-30^{\circ} \mathrm{C}$ up to the point of an almost complete decoloration. The resulting solution was rapidly warmed up to $0^{\circ} \mathrm{C}$ and 1-methoxy-2-methyl-1-(trimethylsiloxy)propene (4) ($300 \mu \mathrm{~L}, 1.50 \mathrm{mmol}$) was added at $0^{\circ} \mathrm{C}$. After stirring for an additional 15 min at room temperature the mixture was worked up as described above. After purification a mixture of 5c and 7 ($240 \mathrm{mg}, \sim 55 \%$) in a ratio $4 / 1$ was obtained.

출
춘

$$
\stackrel{\leftrightarrow}{6} \mid
$$

t-BuNC-adduct. 001

$\stackrel{\text { 훌 }}{ }$

p-CNPhNC-adduct. 001

高

출
策

Table S1. Kinetics of the reaction of 2d- BF_{4} with tert-BuNC (1a) $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, 20{ }^{\circ} \mathrm{C}, \lambda=601 \mathrm{~nm}\right)$.

Table S2. Kinetics of the reaction of $\mathbf{2 e}-\mathrm{BF}_{4}$ with tert-BuNC (1a) $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, 20^{\circ} \mathrm{C}, \lambda=593 \mathrm{~nm}\right)$.

$\left[2 \mathbf{e}-\mathrm{BF}_{4}\right]_{0}, \mathrm{M}$	$[t-\mathrm{BuNC}], \mathrm{M}$	conversion, $\%$	$k_{0 \mathrm{obs},}, \mathrm{s}^{-1}$
4.31×10^{-6}	1.13×10^{-4}	65	2.65×10^{-3}
4.27×10^{-6}	2.76×10^{-4}	84	6.11×10^{-3}
8.91×10^{-6}	4.46×10^{-4}	51	9.38×10^{-3}
3.82×10^{-6}	7.97×10^{-4}	90	1.71×10^{-2}
8.11×10^{-6}	1.22×10^{-3}	85	2.57×10^{-2}

Table S3. Kinetics of the reaction of $\mathbf{2 f}-\mathrm{BF}_{4}$ with tert-BuNC (1a) $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, 20^{\circ} \mathrm{C}, \lambda=675 \mathrm{~nm}\right.$.)

$\left[2 \mathbf{f}-\mathrm{BF}_{4}\right]_{0}, \mathrm{M}$	$[t-\mathrm{BuNC}], \mathrm{M}$	conversion, $\%$	$k_{\mathrm{obs}}, \mathrm{s}^{-1}$
6.70×10^{-6}	2.78×10^{-4}	80	1.04×10^{-3}
6.84×10^{-6}	5.67×10^{-4}	77	1.71×10^{-3}
7.10×10^{-6}	8.83×10^{-4}	88	2.96×10^{-3}
1.24×10^{-5}	1.56×10^{-3}	55	5.65×10^{-3}

$$
k_{2}\left(20^{\circ} \mathrm{C}\right)=3.670 \mathrm{M}^{-1} \mathrm{~s}^{-1}
$$

Table S4. Kinetics of the reaction of $2 \mathrm{~g}-\mathrm{BF}_{4}$ with tert-BuNC (1a) $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, 20{ }^{\circ} \mathrm{C}, \lambda=620 \mathrm{~nm}\right)$.

$\left[2 g-\mathrm{BF}_{4}\right]_{0}, \mathrm{M}$	$[t-\mathrm{BuNC}], \mathrm{M}$	conversion, $\%$	$k_{\mathrm{obs}}, \mathrm{s}^{-1}$
1.26×10^{-5}	2.71×10^{-4}	80	2.38×10^{-4}
1.35×10^{-5}	5.80×10^{-4}	85	5.58×10^{-4}
1.19×10^{-5}	7.68×10^{-4}	79	6.95×10^{-4}
1.29×10^{-5}	1.11×10^{-3}	77	9.90×10^{-4}

Table S5. Kinetics of the reaction of $\mathbf{2 h}-\mathrm{BF}_{4}$ with tert-BuNC (1a) $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, 20{ }^{\circ} \mathrm{C}, \lambda=620 \mathrm{~nm}\right)$.

Table S6. Kinetics of the reaction of 2d- BF_{4} with $\mathrm{PhCH}_{2} \mathrm{NC}(\mathbf{1 b})\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, 20{ }^{\circ} \mathrm{C}, \lambda=601 \mathrm{~nm}\right)$.

$\left[2 d-\mathrm{BF}_{4}\right]_{0}, \mathrm{M}$	$[\mathrm{BnNC}], \mathrm{M}$	conversion, \%	$k_{\mathrm{obs},}, \mathrm{s}^{-1}$
9.41×10^{-6}	1.69×10^{-4}	72	4.20×10^{-3}
8.51×10^{-6}	3.39×10^{-4}	66	8.20×10^{-3}
9.33×10^{-6}	4.18×10^{-4}	64	1.01×10^{-2}
8.82×10^{-6}	6.66×10^{-4}	57	1.51×10^{-2}
8.06×10^{-6}	1.02×10^{-3}	68	2.29×10^{-2}

$$
k_{2}\left(20^{\circ} \mathrm{C}\right)=21.77 \mathrm{M}^{-1} \mathrm{~s}^{-1}
$$

Table S7. Kinetics of the reaction of $2 \mathrm{e}-\mathrm{BF}_{4}$ with $\mathrm{PhCH}_{2} \mathrm{NC}(\mathbf{1 b})\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, 20{ }^{\circ} \mathrm{C}, \lambda=593 \mathrm{~nm}\right)$.

$\left[2 \mathbf{e}-\mathrm{BF}_{4}\right]_{0}, \mathrm{M}$	$[\mathrm{BnNC}], \mathrm{M}$	conversion, $\%$	$k_{\mathrm{obs}}, \mathrm{s}^{-1}$
6.09×10^{-6}	8.73×10^{-5}	78	5.48×10^{-4}
3.73×10^{-6}	1.78×10^{-4}	77	1.11×10^{-3}
4.84×10^{-6}	2.60×10^{-4}	78	1.61×10^{-3}
4.59×10^{-6}	3.76×10^{-4}	79	2.29×10^{-3}

$$
k_{2}\left(20^{\circ} \mathrm{C}\right)=6.036 \mathrm{M}^{-1} \mathrm{~s}^{-1}
$$

Table S8. Kinetics of the reaction of $\mathbf{2 f}-\mathrm{BF}_{4}$ with $\mathrm{PhCH}_{2} \mathrm{NC}(\mathbf{1 b})\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, 20^{\circ} \mathrm{C}, \lambda=675 \mathrm{~nm}\right)$.

$\left[\mathbf{2 f -} \mathrm{BF}_{4}\right]_{0}, \mathrm{M}$	$[\mathrm{BnNC}], \mathrm{M}$	conversion, $\%$	$k_{\mathrm{obs},}, \mathrm{s}^{-1}$
6.63×10^{-6}	3.58×10^{-4}	77	4.23×10^{-4}
6.68×10^{-6}	5.41×10^{-4}	71	6.09×10^{-4}
6.87×10^{-6}	7.41×10^{-4}	75	8.72×10^{-4}
6.97×10^{-6}	9.40×10^{-4}	81	1.04×10^{-3}

Table S9. Kinetics of the reaction of $2 \mathrm{~g}-\mathrm{BF}_{4}$ with $\mathrm{PhCH}_{2} \mathrm{NC}(\mathbf{1 b})\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, 20^{\circ} \mathrm{C}, \lambda=620 \mathrm{~nm}\right)$.

$\left[2 \mathrm{~g}-\mathrm{BF}_{4}\right]_{0}, \mathrm{M}$	$[\mathrm{BnNC}], \mathrm{M}$	conversion, $\%$	$k_{\mathrm{obs}}, \mathrm{s}^{-1}$
1.74×10^{-5}	3.73×10^{-4}	72	1.28×10^{-4}
1.73×10^{-5}	5.57×10^{-4}	85	1.95×10^{-4}
1.67×10^{-5}	7.17×10^{-4}	81	2.33×10^{-4}
1.62×10^{-5}	8.68×10^{-4}	74	3.31×10^{-4}

$$
k_{2}\left(20^{\circ} \mathrm{C}\right)=0.3915 \mathrm{M}^{-1} \mathrm{~s}^{-1}
$$

$\left[\mathrm{PhCH}_{2} \mathrm{NC}\right]\left(\mathrm{mol} \mathrm{L}^{-1}\right) \longrightarrow$

Table S10. Kinetics of the reaction of 2c-OTf with 2,6-dimethylphenyl isocyanide (1c) $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, 20{ }^{\circ} \mathrm{C}, \lambda=\right.$ 335 nm).

$[\mathbf{2 c - O A c}]_{0}, \mathrm{M}$	$[\mathbf{1 c}], \mathrm{M}$	$[\mathrm{TMSOTf}]_{0}, \mathrm{M}$	$[2,6-\mathrm{DTBP}]_{0}, \mathrm{M}^{a}$	conv., $\%$	$k_{\text {obs }}, \mathrm{s}^{-1}$
5.14×10^{-5}	8.11×10^{-4}	1.34×10^{-4}	2.37×10^{-5}	64	5.52×10^{-2}
5.18×10^{-5}	9.81×10^{-4}	1.35×10^{-4}	2.39×10^{-5}	49	6.64×10^{-2}
5.25×10^{-5}	9.93×10^{-4}	1.37×10^{-4}	2.42×10^{-5}	63	6.95×10^{-2}
5.04×10^{-5}	1.27×10^{-3}	1.31×10^{-4}	2.33×10^{-5}	46	8.60×10^{-2}
5.08×10^{-5}	1.44×10^{-3}	1.33×10^{-4}	2.34×10^{-5}	39	8.71×10^{-2}

${ }^{a}$ 2,6-Di-tert-butylpyridine (2,6-DTBP) is used as scavenger of triflic acid (see above).

$$
k_{2}\left(20^{\circ} \mathrm{C}\right)=52.38 \mathrm{M}^{-1} \mathrm{~s}^{-1}
$$

The kinetic measurements of this series were of relatively poor quality.

Table S11. Kinetics of the reaction of 2d-OTf with 2,6-dimethylphenyl isocyanide (1c) $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, 20^{\circ} \mathrm{C}, \lambda=\right.$ 601 nm).

$[\mathbf{2 d}-\mathrm{OH}]_{0}, \mathrm{M}$	[1c], M	$[T M S O T f]_{0}, \mathrm{M}$	$[2,6-\mathrm{DTBP}]_{0}, \mathrm{M}^{a}$	conv., $\%$	$k_{\text {obs }}, \mathrm{s}^{-1}$
1.22×10^{-5}	2.32×10^{-4}	8.96×10^{-5}	4.07×10^{-5}	79	4.44×10^{-3}
1.21×10^{-5}	6.87×10^{-4}	8.87×10^{-5}	4.03×10^{-5}	85	1.22×10^{-2}
1.17×10^{-5}	7.77×10^{-4}	8.55×10^{-5}	3.89×10^{-5}	71	1.54×10^{-2}
1.21×10^{-5}	9.15×10^{-4}	8.86×10^{-5}	4.03×10^{-5}	77	1.62×10^{-2}

${ }^{a}$ 2,6-Di-tert-butylpyridine (2,6-DTBP) is used as scavenger of triflic acid (see above).

$$
k_{2}\left(20^{\circ} \mathrm{C}\right)=17.95 \mathrm{M}^{-1} \mathrm{~s}^{-1}
$$

Table S12. Kinetics of the reaction of $\mathbf{2 e -} \mathrm{BF}_{4}$ with 2,6-dimethylphenyl isocyanide (1c) $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, 20{ }^{\circ} \mathrm{C}\right.$, $\lambda=$ 593 nm).

$\left[2 \mathbf{e}-\mathrm{BF}_{4}\right]_{0}, \mathbf{M}$	$[\mathbf{1 c}], \mathrm{M}$	conversion, \%	$k_{\text {obs }}, \mathrm{s}^{-1}$
8.97×10^{-6}	3.19×10^{-4}	74	1.82×10^{-3}
5.95×10^{-6}	4.76×10^{-4}	71	2.23×10^{-3}
8.91×10^{-6}	6.34×10^{-4}	79	3.34×10^{-3}
1.05×10^{-5}	7.79×10^{-4}	80	3.78×10^{-3}

Table S13. Kinetics of the reaction of 2a-OTf with TosMIC (1d) $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, 20^{\circ} \mathrm{C}, \lambda=513 \mathrm{~nm}\right)$.

$[2 a-C l]_{0}, \mathrm{M}$	$[$ TosMIC $], \mathrm{M}$	$[\text { TMSOTf }]_{0}, \mathrm{M}$	$[2,6-\mathrm{DTBP}]_{0}, \mathrm{M}^{a}$	conv., $\%$	$k_{\mathrm{obs}}, \mathrm{s}^{-1}$
2.08×10^{-5}	2.46×10^{-4}	6.66×10^{-5}	2.50×10^{-5}	77	8.92×10^{-2}
2.03×10^{-5}	3.60×10^{-4}	6.50×10^{-5}	2.44×10^{-5}	62	1.41×10^{-1}
2.05×10^{-5}	4.35×10^{-4}	6.56×10^{-5}	2.46×10^{-5}	71	1.77×10^{-1}
2.03×10^{-5}	4.79×10^{-4}	6.50×10^{-5}	2.44×10^{-5}	56	1.95×10^{-1}
2.00×10^{-5}	5.92×10^{-4}	6.40×10^{-5}	2.40×10^{-5}	70	2.33×10^{-1}

${ }^{a}$ 2,6-Di-tert-butylpyridine (2,6-DTBP) is used as scavenger of triflic acid (see above).

$$
k_{2}\left(20^{\circ} \mathrm{C}\right)=420.8 \mathrm{M}^{-1} \mathrm{~s}^{-1}
$$

Table S14. Kinetics of the reaction of 2b-OTf with TosMIC (1d) $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, 20^{\circ} \mathrm{C}, \lambda=535 \mathrm{~nm}\right)$.

$[2 \mathbf{b}-\mathrm{OH}]_{0}, \mathrm{M}$	$[\mathrm{TosMIC}], \mathrm{M}$	$[\mathrm{TMSOTf}]_{0}, \mathrm{M}$	$[2,6-\mathrm{DTBP}]_{0}, \mathrm{M}^{a}$	conv., $\%$	$k_{\mathrm{obs}}, \mathrm{s}^{-1}$
1.17×10^{-5}	3.56×10^{-4}	5.65×10^{-5}	2.42×10^{-5}	51	1.91×10^{-2}
1.18×10^{-5}	4.80×10^{-4}	5.70×10^{-5}	2.44×10^{-5}	59	2.54×10^{-2}
1.17×10^{-5}	7.17×10^{-4}	5.65×10^{-5}	2.42×10^{-5}	74	3.49×10^{-2}
1.18×10^{-5}	9.61×10^{-4}	5.70×10^{-5}	2.44×10^{-5}	77	4.74×10^{-2}
1.19×10^{-5}	1.21×10^{-3}	5.74×10^{-5}	2.46×10^{-5}	66	5.92×10^{-2}

${ }^{a}$ 2,6-Di-tert-butylpyridine (2,6-DTBP) is used as scavenger of triflic acid (see above).

Table S15. Kinetics of the reaction of 2c-OTf with TosMIC (1d) $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, 20^{\circ} \mathrm{C}, \lambda=335 \mathrm{~nm}\right)$.

$[2 \mathrm{c}-\mathrm{OAc}]_{0}, \mathrm{M}$	$[$ TosMIC $], \mathrm{M}$	$[\text { TMSOTf }]_{0}, \mathrm{M}$	$[2,6-\mathrm{DTBP}]_{0}, \mathrm{M}^{a}$	conv., $\%$	$k_{\mathrm{obs}}, \mathrm{s}^{-1}$
7.09×10^{-5}	8.56×10^{-4}	2.42×10^{-4}	8.06×10^{-5}	47	5.54×10^{-3}
5.39×10^{-5}	1.08×10^{-3}	1.87×10^{-4}	6.52×10^{-5}	46	6.61×10^{-3}
5.34×10^{-5}	1.61×10^{-3}	2.59×10^{-4}	8.09×10^{-5}	47	8.51×10^{-3}
5.11×10^{-5}	2.38×10^{-3}	1.70×10^{-4}	7.74×10^{-5}	57	1.21×10^{-2}

${ }^{a}$ 2,6-Di-tert-butylpyridine (2,6-DTBP) is used as scavenger of triflic acid (see above).

Table S16. Kinetics of the reaction of 2a-OTf with 4-cyanophenyl isocyanide (1e) $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, 20{ }^{\circ} \mathrm{C}, \lambda=513\right.$ $\mathrm{nm})$.

$[2 \mathrm{2a}-\mathrm{Cl}]_{0}, \mathrm{M}$	$[\mathbf{1 e}], \mathrm{M}$	$[\mathrm{TMSOTf}]_{0}, \mathrm{M}$	$[2,6-\mathrm{DTBP}]_{0}, \mathrm{M}^{a}$	conv., $\%$	$k_{\text {obs }}, \mathrm{s}^{-1}$
7.35×10^{-6}	1.05×10^{-4}	7.26×10^{-5}	1.04×10^{-5}	63	3.59×10^{-2}
7.34×10^{-6}	2.10×10^{-4}	7.26×10^{-5}	1.04×10^{-5}	60	7.91×10^{-2}
7.28×10^{-6}	3.11×10^{-4}	7.20×10^{-5}	1.03×10^{-5}	63	1.16×10^{-1}
7.24×10^{-6}	4.12×10^{-4}	7.16×10^{-5}	1.02×10^{-5}	50	1.53×10^{-1}

${ }^{a}$ 2,6-Di-tert-butylpyridine (2,6-DTBP) is used as scavenger of triflic acid (see above).

Table S17. Kinetics of the reaction of 2b-OTf with 4-cyanophenyl isocyanide (1e) $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, 20^{\circ} \mathrm{C}, \lambda=535\right.$ nm).

$[\mathbf{2 b}-\mathrm{OH}]_{0}, \mathrm{M}$	$[\mathbf{1 e}], \mathrm{M}$	$[\mathrm{TMSOTf}]_{0}, \mathrm{M}$	$[2,6-\mathrm{DTBP}]_{0}, \mathrm{M}^{a}$	conv., \%	$k_{\text {obs }}, \mathrm{s}^{-1}$
1.07×10^{-5}	2.03×10^{-4}	1.00×10^{-4}	2.00×10^{-5}	85	7.81×10^{-3}
1.10×10^{-5}	4.14×10^{-4}	1.03×10^{-4}	2.01×10^{-5}	75	1.65×10^{-2}
1.08×10^{-5}	6.13×10^{-4}	1.03×10^{-4}	2.01×10^{-5}	86	2.56×10^{-2}
1.08×10^{-5}	8.17×10^{-4}	1.01×10^{-4}	2.00×10^{-5}	72	3.17×10^{-2}

${ }^{a}$ 2,6-Di-tert-butylpyridine (2,6-DTBP) is used as scavenger of triflic acid (see above).

