

Supporting Information

© Wiley-VCH 2007

69451 Weinheim, Germany

Copper(I)-Catalyzed Conjugate Addition of Ethyl Propiolate

Shinji Fujimori and Erick M. Carreira

Laboratorium für Organische Chemie

ETH Hönggerberg, CH-8093 Zürich, Switzerland

General Experimental

All non aqueous reactions were carried out in oven dried glasswares under argon atomosphere using solvents that were dried by passage over two 4 x 36 inch columns of anhydrous neutral A-2 alumina (8 x 14 mesh; Macherey und Nagel; activated under a flow of N₂ at 300° over night; solvent drying system) under an argon atmosphere (H₂O content < 30 ppm, *Karl-Fischer* titration). For aqueous reactions, deionized water was used as solvent. For flash chromatography and extractions technical grade solvents were distilled prior to use.

All chemicals were purchased from suppliers and used as received unless noted otherwise. Achiral Meldrums acid derived acceptors were prepared according to literature procedures.¹ Ethyl propiolate was purchased from Acros (99%), copper(II) acetate monohydrate was purchased from Aldrich (98+%, ACS reagent grade), and (+)-L-sodium ascorbate was purchased from Fluka (>99%). Chromatographic purification was performed as flash chromatography (FC) using Merck silica 60 or Brunschwig Silica 60, with 0.7 bar pressure. TLC was performed on Merck silica gel 60 F254 TLC glass plates and visualized with UV light and/or permanganate stain.

¹H-NMR spectra were recorded on a VARIAN Mercury 300 MHz spectrometer in the indicated solvent. All signals are reported in ppm with the internal solvent signal as standard. The data is reported as (s = singlet, d = doublet, t = triplet, m = multiplet or unresolved, br = broad signal, app = apparent, coupling constant(s) in Hz, integration). ¹³C-NMR spectra were recorded with 1H-decoupling on a VARIAN Mercury 75 MHz spectrometer in the indicated solvent, all signals are reported in ppm with the internal solvent signal as reference. Infrared spectra were recorded on a Perkin Elmer Spectrum RX-I FT-IR spectrophotometer as thin films or KBr pellets. The data is being reported as absorption maxima (?, cm-1) with corresponding characteristic intensity (w = weak, m = medium, s = strong, br = broad). Melting points were measured on a Buechi 510 melting point apparatus using open glass capillaries and are uncorrected. Opticals rotation [a]D T were measured by Jasco DID 1000 Polarimeter, 10 cm, 1 ml cell. Concentration (c, g/100 ml), solvent of the each sample are given in parentheses.

High resolution mass spectrometric measurements were performed by the mass spectrometry service of the Laboratorium für Organische Chemie at the ETH Zürich. EI measurements were performed on a VG Tribrid spectrometer, 70 eV. ESI measurements were performed on a TSQ 7000.

X-ray crystal structural analysis was performed by Dr. Bernd Schweizer at the X-ray crystallography group at the Organic Chemistry Laboratory, ETH Zurich.

¹ a) T. F. Knöpfel, E. M. Carreira, *J. Am. Chem. Soc.* **2003**, *125*, 6054-6055; b) T. F. Knöpfel, P. Zarotti, T. Ichikawa, E. M. Carreira, *J. Am. Chem. Soc.* **2005**, *127*, 9682-9683.

Experimental Procedures

General Procedure I: Preparation of Chiral Acceptors: (S)-5-((2,2-dimethyl-1,3-dioxolan-4-yl)methylene)-2,2-dimethyl-1,3-dioxane-4,6-dione (6a)

In a 100 mL round bottom flask were placed R-2,2-dimethyl-1,3-dioxolane-4-carboxaldehyde (1.30 g, 10 mmol, 1.2 equiv), toluene (10 mL), Meldrum's acid (1.20 g, 8.3 mmol) and sodium sulfate (10 g). To the stirring reaction mixture was added piperidine (50 μ L, 0.5 mmol, 0.06 equiv). The reaction mixture was stirred at rt for 1 h. The reaction mixture was chromatographed (1/1 Hexane/EtOAc, 40 mm x 10 cm SiO₂) providing 1.30 g (5.0 mmol, 61%) of **6a** as white solid.

mp:59 - 60 °C

 $[a]_{D}^{21}$ +114 (c = 1.25, CHCl₃)

 ^1H NMR (300 MHz, CDCl₃): δ 7.94 (d, J = 6.3, 1 H), 5.54 (dt, J = 7.2, 6.3, 1 H) 4.56-4.51, 3.79-3.74 (ABX, 2 H) 1.76 (s, 3 H), 1.75 (s, 3 H), 1.50 (s, 3 H), 1.42 (s, 3 H)

¹³C NMR (75 MHz, CDCl₃): 166.0, 160.3, 159.3, 117.7, 111.0, 105.4, 74.3, 68.8, 27.9, 27.6, 26.3, 25.2

IR (CHCl₃): 2990 (m), 1737 (s), 1634 (m), 1382 (m), 1283 (m), 1218 (m), 1153
(w), 1059 (m), 1020 (m)

 $\text{HRMS:}~(\text{HR-EI, positive})\text{: Calcd. for }C_{11}H_{13}O_6^+~([\text{M-CH}_3]^+)~241.0707\text{, found}~241.0705$

5-(((2S,5R,6R)-5,6-dimethoxy-5,6-dimethyl-1,4-dioxan-2-yl)methylene)-2,2dimethyl-1,3-dioxane-4,6-dione (6b)

Following the general procedure I using (2R, 5R, 6R)-5, 6-dimethoxy-5, 6-dimethyl-1, 4-dioxane-2-carbaldehyde (3.57 g, 17.5 mmol). After chromatography, the residue was crystalized from Hexane/CH₂Cl₂ (9/1) to give 2.90 g (8.78 mmol, 50%) of**6b**as white solid.

mp: 99-100 °C

 $[a]_{D}^{23}$ -106.2 (c = 1.6, CHCl₃)

¹**H NMR** (300 MHz, CDCl₃): δ 7.80 (d, J = 6.9, 1 H), 5.55 (m, 1 H), 3.77-3.59 (ABX, 2 H), 3.28 (s, 6 H), 1.75 (s, 3 H), 1.74 (s, 3 H), 1.32 (s, 6 H)

¹³C NMR (75 MHz, CDCl₃): 160.9, 160.3, 158.8, 118.8, 105.3, 98.7, 97.7, 67.4, 58.6, 48.4, 48.3, 28.0, 27.7, 17.8, 17.6

IR (CHCl₃): 2994 (m), 2950 (m), 2835 (m), 1734 (s), 1646 (m), 1445 (m), 1361
(m), 1280 (m), 1204 (m), 1142 (m), 1115 (m), 1036 (m)

 $HRMS\colon$ (HR-ESI, positive): Calcd. for $C_{15}H_{22}O_8Na^+$ ([M+Na]^+) 353.1207, found 353.1200

(S)-5-(2-(benzyloxy)propylidene)-2,2-dimethyl-1,3-dioxane-4,6-dione (6c) Me Me

Following the general procedure I using (S)-2-(benzyloxy)propanal (3.12 g, 19.0 mmol). After chromatography of the crude oil, 3.25 g (11.2 mmol, 59%) of **6c** was obtained as clear oil.

 $[\mathbf{a}]_{D}^{25}$ +1.3 (c = 0.81, CHCl₃)

¹**H NMR** (300 MHz, CDCl₃): δ 7.85 (d, J = 7.8, 1 H), 7.36 - 7.26 (m, 5 H), 5.23 (qd, J = 7.8, 6.6, 1 H), 4.53 (AB, 2 H), 1.73 (s, 3 H), 1.70 (s, 3 H), 1.43 (d, J = 6.3, 3 H)

¹³C NMR (75 MHz, CDCl₃): 168.9, 160.7, 159.1, 137.4, 128.3, 127.8, 127.7, 116.9, 72.9, 72.1, 27.7, 27.6, 19.2

IR (neat): 3031 (m), 2984 (m), 2936 (m), 2871 (m), 1738 (s), 1634 (m), 1496
(m), 1454 (m), 1394 (m), 1353 (m), 1281 (m), 1203 (m), 1074 (m), 1019 (m)

 $HRMS\colon$ (HR-EI, positive): Calcd. for $C_{13}H_{12}O_4^+$ ([M-CH_3COCH_3]^+) 232.0730, found 232.0739

(S)-5-(2-(benzyloxy)-2-phenylethylidene)-2,2-dimethyl-1,3-dioxane-4,6-dione
(6d)

Following the general procedure I using (R)-2-(benzyloxy)-2phenylacetaldehyde (144 mg, 1.0 mmol). After chromatography of the crude oil, 180 mg (0.51 mmol, 51%) of **6d** was obtained as clear oil. $[\mathbf{a}]_{D}^{27} + 88.6 \ (c = 1.0, CHCl_{3})$

¹**H NMR** (300 MHz, CDCl₃): δ 7.91 (d, J = 8.7, 1 H), 7.59 - 7.56 (m, 2 H), 7.41 - 7.25 (m, 8 H), 6.26 (d, J = 9.0, 1 H), 4.41 (AB, 2 H), 1.73 (s, 3 H), 1.62 (s, 3 H)

¹³C NMR (75 MHz, CDCl₃): 163.1, 161.0, 159.5, 137.4, 137.2, 128.9, 128.8, 128.3, 127.8, 127.7, 127.5, 116.1, 105.0, 70.8, 27.8, 27.6

 $\begin{array}{c} \mbox{IR} \ (\mbox{CHCl}_3) \colon \ 3063 \ (\mbox{m}) \ , \ 3039 \ (\mbox{m}) \ , \ 2988 \ (\mbox{m}) \ , \ 2942 \ (\mbox{m}) \ , \ 2868 \ (\mbox{m}) \ , \ 1766 \ (\mbox{m}) \ , \ 1736 \ (\mbox{s}) \ , \ 1635 \ (\mbox{m}) \ , \ 1494 \ (\mbox{m}) \ , \ 1455 \ (\mbox{m}) \ , \ 1394 \ (\mbox{m}) \ , \ 1355 \ (\mbox{m}) \ , \ 1283 \ (\mbox{s}) \ , \ 1221 \ (\mbox{m}) \ , \ 1203 \ (\mbox{m}) \ , \ 1082 \ (\mbox{m}) \ , \ 1028 \ (\mbox{m}) \ , \ 1082 \ (\mbox{m}) \ , \ 1028 \ ,$

 $\text{HRMS}\colon$ (HR-EI, positive): Calcd. for $C_{18}H_{14}O_4^+$ ([M-CH_3COCH_3]^+) 294.0887, found 294.0888

General Procedure II: Copper Mediated Conjugate Addition of Ethyl Propiolate: Ethyl 4-(2,2-dimethyl-4,6-dioxo-1,3-dioxan-5-yl)-5-methylhex-2-ynoate (2a)

In a test tube $(100 \times 12 \text{ mm})$ equipped with a stir bar was added $Cu(OAc)_2$ (20 mg, 0.10 mmol, 0.4 equiv) and deionized water (0.4 mL). To the stirring solution was added Na-(+)-ascorbate (40 mg, 0.20 mmol, 0.8 equiv). The reaction mixture was stirred for 5 min, and during this time the solution turns brown initially and changes its color to orange. To the reaction mixture was added ethyl propiolate (253 μ L, 2.50 mmol, 10 equiv). The reaction mixture was stirred for 10 min, and during this time the color changes from orange to yellow. To the reaction mixture was then added 1a (48 mg, 0.25 mmol), and the reaction mixture was stirred vigorously at rt for 48 h. The reaction mixture was diluted with saturated aqueous ammonium chloride (1 mL) and extracted with dichloromethane (10 mL x 3). The solution was dried over Na₂SO₄, passed through a pad of Celite (40 mm x 1 cm) and concentrated. The residue was purified by chromatography (20 mm x 7 cm SiO_2 , 3/1 - 1/1 Hexane/EtOAc) to afford **2a** (68 mg, 92%) as white solid.

mp:67-68°C

¹**H NMR** (300 MHz, CDCl₃): δ 4.17 (q, J = 7.2, 2 H), 3.75 (d, J = 2.7, 1 H), 3.23 (dd, J = 10.5, 2.7, 1 H), 2.47 (m, 1 H), 1.80 (s, 3 H), 1.78 (s, 3 H) 1.27 (t, J = 7.2, 3 H), 1.18 (d, J = 5.1, 3 H), 0.97 (d, J = 6.6, 3 H)

 $^{13}\mathbf{C}$ NMR (75 MHz, CDCl₃): δ 164.0, 163.0, 153.1, 105.5, 86.1, 76.0, 62.0, 47.1, 38.7, 29.8, 28.5, 27.5, 21.9, 20.3, 14.1

IR (CHCl₃): 2970 (m), 2909 (m), 2874 (m), 2240 (m), 1786 (m), 1750 (s), 1710
(m), 1474 (m), 1385 (m), 1368 (m), 1334 (m), 1300 (m), 1259 (m), 1214 (m),
1139 (m), 1080 (m), 1067 (m), 1006 (m)

HRMS (HR-ESI, negative): Calcd. for $C_{15}H_{19}O_6^-$ ([M-H]⁻) 295.1187, found 295.1207

Ethyl 4-cyclohexyl-4-(2,2-dimethyl-4,6-dioxo-1,3-dioxan-5-yl)but-2-ynoate (2b)

Following the General Procedure II using 1b (60 mg, 0.25 mmol), 71 mg of 2b (0.21 mmol, 84%) was obtained as white solid.

mp: 101-102 °C

¹**H NMR** (300 MHz, CDCl₃): δ 4.18 (q, J = 6.9, 2 H), 3.78 (d, J = 2.4, 1 H), 3.29 (dd, J = 10.5, 2.7, 1 H), 2.26 - 2.05 (m, 2 H), 1.80 (s, 3 H), 1.78 (s, 3 H), 1.80 - 1.60 (m, 4 H), 1.27 (t, J = 7.2, 3 H), 1.33 - 0.88 (m, 5 H)

 $^{13}\mathbf{C}$ NMR (75 MHz, CDCl₃): δ 164.0, 163.0, 153.1, 105.4, 86.2, 76.0, 61.9, 46.4, 38.2, 37.3, 32.3, 30.6, 28.4, 27.5, 26.0, 25.9, 14.1

IR (CHCl₃): 3022 (m), 2932 (m), 2855 (m), 2238 (m), 1785 (m), 1750 (s), 1709 (m), 1450 (m), 1396 (m), 1368 (m), 1333 (m), 1302 (m), 1260 (m), 1216 (m), 1108 (m), 1069 (m), 1010 (m)

HRMS (HR-ESI, negative): Calcd. for C₁₈H₂₃O₆⁻ ([M-H]⁻) 335.1500, found 335.1496

Ethyl 4-cyclopropyl-4-(2,2-dimethyl-4,6-dioxo-1,3-dioxan-5-yl)but-2-ynoate (2c)

Following the General Procedure II using 1c (49 mg, 0.25 mmol), 48 mg of 2c (0.16 mmol, 65%) was obtained as pale yellow oil which solidified upon standing.

mp: 89-90 °C

¹**H NMR** (300 MHz, CDCl₃): δ 4.21 (q, J = 7.2, 2 H), 3.78 (d, J = 2.4, 1 H), 2.91 (dd, J = 9.5, 2.4, 1 H), 1.81 (s, 6 H), 1.58 (m, 1 H), 1.29 (t, J = 6.9, 3 H), 0.75 - 0.31 (m, 4 H)

 $^{13}\textbf{C}$ NMR (75 MHz, CDCl_3): δ 163.4, 163.2, 153.3, 105.5, 85.4, 75.1, 62.0, 49.8, 35.7, 28.4, 27.3, 14.0, 13.2, 5.8, 5.0

IR (CHCl₃): 3021 (m), 2241 (m), 1785 (m), 1751 (s), 1709 (m), 1465 (w), 1385
(m), 1368 (m), 1336 (m), 1302 (m), 1259 (m), 1216 (m), 1111 (m), 1066 (m),
1013 (m)

HRMS (HR-ESI, negative): Calcd. for $C_{18}H_{23}O_6^-$ ([M-H]⁻) 293.1031, found 293.1033

Ethyl 4-(2,2-dimethyl-4,6-dioxo-1,3-dioxan-5-yl)hex-2-ynoate (2d)

Following the General Procedure II using **1d** (46 mg, 0.25 mmol), 38 mg of **2d** (0.13 mmol, 54%) was obtained as clear oil.

¹**H NMR** (300 MHz, CDCl₃): δ 4.20 (q, J = 7.2, 2 H), 3.75 (d, J = 2.4, 1 H), 3.48 (m, 1 H), 2.03 (m, 1 H), 1.79 (s, 6 H), 1.66 (m, 1 H), 1.29 (t, J = 6.9, 3 H), 1.11 (t, J = 7.5, 3 H)

 $^{13}\mathbf{C}$ NMR (75 MHz, CDCl₃): δ 163.0, 153.3, 105.4, 86.3, 75.6, 62.0, 49.2, 32.2, 28.4, 27.1, 24.5, 14.0, 12.5

IR (neat): 2959 (m), 2932 (m), 2873 (m), 2242 (m), 1789 (m), 1750 (s), 1711
(m), 1465 (m), 1395 (m), 1385 (m), 1305 (m), 1259 (m), 1205 (m), 1135 (m),
1065 (m), 1014 (m)

HRMS (HR-ESI, negative): Calcd. for $C_{14}H_{17}O_6^-$ ([M-H]⁻) 281.1031, found 281.1039

Ethyl 4-(2,2-dimethyl-4,6-dioxo-1,3-dioxan-5-yl)-6-methylhept-2-ynoate (2e)

Following the General Procedure II using 1e (53 mg, 0.25 mmol), 70 mg of 2e (0.23 mmol, 90%) was obtained as off white solid.

mp: 81-83 °C

¹**H** NMR (300 MHz, CDCl₃): δ 4.17 (q, J = 7.2, 2 H), 3.78 (d, J = 2.7, 1 H), 3.64 (m, 1 H), 2.03 (m, 1 H), 1.88 - 1.72 (m, 1 H), 1.79 (s, 3 H), 1.77 (s, 3 H), 1.28 (t, J = 6.9, 3 H), 1.27 - 1.18 (m, 1 H), 0.95 (d, J = 6.3, 3 H), 0.94 (d, J = 6.6, 3 H)

 $^{13}\mathbf{C}$ NMR (75 MHz, CDCl₃): δ 163.0, 153.3, 105.4, 86.6, 75.2, 61.9, 49.5, 39.4, 28.3, 27.0, 26.1, 23.0, 21.1, 14.0

IR (CHCl₃): 3020 (m), 2963 (m), 2873 (m), 2242 (m), 1788 (m), 1752 (s), 1708
(m), 1468 (m), 1384 (m), 1369 (m), 1307 (m), 1259 (m), 1216 (s), 1065 (m),
1009 (m)

HRMS (HR-ESI, negative): Calcd. for C₁₆H₂₁O₆⁻ ([M-H]⁻) 309.1416, found 309.1342

Ethyl 4-(2,2-dimethyl-4,6-dioxo-1,3-dioxan-5-yl)-6-phenylhexanoate (5f)

Following the General Procedure II using 1f (65 mg, 0.25 mmol), crude 2f was obtained as clear oil. The crude 2f was dissolved in EtOAc (5 mL). To the solution was added 10% Pd/C (5 mg), and the reaction mixture was subjected to hydrogen atmosphere using a balloon at rt for 2 h. The reaction mixture was diluted with Hexane/EtOAc (1/1, 50 mL), passed through a pad of silica gel (40 mm x 1 cm) and concentrated under reduced pressure. The residue was chromatographed (Hexane/EtOAc, 3/1, 20 mm x 15 cm SiO₂) to afford 55 mg (0.15 mmol, 61%) of 5f as clear oil.

¹**H NMR** (300 MHz, CDCl₃): δ 7.30 - 7.15 (m, 5 H), 4.12 (q, J = 7.2, 2 H), 3.62 (d, J = 2.4, 1 H), 2.82 - 2.35 (m, 4 H), 2.01 - 1.86 (m, 4 H), 1.81 (s, 3 H), 1.72 (s, 3 H), 1.25 (t, J = 7.2, 3 H)

 $^{13}\mathbf{C}$ NMR (75 MHz, CDCl₃): δ 173.0, 164.8, 141.3, 128.4, 128.2, 126.0, 104.7, 60.6, 48.4, 38.1, 34.4, 33.3, 32.9, 28.3, 27.1, 27.0, 14.3

IR (neat): 3026 (m), 2940 (w), 2244 (m), 1786 (m), 1750 (s), 1710 (m), 1496
(w), 1455 (m), 1384 (m), 1369 (m), 1306 (m), 1260 (m), 1216 (m), 1108 (m),
1069 (m), 1020 (m)

HRMS (HR-ESI, positive): Calcd. for $C_{20}H_{26}O_6Na^+$ ([M+Na]^+) 385.1622, found 385.1617

Ethyl 4-(2,2-dimethyl-4,6-dioxo-1,3-dioxan-5-yl)nonanoate (5g)

Following the General Procedure II using **1g** (57 mg, 0.25 mmol), crude **2g** was obtained as pale yellow oil. The crude **2g** was dissolved in EtOAc (5 mL). To

the solution was added 10% Pd/C (5 mg), and the reaction mixture was subjected to hydrogen atmosphere using a balloon at 0°C for 1 h. The reaction mixture was diluted with EtOAc (50 mL), passed through a pad of silica gel (40 mm x 1 cm) and concentrated under reduced pressure. The residue was chromatographed (Hexane/EtOAc, 3/1, 20 mm x 15 cm SiO₂) to afford 61 mg (0.19 mmol, 74%) of **5g** as clear oil.

¹**H** NMR (300 MHz, CDCl₃): δ 4.10 (q, J = 7.2, 2 H), 3.62 (d, J = 2.7, 1 H), 2.50 - 2.30 (m, 3 H), 1.94 - 1.82 (m, 2 H), 1.75 (s, 3 H), 1.73 (s, 3 H), 1.60 - 1.20 (m, 8 H), 1.23 (t, J = 7.2, 3 H), 0.87 (m, 3 H)

 $^{13}\mathbf{C}$ NMR (75 MHz, CDCl₃): δ 173.3, 165.3, 104.8, 60.5, 48.2, 38.5, 32.9, 31.7, 31.6, 28.2, 27.4, 27.3, 27.0, 22.5, 14.2, 14.0

IR (neat): 2958 (m), 2932 (m), 2862 (m), 2257 (w), 1783 (m), 1747 (s), 1629
(w), 1460 (m), 1394 (m), 1383 (m), 1295 (m), 1206 (m), 1064 (m), 1027 (m)

HRMS (HR-ESI, positive): Calcd. for $C_{17}H_{27}O_6^-$ ([M-H] $^-$) 327.1813, found 327.1820

Ethyl 4-(1,3-dimethyl-2,4,6-trioxohexahydropyrimidin-5-yl)-5-methylhex-2ynoate (4a)

Following the General Procedure II using 3a (53 mg, 0.25 mmol), 58 mg of 4a (0.19 mmol, 75%) was obtained as white solid after crystallization from hexanes.

mp: 131-133 °C

¹**H NMR** (300 MHz, CDCl₃): δ 5.40 (d, J = 1.8, 1 H), 4.19 (q, J = 7.2, 2 H), 4.09 (dd, J = 2.8, 1.8, 1 H), 3.47 (s, 3 H), 3.32 (s, 3 H), 2.29 (m, 1 H), 1.30 (t, J = 7.1, 3 H), 1.01 (d, J = 7.1, 3 H), 0.97 (d, J = 6.9, 3 H)

 $^{13}\mathbf{C}$ NMR (75 MHz, CDCl₃): δ 167.4, 163.5, 159.9, 159.1, 151.1, 98.5, 88.1, 60.3, 51.3, 32.4, 30.1, 28.2, 18.7, 18.5, 14.2

IR (CHCl₃): 3020 (m), 2965 (m), 1694 (s), 1667 (s), 1513 (m), 1464 (m), 1390
(w), 1371 (m), 1325 (m), 1310 (m), 1216 (m), 1163 (m), 1036 (m)

HRMS (HR-ESI, negative): Calcd. for $C_{15}H_{19}N_2O_5^-$ ([M-H]^) 307.1230, found 307.1298

General Procedure III: Diastereoselective Conjugate Addition of Ethyl Propiolate: Ethyl 4-((S)-2,2-dimethyl-1,3-dioxolan-4-yl)-4-(2,2-dimethyl-4,6dioxo-1,3-dioxan-5-yl)but-2-ynoate (7a)

In a test tube (100 x 12 mm) equipped with a stir bar was added $Cu(OAc)_2$ (10 mg, 0.05 mmol, 0.2 equiv) and deionized water (0.2 mL). To the stirring solution was added Na-(+)-ascorbate (20 mg, 0.10 mmol, 0.4 equiv). The reaction mixture was stirred for 5 min, and during this time the solution turns brown initially and changes its color to orange. To the reaction mixture was added ethyl propiolate (253 $\mu\text{L},$ 2.50 mmol, 10 equiv). The reaction mixture was stirred for 10 min, and during this time the color changes from orange to yellow. The reaction mixture was cooled to 0° C using an ice bath. To the reaction mixture was then added 6a (64 mg, 0.25 mmol), and the reaction mixture was stirred vigorously at 0 $^{\circ}$ C for 4 h. The reaction mixture was diluted with saturated aqueous ammonium chloride (1 mL) and extracted with dichloromethane (10 mL x 3). The solution was dried over Na_2SO_4 , passed through a pad of Celite (40 mm x 1 cm) and concentrated. The residue was purified by chromatography (20 mm x 7 cm SiO_2 , 1/1 Hexane/EtOAc) to afford **7a** (73 mg, 0.21 mmol, 82%) as white solid.

mp: 125 - 127 °C

 $[a]_{D}^{20}$ +5.0 (c = 1.0, CHCl₃)

¹**H NMR** (300 MHz, CDCl₃): δ 4.66 (q, J = 6.6, 1 H), 4.20 (q, J = 7.2, 2 H), 4.09 (m, 2 H), 3.90 (dd, J = 6.8, 3.2, 1 H), 3.79 (d, J = 3.3, 1 H), 1.79 (s, 6 H), 1.43 (s, 3 H), 1.34 (s, 3 H), 1.28 (t, J = 7.2, 3 H)

 $^{13}\mathbf{C}$ NMR (75 MHz, CDCl₃): δ 163.2, 162.6, 152.9, 110.3, 105.6, 83.0, 74.0, 66.9, 62.1, 46.3, 33.7, 30.1, 28.5, 27.2, 26.4, 25.2, 14.0

IR (CHCl₃): 3018 (m), 2986 (m), 2940 (m), 2906 (m), 2244 (m), 1824 (m), 1790
(m), 1750 (m), 1711 (s), 1456 (m), 1384 (m), 1260 (m), 1216 (s), 1151 (m),
1109 (m), 1071 (m)

HRMS (HR-ESI, negative): Calcd. for $C_{17}H_{21}O_8^-$ ([M-H]⁻) 353.1242, found 353.1247

Ethyl 4-((2S,5R,6R)-5,6-dimethoxy-5,6-dimethyl-1,4-dioxan-2-yl)-4-(2,2-dimethyl-4,6-dioxo-1,3-dioxan-5-yl)but-2-ynoate (7b)

Following General Procedure III using 6b (84 mg, 0.25 mmol) at rt for 2 h, 85 mg (0.20 mmol, 79%) of 7b was obtained as white solid.

mp: 97-98 °C

 $[a]_{p}^{20} -92.8$ (c = 0.8, CHCl₃)

¹**H NMR** (300 MHz, CDCl₃): δ 4.41 (m, 1 H), 4.19 (q, J = 7.2, 2 H), 4.03 (dd, J = 8.4, 2.1, 1 H), 3.85 - 3.75 (m, 2 H), 3.58 - 3.53 (m, 1 H), 3.25 (s, 3 H), 3.22 (s, 3 H), 1.78 (s, 6 H), 1.27 (t, J = 7.5, 3 H), 1.24 (s, 6 H)

 $^{13}\mathbf{C}$ NMR (75 MHz, CDCl₃): δ 163.1, 152.9, 105.2, 100.0, 97.7, 83.1, 76.2, 65.1, 62.0, 60.8, 60.4, 48.3, 48.2, 45.6, 31.9, 27.2, 17.4, 14.0

IR (CHCl₃): 3019 (m), 2952 (m), 2836 (m), 2246 (m), 1790 (m), 1751 (s), 1711
(s), 1447 (m), 1376 (m), 1302 (m), 1259 (m), 1216 (s), 1145 (m), 1118 (m),
1037 (m)

HRMS (HR-ESI, negative): Calcd. for $C_{20}H_{27}O_{10}^{-1}$ ([M-H]⁻) 427.1610, found 427.1614

(5S)-Ethyl 5-(benzyloxy)-4-(2,2-dimethyl-4,6-dioxo-1,3-dioxan-5-yl)hex-2ynoate (7c)

Following General Procedure III using 6c (84 mg, 0.25 mmol) at 0°C for 24 h, 65 mg (0.17 mmol, 67%) of 7c was obtained as yellow oil.

 $[a]_{D}^{20}$ +2.9 (c = 0.5, CHCl₃)

¹**H NMR** (300 MHz, CDCl₃): δ 7.35 - 7.26 (m, 5 H), 4.58 (AB, 2 H), 4.21 (q, J = 7.2, 2 H), 4.21 - 4.16 (m, 1 H), 3.90 (dd, J = 7.2, 3.3, 1 H), 3.82 (d, J = 3.5, 1 H), 1.75 (s, 3 H), 1.70 (s, 3 H), 1.35 (d, J = 6.2, 3 H), 1.29 (t, J = 7.1, 3 H)

 $^{13}\mathbf{C}$ NMR (75 MHz, CDCl₃): δ 163.8, 163.0, 153.2, 137.6, 128.4, 128.0, 127.8, 105.4, 84.6, 73.9, 71.8, 62.0, 46.0, 36.2, 28.3, 27.1, 17.7, 14.0

IR $(CHCl_3)$: 3019 (m), 2983 (m), 2939 (m), 1824 (m), 1714 (s), 1454 (m), 1372 (m), 1269 (m), 1216 (s), 1146 (m), 1096 (m), 1038 (m)

HRMS (HR-ESI, negative): Calcd. for $C_{21}H_{23}O_7^-$ ([M-H]⁻) 387.1449, found 387.1445

(5S)-ethyl 5-(benzyloxy)-4-(2,2-dimethyl-4,6-dioxo-1,3-dioxan-5-yl)-5phenylpent-2-ynoate (7d)

Following General Procedure III using 6d (88 mg, 0.25 mmol) at 0°C for 24 h, 95 mg (0.21 mmol, 84%) of 7d was obtained as yellow oil.

 $[\mathbf{a}]_{D}^{20}$ -28.7 (c = 1.8, CHCl₃)

 ^{1}H NMR (300 MHz, CDCl₃): δ 7.42 - 7.26 (m, 10 H), 5.17 (d, J = 10.2, 1 H), 4.45 (AB, 2 H), 4.23 (q, J = 7.2, 2 H), 3.90 (dd, J = 9.6, 2.7, 1 H), 3.06 (d, J = 2.4, 1 H), 1.72 (s, 3 H), 1.47 (s, 3 H), 1.30 (t, J = 6.9, 3 H)

 $^{13}\mathbf{C}$ NMR (75 MHz, CDCl₃): δ 163.3, 162.7, 153.2, 137.7, 137.5, 129.4, 129.2, 128.3, 127.8, 127.7, 127.6, 105.5, 84.9, 81.0 75.4, 71.6, 61.9, 47.3, 38.2, 28.4, 26.7, 14.0

IR (neat): 3065 (w), 3033 (m), 2988 (m), 2942 (m), 2876 (m), 2245 (m), 1789
(m), 1751 (s), 1711 (s), 1586 (m), 1496 (m), 1455 (m), 1384 (m), 1367 (m),
1302 (m), 1261 (s), 1205 (m), 1070 (m), 1012 (m)

HRMS (HR-ESI, negative): Calcd. for $C_{26}H_{25}O_7^-$ ([M-H]⁻) 449.1606, found 449.1609

Ethyl 4-(2,2-dimethyl-4,6-dioxo-1,3-dioxan-5-yl)-5-methylhept-2-ynoate (7e)

Following the General Procedure II using racemic **6e** (53 mg, 0.25 mmol), 43 mg of **7e** (0.14 mmol, 55%) was obtained as clear oil.

¹**H** NMR (300 MHz, CDCl₃): δ 4.17 (q, J = 7.2, 2 H), 3.76 (d, J = 1.8, 1 H), 3.33 (d, J = 9.9, 2.1, 1 H of one diastereomer), 3.30 (dd, J = 10.8, 2.1, 1 H of the other diastereomer), 2.30 - 2.20 (m, 1 H), 1.93 - 1.83 (m, 1 H of one diastereomer), 1.79 (s, 3 H), 1.78 (s, 3 H), 1.50 - 1.42 (m, 1 H of the other diastereomer), 1.33 - 1.24 (m, 3 H), 1.13 (d, J = 6.9, 3 H of one diastereomer), 0.96 - 0.88 (m, 3 H and 3 H of the other diastereomer)

 $^{13}\mathbf{C}$ NMR (75 MHz, CDCl₃): δ 164.2, 163.2, 163.1, 153.2, 105.5, 86.3, 86.2, 76.1, 75.8, 61.9, 47.0, 46.8, 37.0, 35.4, 35.2, 28.3, 27.7, 27.4, 26.4, 17.5, 16.1, 13.9, 10.7, 10.6

IR (neat): 2969 (m), 2939 (m), 2879 (m), 2238 (m), 1786 (m), 1751 (s), 1709
(s), 1464 (m), 1396 (m), 1385 (m), 1367 (m), 1335 (m), 1301 (s), 1258 (s),
1206 (m), 1142 (m), 1073 (m), 1009 (m)

HRMS (HR-ESI, negative): Calcd. for $C_{16}H_{21}O_6^-$ ([M-H]⁻) 309.1344, found 309.1342

General Procedure IV: Synthesis of Ketoester 9: 6-Ethyl 1-methyl 3-((S)-2,2dimethyl-1,3-dioxolan-4-yl)-4-oxohexanedioate (9a)

In a test tube (100 x 12 mm) equipped with a stir bar was added $Cu(OAc)_2$ (10 mg, 0.05 mmol, 0.2 equiv) and deionized water (0.2 mL). To the stirring solution was added Na-(+)-ascorbate (20 mg, 0.10 mmol, 0.4 equiv). The reaction mixture was stirred for 5 min, and during this time the solution turns brown initially and changes its color to orange. To the reaction mixture was added ethyl propiolate (253 μ L, 2.50 mmol, 10 equiv). The reaction mixture was stirred for 10 min, and during this time the color changes from orange to yellow. To the reaction mixture was then added $\mathbf{6a}$ (64 mg, 0.25 mmol), and the reaction mixture was stirred vigorously at rt for 24 h. The reaction mixture was diluted with saturated aqueous ammonium chloride (1 mL) and extracted with dichloromethane (10 mL x 3). The solution was dried over Na₂SO₄, and concentrated. The crude oil was dissolved in methanol (1.6 mL) and the solution was cooled using dry ice/acetone bath at -78° C. To the cold solution was added dropwise triethylamine (40 μ L), and the reaction mixture was stirred for 3 h. The volatiles were removed under reduced pressure. The residue was purified by chromatography (1/1 Hexanes/EtOAc, 20 mm x 15 cm) to afford 40 mg (0.13 mmol, 53%) of 9a as clear oil.

 $[\mathbf{a}]_{\mathbf{p}}^{20}$ -57.4 (c = 1.0, CHCl₃)

¹**H NMR** (300 MHz, CDCl₃): δ 4.16 (q, J = 7.2, 2 H), 4.14 - 4.09 (m, 1 H), 4.04 - 3.98, 3.68 - 3.63 (ABX, 2 H), 3.70 (s, 2 H), 3.65 (s, 3 H), 3.30 (m, 1 H), 2.86 - 2.77, 2.34 - 2.27 (ABX, 2 H), 1.43 (s, 3 H), 1.31 (s, 3 H), 1.27 (t, J = 6.9, 3 H)

 $^{13}\mathbf{C}$ NMR (75 MHz, CDCl₃): δ 203.7, 171.7, 166.8, 109.8, 75.6, 67.4, 61.2, 52.0, 51.0, 50.5, 32.2, 26.4, 25.2, 14.1

IR (neat): 2988 (m), 1743 (s), 1658 (w), 1440 (m), 1372 (m), 1268 (m), 1159
(m), 1066 (m)

HRMS (HR-ESI, negative): Calcd. for $C_{14}H_{22}O_7Na^+\ ([M+Na]^+)\ 325.1258,$ found 325.1257

6-ethyl 1-methyl 3-((2S,5R,6R)-5,6-dimethoxy-5,6-dimethyl-1,4-dioxan-2-yl)-4oxohexanedioate (9b)

CO₂Me Me Ft ОМе

Following the General Procedure IV using 6b (84 mg, 0.25 mmol), 57 mg of 9b (0.15 mmol, 61%) was obtained as clear oil.

 $[\mathbf{a}]_{D}^{20}$ -123.5 (c = 2.0, CHCl₃)

¹H NMR (300 MHz, CDCl₃): δ 4.23 - 4.09 (m, 3 H), 3.99 - 3.91 (m, 1 H), 3.76 (AB, 2 H), 3.65 - 3.56, 3.42 - 3.37 (ABX, 2 H), 3.63 (s, 3 H), 3.24 (s, 3 H), 3.12 (s, 3 H), 2.82 - 2.73, 2.29 - 2.22 (ABX, 2 H), 1.25 (t, J = 7.1, 3 H), 1.24 (s, 6 H)

 ^{13}C NMR (75 MHz, CDCl_3): δ 204.7, 171.4, 166.8, 99.2, 98.1, 69.4, 61.5, 61.0, 52.3, 52.1, 48.2, 48.1, 48.0, 32.4, 17.6, 17.5, 14.2

 $\begin{array}{c} \textbf{IR} (\texttt{neat}) \colon 3018 \ (\texttt{m}) \,, \, 2954 \ (\texttt{m}) \,, \, 2837 \ (\texttt{m}) \,, \, 1822 \ (\texttt{w}) \,, \, 1739 \ (\texttt{s}) \,, \, 1664 \ (\texttt{w}) \,, \, 1440 \\ (\texttt{m}) \,, \, 1411 \ (\texttt{m}) \,, \, 1376 \ (\texttt{m}) \,, \, 1309 \ (\texttt{m}) \,, \, 1216 \ (\texttt{s}) \,, \, 1145 \ (\texttt{m}) \,, \, 1118 \ (\texttt{m}) \,, \, 1036 \ (\texttt{m}) \\ \end{array}$

HRMS (HR-ESI, negative): Calcd. for $C_{14}H_{22}O_7Na^+$ ([M+Na]^+) 399.1626, found 399.1633

NMR Spectra of New Compounds

Me

2e

5g

7b

7c

9a

X-ray crystal structure of syn-7b

Figure 1. Crytal Structure of syn-7b (Ellipsoid probability level = 30%). Crystals were grown from hexanes/CH₂Cl₂ (1/1) by slow evaporation of the solvent.

Comment

The study of the titled structure (ethyl 4-((5R,6R)-5,6-dimethoxy-5,6-dimethyl-1,4-dioxan-2-yl)-4-(2,2-dimethyl - 4,6-dioxo-1,3-dioxan-5-yl)but-2-ynoate) was undertaken to establish its three dimensional structure. Geometries are tabulated below. All diagrams and calculations were performed using maXus (Bruker Nonius, Delft & MacScience, Japan).

Experimental

Crystal data

 $\begin{array}{l} C_{20}H_{28}O_{10}\\ C_{20}H_{28}O_{10}\\ M_r = 428.434\\ Orthorhombic\\ P2_12_12_1\\ a = 9.2671~(3) \mathring{A}\\ b = 12.7312~(4) \mathring{A}\\ c = 18.1005~(5) \mathring{A}\\ \alpha = 90.00^\circ\\ \beta = 90.00^\circ\\ \gamma = 90.00^\circ\\ V = 2135.52~(11) \mathring{A}^3\\ Z = 4 \end{array}$

$$\begin{split} D_x &= 1.333 \text{ Mg m}^{-3} \\ F(000) &= 912 \\ \text{Density measured by: not measured} \\ \text{fine-focus sealed tube} \\ \text{Mo } K\alpha \text{ radiation } \lambda &= 0.71073 \\ \text{Cell parameters from 7708 refl.} \\ \theta &= 0.998 \\ -27.485 \ ^\circ \\ \mu &= 0.107 \text{ mm}^{-1} \\ \text{T} &= 233 \text{ K} \\ \text{Cube} \\ 0.4 \text{ x } 0.2 \text{ x } 0.16 \text{ mm} \\ \text{Colourless} \\ \text{Crystal source: Carreira laboratory} \end{split}$$

Data collection

Data concerton	
	$R_{int} = 0.033$
KappaCCD CCD diffractometer	$\theta_{ m max} = 27.51$ °
Absorption correction: none	$h = -12 \rightarrow 12$
4854 measured reflections	$k = -16 \rightarrow 16$
4835 independent reflections	$l = -23 \rightarrow 23$
4019 observed reflections	
Criterion: >2sigma(I)	

Refinement

Refinement on F^2	mixed
fullmatrix least squares refinement	Calculated weights $1/[\sigma^2(I_o)+(I_o+I_c)^2/900]$
R(all) = 0.0661	$\Delta/\sigma_{max} = 0.028$
R(gt) = 0.0487	$\Delta\rho_{max} = 0.357eÅ^3$
wR(ref) = 0.1490	$\Delta\rho_{min} = -0.355eÅ^3$
wR(gt)= 0.1287	Extinction correction: none
S(ref) = 1.038	Atomic scattering factors from International Tables
4835 reflections	Vol C Tables 4.2.6.8 and 6.1.1.4
363 parameters	Flack parameter = 0.4 (10)
0 restraints	Flack H D (1983), <i>Acta Cryst.</i> A39, 876-881

Data collection: KappaCCD Cell refinement: HKL Scalepack (Otwinowski & Minor 1997) Data reduction: Denzo and Scalepak (Otwinowski & Minor, 1997) Program(s) used to solve structure: *SIR*97(Cascarano al.,*Acta Cryst.*,1996,A52,C-79) Program(s) used to refine structure: *SHELXL*-97 (Sheldrick, 1997)

Table 1. Fractional atomic coordinates and equivalent isotropic thermal parameters $(Å^2)$

		U_e	$u_q = 1/3 \mathbf{S}_i \mathbf{S}_j \ U_{ij} \ a_i^*$	$a_i^* \boldsymbol{a}_i \boldsymbol{a}_i$.	r	
	Х	у	Z	U _{eq}		Occ
05	0.9051 (4)	-0.20934 (19)	0.49231 (13)	0.0740 (8)	1	
06	0.7600 (3)	-0.25894 (15)	0.58423 (13)	0.0565 (5)	1	
011	0.72655 (18)	0.09904 (12)	0.70711 (8)	0.0336 (4)	1	
O14	0.81807 (19)	0.30542 (13)	0.72868 (9)	0.0347 (4)	1	
017	0.94189 (19)	0.11225 (14)	0.77309 (10)	0.0389 (4)	1	
019	0.6196 (2)	0.25819 (15)	0.80077 (10)	0.0432 (4)	1	
O21	0.86975 (18)	0.21116 (14)	0.40103 (9)	0.0374 (4)	1	
O23	0.61767 (18)	0.20436 (14)	0.38494 (9)	0.0361 (4)	1	
O29	0.48934 (18)	0.11427 (15)	0.46533 (10)	0.0415 (4)	1	
O30	0.96873 (17)	0.13986 (15)	0.49926 (10)	0.0389 (4)	1	
C1	0.8200 (3)	-0.1891 (2)	0.54003 (13)	0.0429 (6)	1	
C2	0.7704 (3)	-0.0833 (2)	0.55586 (14)	0.0414 (6)	1	
C3	0.7366 (3)	0.00569 (19)	0.56576 (12)	0.0352 (5)	1	
C4	0.6983 (3)	0.11628 (18)	0.57862 (12)	0.0301 (4)	1	
C7	0.7981 (5)	-0.3688 (2)	0.5699 (3)	0.0695 (10)	1	
C8	0.6836 (5)	-0.4342 (3)	0.5989 (3)	0.0940 (15)	1	
C9	0.7181 (4)	0.0586 (2)	0.83375 (15)	0.0485 (7)	1	
C10	0.8606 (3)	0.2857 (2)	0.85508 (14)	0.0444 (6)	1	
C12	0.7798 (2)	0.15995 (17)	0.64602 (11)	0.0287 (4)	1	
C13	0.7513 (3)	0.27498 (18)	0.66067 (12)	0.0337 (5)	1	
C15	0.7697 (3)	0.24620 (19)	0.79082 (12)	0.0344 (5)	1	
C16	0.7907 (3)	0.12706 (19)	0.77596 (12)	0.0346 (5)	1	
C18	0.9891 (4)	0.0067 (2)	0.76110 (17)	0.0505 (7)	1	
C20	0.5718 (4)	0.3607 (3)	0.8203 (2)	0.0605 (9)	1	
C22	0.7467 (3)	0.2634 (2)	0.36794 (13)	0.0357 (5)	1	
C24	0.5972 (2)	0.16290 (18)	0.45244 (12)	0.0311 (5)	1	
C25	0.7168 (2)	0.18296 (18)	0.50822 (12)	0.0292 (4)	1	
C26	0.8626 (2)	0.17525 (18)	0.47115 (12)	0.0299 (4)	1	
C27	0.7376 (3)	0.3762 (2)	0.39346 (16)	0.0417 (6)	1	

C28	0.7657 (4)	0.2540 (3)	0.28542 (14)	0.0492 (7)	1
H7A	0.8897	-0.3861	0.5940	0.083	1
H7B	0.8088	-0.3805	0.5166	0.083	1
H8A	0.6759	-0.4237	0.6518	0.141	1
H8B	0.7052	-0.5074	0.5888	0.141	1
H8C	0.5931	-0.4154	0.5755	0.141	1
H10A	0.845 (4)	0.362 (3)	0.864 (3)	0.079 (12)	1
H10B	0.968 (4)	0.267 (3)	0.8469 (17)	0.048 (8)	1
H28A	0.766 (4)	0.175 (3)	0.2707 (18)	0.053 (9)	1
H28B	0.684 (4)	0.288 (3)	0.257 (2)	0.067 (11)	1
H28C	0.861 (4)	0.294 (3)	0.272 (2)	0.064 (10)	1
H20	0.601 (6)	0.380 (4)	0.871 (3)	0.098 (15)	1
H4	0.598 (4)	0.120 (2)	0.5895 (17)	0.044 (8)	1
H9A	0.609 (5)	0.077 (3)	0.832 (2)	0.082 (13)	1
H12	0.886 (3)	0.149 (2)	0.6408 (13)	0.025 (6)	1
H13A	0.643 (3)	0.287 (2)	0.6660 (14)	0.033 (7)	1
H27	0.824 (3)	0.416 (2)	0.3741 (15)	0.034 (7)	1
H9B	0.719 (4)	-0.016 (3)	0.8184 (19)	0.063 (10)	1
H13B	0.794 (3)	0.319 (2)	0.6251 (17)	0.039 (7)	1
H18	0.939 (4)	-0.020 (3)	0.7185 (19)	0.054 (9)	1
H9C	0.768 (4)	0.074 (3)	0.884 (2)	0.067 (11)	1
H27B	0.730 (3)	0.381 (2)	0.4424 (18)	0.037 (7)	1
H10C	0.837 (4)	0.246 (3)	0.903 (2)	0.060 (10)	1
H20B	0.476 (5)	0.356 (4)	0.828 (2)	0.086 (14)	1
H25	0.706 (4)	0.261 (3)	0.5255 (18)	0.055 (9)	1
H20C	0.623 (6)	0.411 (4)	0.785 (3)	0.097 (15)	1
H18B	1.103 (5)	0.013 (3)	0.747 (2)	0.073 (11)	1
H18C	0.970 (5)	-0.034 (3)	0.804 (2)	0.076 (12)	1
H27C	0.656 (4)	0.407 (3)	0.375 (2)	0.067 (11)	1

Table 2. Anisotropic displacement parameters (\mathring{A}^2)

	U_{11}	U_{12}	U ₁₃	U ₂₂	U ₂₃	U ₃₃
O5	0.114 (2)	0.0179 (14)	0.0266 (14)	0.0489 (13)	0.0014 (11)	0.0596 (13)
O6	0.0687 (13)	0.0010 (9)	0.0097 (12)	0.0272 (9)	0.0037 (9)	0.0738 (13)
O11	0.0435 (9)	-0.0065 (7)	0.0038 (7)	0.0290 (8)	0.0014 (6)	0.0282 (7)
O14	0.0436 (9)	-0.0055 (7)	-0.0008 (7)	0.0276 (8)	-0.0015 (6)	0.0328 (7)
O17	0.0436 (9)	0.0064 (7)	0.0001 (7)	0.0344 (9)	0.0032 (7)	0.0387 (8)
O19	0.0391 (9)	-0.0011 (8)	0.0060 (8)	0.0424 (10)	-0.0131 (8)	0.0482 (9)
O21	0.0324 (8)	0.0031 (7)	0.0048 (7)	0.0415 (10)	0.0084 (7)	0.0384 (8)
O23	0.0357 (8)	-0.0044 (7)	-0.0041 (7)	0.0398 (9)	0.0043 (7)	0.0327 (7)
O29	0.0330 (9)	-0.0088 (7)	-0.0034 (7)	0.0456 (10)	0.0045 (8)	0.0460 (10)
O30	0.0313 (8)	0.0018 (7)	-0.0040 (7)	0.0408 (10)	0.0036 (7)	0.0447 (9)
C1	0.0611 (16)	0.0035 (11)	-0.0112 (12)	0.0321 (13)	-0.0015 (10)	0.0356 (11)
C2	0.0558 (15)	-0.0036 (11)	-0.0060 (11)	0.0305 (12)	-0.0008 (9)	0.0378 (12)
C3	0.0450 (13)	-0.0055 (10)	-0.0041 (10)	0.0290 (11)	0.0009 (8)	0.0314 (10)
C4	0.0326 (11)	-0.0010 (9)	0.0015 (9)	0.0263 (11)	0.0025 (8)	0.0314 (10)
C7	0.075 (2)	0.0058 (15)	0.002 (2)	0.0292 (15)	0.0002 (16)	0.104 (3)
C8	0.091 (3)	-0.0065 (19)	-0.004 (3)	0.0379 (19)	0.007 (2)	0.153 (5)
C9	0.0685 (19)	-0.0066 (14)	0.0125 (13)	0.0408 (15)	0.0045 (11)	0.0362 (12)
C10	0.0542 (16)	-0.0055 (13)	-0.0051 (11)	0.0423 (15)	-0.0037 (11)	0.0368 (11)
C12	0.0351 (11)	-0.0008 (9)	0.0013 (8)	0.0250 (10)	0.0022 (8)	0.0261 (9)
C13	0.0451 (13)	-0.0005 (10)	-0.0019 (10)	0.0253 (11)	-0.0003 (8)	0.0306 (10)
C15	0.0393 (12)	-0.0012 (9)	0.0024 (9)	0.0322 (11)	-0.0023 (9)	0.0318 (10)
C16	0.0409 (12)	-0.0028 (10)	0.0027 (9)	0.0333 (11)	0.0012 (9)	0.0297 (10)
C18	0.0612 (18)	0.0158 (14)	0.0049 (14)	0.0402 (15)	0.0064 (13)	0.0502 (15)
C20	0.0523 (18)	0.0122 (15)	0.0021 (16)	0.055 (2)	-0.0261 (18)	0.074 (2)
C22	0.0333 (11)	-0.0009 (10)	0.0008 (9)	0.0394 (12)	0.0093 (9)	0.0345 (11)
C24	0.0311 (11)	0.0023 (9)	-0.0006 (9)	0.0272 (11)	-0.0006 (9)	0.0350 (10)
C25	0.0299 (10)	-0.0012 (8)	-0.0012 (8)	0.0276 (11)	0.0007 (8)	0.0301 (9)

C26	0.0310 (10)	-0.0025 (8)	-0.0016 (9)	0.0260 (10)	0.0026 (8)	0.0328 (9)
C27	0.0438 (14)	0.0002 (11)	0.0018 (12)	0.0354 (13)	0.0098 (11)	0.0459 (14)
C28	0.0595 (17)	0.0020 (14)	0.0036 (12)	0.0553 (17)	0.0061 (11)	0.0326 (12)

		(()	
05 01	Table 3 . Geometric p		1 511 (2)
05—C1	1.198 (4)	C25—C26	1.511 (3)
06—C1	1.319 (4)	C4—H4 C7—H7A	0.95 (3)
O6—C7 O11—C16	1.465 (4) 1.426 (3)	C7—H7A C7—H7B	0.9800 0.9800
011-C12	1.428 (3)	С7—117В С8—Н8А	0.9800
011-C12 014-C15	1.426 (3)	C8—H8B	0.9700
014—C13	1.431 (3)	C8—H8C	0.9700
014—C15 017—C16	1.415 (3)	C9—H9A	1.03 (5)
017—C18	1.429 (3)	С9—Н9В	0.99 (4)
019—C15	1.412 (3)	С9—Н9С	1.04 (4)
019—C20	1.423 (4)	C10—H10A	0.99 (4)
021—C26	1.351 (3)	C10—H10B	1.04 (3)
021—C22	1.449 (3)	C10—H10C	1.03 (4)
023—C24	1.344 (3)	C12—H12	1.00 (3)
023—C22	1.446 (3)	C13—H13A	1.02 (3)
O29—C24	1.198 (3)	C13—H13B	0.94 (3)
O30—C26	1.196 (3)	C18—H18	0.96 (4)
C1—C2	1.452 (4)	C18—H18B	1.08 (5)
C2—C3	1.189 (4)	C18—H18C	0.94 (4)
C3—C4	1.470 (3)	C20—H20	0.99 (5)
C4—C12	1.539 (3)	C20—H20B	0.90 (5)
C4—C25	1.541 (3)	C20—H20C	1.02 (5)
C7—C8	1.447 (6)	C25—H25	1.04 (4)
C9—C16	1.518 (3)	C27—H27	1.01 (3)
C10—C15	1.521 (3)	C27—H27B	0.89 (3)
C12—C13	1.511 (3)	C27—H27C	0.92 (4)
C15—C16	1.553 (3)	C28—H28A	1.04 (4)
C22—C27	1.511 (4)	C28—H28B	1.02 (4)
C22—C28	1.509 (3)	C28—H28C	1.05 (4)
C24—C25	1.521 (3)		
C1—O6—C7	115.7 (3)	O19—C15—C16	104.5 (2)
C16—O11—C12	113.22 (17)	O14—C15—C16	109.91 (18)
C15—O14—C13	113.54 (17)	C10-C15-C16	112.7 (2)
C16—O17—C18	115.7 (2)	O17—C16—O11	110.32 (19)
C15—O19—C20	115.9 (2)	O17—C16—C9	112.8 (2)
C26—O21—C22	120.32 (18)	O11—C16—C9	105.9 (2)
C24—O23—C22	120.97 (17)	O17—C16—C15	105.09 (19)
O5—C1—O6	124.8 (3)	O11—C16—C15	110.11 (19)
O5—C1—C2	123.4 (3)	C9-C16-C15	112.7 (2)
O6—C1—C2	111.8 (2)	O23—C22—O21	108.93 (17)
C3—C2—C1	175.7 (3)	O23—C22—C27	112.5 (2)
C2—C3—C4	178.6 (3)	O21—C22—C27	110.7 (2)
C3—C4—C12	110.68 (19)	O23—C22—C28	105.4 (2)
C3—C4—C25	111.70 (18)	O21—C22—C28	106.3 (2)
C12—C4—C25	113.70 (18)	C27—C22—C28	112.6 (2)
O6—C7—C8	108.0 (3)	O29—C24—O23	119.8 (2)
011—C12—C13	109.13 (18)	O29—C24—C25	124.4 (2)
011-C12-C4	104.28 (17)	O23—C24—C25	115.73 (18)
C13—C12—C4	113.81 (19)	C26—C25—C24	110.24 (17)
O14—C13—C12	109.75 (19)	C26—C25—C4	115.53 (18)
O19—C15—O14 O19—C15—C10	110.7 (2)	C24—C25—C4 O30—C26—O21	112.04 (18)
019—C15—C10 014—C15—C10	114.3 (2) 104.7 (2)	030-C26-C25	119.1 (2) 124.81 (19)
014-015-010	107./ (2)	030-020-023	124.01 (17)

O21—C26—C25	116.06 (18)	C12—C13—H13A	109.7 (17)
C3—C4—H4	108.5 (19)	O14—C13—H13B	104.3 (18)
C12—C4—H4	107.2 (19)	C12—C13—H13B	112.4 (18)
C25—C4—H4	104.6 (18)	H13A—C13—H13B	113 (2)
O6—C7—H7A	110.1	O17—C18—H18	108 (2)
C8—C7—H7A	110.1	O17—C18—H18B	105 (2)
O6—C7—H7B	110.1	H18—C18—H18B	108 (3)
C8—C7—H7B	110.1	O17—C18—H18C	109 (3)
H7A—C7—H7B	108.4	H18—C18—H18C	112 (3)
C7—C8—H8A	109.5	H18B—C18—H18C	
C7—C8—H8B	109.5	O19—C20—H20	112 (3)
H8A—C8—H8B	109.5	O19—C20—H20B	106 (3)
C7—C8—H8C	109.5	H20-C20-H20B	99 (4)
H8A—C8—H8C	109.5	019—C20—H20C	106 (3)
H8B—C8—H8C	109.5	H20—C20—H20C	107 (4)
C16—C9—H9A	106 (2)	H20B-C20-H20C	126 (4)
C16—C9—H9B	111 (2)	C26—C25—H25	106 (2)
H9A—C9—H9B	102 (3)	C24—C25—H25	106.8 (19)
C16—C9—H9C	107 (2)	C4—C25—H25	105.3 (19)
		C22—C27—H27	
H9A—C9—H9C	115 (3)		109.4 (16)
H9B—C9—H9C	115 (3)	С22—С27—Н27В	111.9 (19)
C15-C10-H10A	112 (3)	H27—C27—H27B	112 (3)
C15-C10-H10B	110.4 (18)	С22—С27—Н27С	110 (3)
H10A—C10—H10B	113 (3)	H27—C27—H27C	108 (3)
C15—C10—H10C	111 (2)	H27B—C27—H27C	106 (3)
H10A—C10—H10C	108 (3)	C22—C28—H28A	109.4 (18)
H10B—C10—H10C	102 (3)	C22—C28—H28B	113 (2)
O11-C12-H12	109.8 (15)	H28A—C28—H28B	107 (3)
C13—C12—H12	108.7 (15)	C22—C28—H28C	107 (2)
C4—C12—H12	111.1 (14)	H28A—C28—H28C	114 (3)
O14—C13—H13A	107.6 (15)	H28B—C28—H28C	107 (3)
C7—O6—C1—O5	-2.9 (5)	C12-011-C16-C15	55.7 (2)
C7—O6—C1—C2		019—C15—C16—017	-174.44 (18)
	177.0 (3)		
		O14—C15—C16—O17	
O5—C1—C2—C3	-10 (4)		66.8 (2)
05—C1—C2—C3 06—C1—C2—C3	-10 (4) 170 (4)	C10-C15-C16-O17	-49.7 (3)
O6—C1—C2—C3	170 (4)	C10-C15-C16-017	-49.7 (3)
O6—C1—C2—C3 C1—C2—C3—C4	170 (4) -58 (13)	C10—C15—C16—O17 O19—C15—C16—O11	-49.7 (3) 66.8 (2)
06—C1—C2—C3 C1—C2—C3—C4 C2—C3—C4—C12	170 (4) -58 (13) -34 (11)	C10—C15—C16—O17 O19—C15—C16—O11 O14—C15—C16—O11	-49.7 (3) 66.8 (2) -52.0 (2)
06—C1—C2—C3 C1—C2—C3—C4 C2—C3—C4—C12 C2—C3—C4—C25	170 (4) -58 (13) -34 (11) 93 (11)	C10—C15—C16—O17 O19—C15—C16—O11 O14—C15—C16—O11 C10—C15—C16—O11	-49.7 (3) 66.8 (2) -52.0 (2) -168.5 (2)
06—C1—C2—C3 C1—C2—C3—C4 C2—C3—C4—C12 C2—C3—C4—C25 C1—O6—C7—C8	170 (4) -58 (13) -34 (11) 93 (11) -156.0 (4)	C10—C15—C16—O17 O19—C15—C16—O11 O14—C15—C16—O11 C10—C15—C16—O11 O19—C15—C16—C9	-49.7 (3) 66.8 (2) -52.0 (2) -168.5 (2) -51.2 (3)
06—C1—C2—C3 C1—C2—C3—C4 C2—C3—C4—C12 C2—C3—C4—C25	170 (4) -58 (13) -34 (11) 93 (11)	C10—C15—C16—O17 O19—C15—C16—O11 O14—C15—C16—O11 C10—C15—C16—O11	-49.7 (3) 66.8 (2) -52.0 (2) -168.5 (2)
06—C1—C2—C3 C1—C2—C3—C4 C2—C3—C4—C12 C2—C3—C4—C25 C1—O6—C7—C8 C16—O11—C12—C13	170 (4) -58 (13) -34 (11) 93 (11) -156.0 (4) -58.6 (2)	C10—C15—C16—O17 O19—C15—C16—O11 O14—C15—C16—O11 C10—C15—C16—O11 O19—C15—C16—C9 O14—C15—C16—C9	-49.7 (3) 66.8 (2) -52.0 (2) -168.5 (2) -51.2 (3) -170.0 (2)
06—C1—C2—C3 C1—C2—C3—C4 C2—C3—C4—C12 C2—C3—C4—C25 C1—O6—C7—C8 C16—O11—C12—C13 C16—O11—C12—C4	170 (4) -58 (13) -34 (11) 93 (11) -156.0 (4) -58.6 (2) 179.45 (18)	C10—C15—C16—O17 O19—C15—C16—O11 O14—C15—C16—O11 C10—C15—C16—O11 O19—C15—C16—C9 O14—C15—C16—C9 C10—C15—C16—C9	-49.7 (3) 66.8 (2) -52.0 (2) -168.5 (2) -51.2 (3) -170.0 (2) 73.5 (3)
06C1C2C3 C1C2C3C4 C2C3C4C12 C2C3C4C25 C106C7C8 C16011C12C13 C16011C12C4 C3C4C12011	170 (4) -58 (13) -34 (11) 93 (11) -156.0 (4) -58.6 (2) 179.45 (18) -63.9 (2)	C10-C15-C16-O17 O19-C15-C16-O11 O14-C15-C16-O11 C10-C15-C16-O11 O19-C15-C16-C9 O14-C15-C16-C9 C10-C15-C16-C9 C24-O23-C22-O21	-49.7 (3) 66.8 (2) -52.0 (2) -168.5 (2) -51.2 (3) -170.0 (2) 73.5 (3) 41.1 (3)
$\begin{array}{c} 06 & - C1 & - C2 & - C3 \\ C1 & - C2 & - C3 & - C4 \\ C2 & - C3 & - C4 & - C12 \\ C2 & - C3 & - C4 & - C25 \\ C1 & - 06 & - C7 & - C8 \\ C16 & - 011 & - C12 & - C13 \\ C16 & - 011 & - C12 & - C4 \\ C3 & - C4 & - C12 & - 011 \\ C25 & - C4 & - C12 & - 011 \end{array}$	170 (4) -58 (13) -34 (11) 93 (11) -156.0 (4) -58.6 (2) 179.45 (18) -63.9 (2) 169.43 (18)	C10—C15—C16—O17 O19—C15—C16—O11 O14—C15—C16—O11 C10—C15—C16—O11 O19—C15—C16—C9 O14—C15—C16—C9 C10—C15—C16—C9 C24—O23—C22—O21 C24—O23—C22—C27	-49.7 (3) 66.8 (2) -52.0 (2) -168.5 (2) -51.2 (3) -170.0 (2) 73.5 (3) 41.1 (3) -82.1 (3)
$\begin{array}{c} 06 & - C1 & - C2 & - C3 \\ C1 & - C2 & - C3 & - C4 \\ C2 & - C3 & - C4 & - C12 \\ C2 & - C3 & - C4 & - C25 \\ C1 & - 06 & - C7 & - C8 \\ C16 & - 011 & - C12 & - C13 \\ C16 & - 011 & - C12 & - C4 \\ C3 & - C4 & - C12 & - 011 \\ C25 & - C4 & - C12 & - 011 \\ C3 & - C4 & - C12 & - C13 \end{array}$	170 (4) -58 (13) -34 (11) 93 (11) -156.0 (4) -58.6 (2) 179.45 (18) -63.9 (2) 169.43 (18) 177.30 (19)	$\begin{array}{c} C10-C15-C16-O17\\ O19-C15-C16-O11\\ O14-C15-C16-O11\\ C10-C15-C16-O11\\ O19-C15-C16-C9\\ O14-C15-C16-C9\\ C10-C15-C16-C9\\ C24-O23-C22-O21\\ C24-O23-C22-C27\\ C24-O23-C22-C28\\ \end{array}$	-49.7 (3) 66.8 (2) -52.0 (2) -168.5 (2) -51.2 (3) -170.0 (2) 73.5 (3) 41.1 (3) -82.1 (3) 154.9 (2)
$\begin{array}{c} 06 & - C1 & - C2 & - C3 \\ C1 & - C2 & - C3 & - C4 \\ C2 & - C3 & - C4 & - C12 \\ C2 & - C3 & - C4 & - C25 \\ C1 & - 06 & - C7 & - C8 \\ C16 & - 011 & - C12 & - C13 \\ C16 & - 011 & - C12 & - C4 \\ C3 & - C4 & - C12 & - 011 \\ C25 & - C4 & - C12 & - 011 \end{array}$	170 (4) -58 (13) -34 (11) 93 (11) -156.0 (4) -58.6 (2) 179.45 (18) -63.9 (2) 169.43 (18)	C10—C15—C16—O17 O19—C15—C16—O11 O14—C15—C16—O11 C10—C15—C16—O11 O19—C15—C16—C9 O14—C15—C16—C9 C10—C15—C16—C9 C24—O23—C22—O21 C24—O23—C22—C27	-49.7 (3) 66.8 (2) -52.0 (2) -168.5 (2) -51.2 (3) -170.0 (2) 73.5 (3) 41.1 (3) -82.1 (3)
$\begin{array}{c} 06 & - C1 & - C2 & - C3 \\ C1 & - C2 & - C3 & - C4 \\ C2 & - C3 & - C4 & - C12 \\ C2 & - C3 & - C4 & - C25 \\ C1 & - 06 & - C7 & - C8 \\ C16 & - 011 & - C12 & - C13 \\ C16 & - 011 & - C12 & - C4 \\ C3 & - C4 & - C12 & - 011 \\ C25 & - C4 & - C12 & - 011 \\ C3 & - C4 & - C12 & - C13 \\ C25 & - C4 & - C12 & - C13 \end{array}$	170 (4) -58 (13) -34 (11) 93 (11) -156.0 (4) -58.6 (2) 179.45 (18) -63.9 (2) 169.43 (18) 177.30 (19) 50.6 (3)	$\begin{array}{c} C10-C15-C16-O17\\ O19-C15-C16-O11\\ O14-C15-C16-O11\\ C10-C15-C16-O11\\ O19-C15-C16-C9\\ O14-C15-C16-C9\\ C10-C15-C16-C9\\ C24-O23-C22-O21\\ C24-O23-C22-O21\\ C24-O23-C22-C27\\ C24-O23-C22-C28\\ C26-O21-C22-O23\\ \end{array}$	-49.7 (3) 66.8 (2) -52.0 (2) -168.5 (2) -51.2 (3) -170.0 (2) 73.5 (3) 41.1 (3) -82.1 (3) 154.9 (2) -44.7 (3)
$\begin{array}{c} 06 & - C1 & - C2 & - C3 \\ C1 & - C2 & - C3 & - C4 \\ C2 & - C3 & - C4 & - C12 \\ C2 & - C3 & - C4 & - C25 \\ C1 & - 06 & - C7 & - C8 \\ C16 & - 011 & - C12 & - C13 \\ C16 & - 011 & - C12 & - C13 \\ C3 & - C4 & - C12 & - 011 \\ C3 & - C4 & - C12 & - 011 \\ C3 & - C4 & - C12 & - C13 \\ C25 & - C4 & - C12 & - C13 \\ C15 & - 014 & - C13 & - C12 \end{array}$	170 (4) -58 (13) -34 (11) 93 (11) -156.0 (4) -58.6 (2) 179.45 (18) -63.9 (2) 169.43 (18) 177.30 (19) 50.6 (3) -58.3 (3)	$\begin{array}{c} C10-C15-C16-O17\\ O19-C15-C16-O11\\ O14-C15-C16-O11\\ C10-C15-C16-O11\\ O19-C15-C16-C9\\ O14-C15-C16-C9\\ C10-C15-C16-C9\\ C24-O23-C22-O21\\ C24-O23-C22-C27\\ C24-O23-C22-C28\\ C26-O21-C22-O23\\ C22-C27\\ \end{array}$	-49.7 (3) 66.8 (2) -52.0 (2) -168.5 (2) -51.2 (3) -170.0 (2) 73.5 (3) 41.1 (3) -82.1 (3) 154.9 (2) -44.7 (3) 79.5 (3)
$\begin{array}{c} 06 & - C1 & - C2 & - C3 \\ C1 & - C2 & - C3 & - C4 \\ C2 & - C3 & - C4 & - C12 \\ C2 & - C3 & - C4 & - C25 \\ C1 & - 06 & - C7 & - C8 \\ C16 & - 011 & - C12 & - C13 \\ C16 & - 011 & - C12 & - C13 \\ C3 & - C4 & - C12 & - 011 \\ C3 & - C4 & - C12 & - 011 \\ C3 & - C4 & - C12 & - C13 \\ C25 & - C4 & - C12 & - C13 \\ C15 & - 014 & - C13 & - C12 \\ 011 & - C12 & - C13 & - 014 \\ \end{array}$	170 (4) -58 (13) -34 (11) 93 (11) -156.0 (4) -58.6 (2) 179.45 (18) -63.9 (2) 169.43 (18) 177.30 (19) 50.6 (3) -58.3 (3) 57.5 (2)	$\begin{array}{c} C10-C15-C16-O17\\ 019-C15-C16-O11\\ 014-C15-C16-O11\\ C10-C15-C16-O11\\ 019-C15-C16-C9\\ 014-C15-C16-C9\\ 014-C15-C16-C9\\ C10-C15-C16-C9\\ C24-O23-C22-O21\\ C24-O23-C22-C27\\ C24-O23-C22-C28\\ C26-O21-C22-O23\\ C26-O21-C22-C27\\ C26-O21-C22-C28\\ \end{array}$	-49.7 (3) 66.8 (2) -52.0 (2) -168.5 (2) -51.2 (3) -170.0 (2) 73.5 (3) 41.1 (3) -82.1 (3) 154.9 (2) -44.7 (3) 79.5 (3) -157.8 (2)
$\begin{array}{c} 06 & - C1 & - C2 & - C3 \\ C1 & - C2 & - C3 & - C4 \\ C2 & - C3 & - C4 & - C12 \\ C2 & - C3 & - C4 & - C25 \\ C1 & - 06 & - C7 & - C8 \\ C16 & - 011 & - C12 & - C13 \\ C16 & - 011 & - C12 & - C13 \\ C16 & - 011 & - C12 & - C11 \\ C25 & - C4 & - C12 & - O11 \\ C3 & - C4 & - C12 & - C13 \\ C15 & - 014 & - C13 & - C12 \\ O11 & - C12 & - C13 & - O14 \\ C4 & - C12 & - C13 & - O14 \end{array}$	170 (4) -58 (13) -34 (11) 93 (11) -156.0 (4) -58.6 (2) 179.45 (18) -63.9 (2) 169.43 (18) 177.30 (19) 50.6 (3) -58.3 (3) 57.5 (2) 173.48 (18)	$\begin{array}{c} C10-C15-C16-O17\\ O19-C15-C16-O11\\ O14-C15-C16-O11\\ C10-C15-C16-O11\\ O19-C15-C16-O9\\ O14-C15-C16-C9\\ C10-C15-C16-C9\\ C24-O23-C22-O21\\ C24-O23-C22-C27\\ C24-O23-C22-C28\\ C26-O21-C22-O23\\ C26-O21-C22-C28\\ C26-O21-C22-C28\\ C22-O23-C24-O29\\ \end{array}$	-49.7 (3) 66.8 (2) -52.0 (2) -168.5 (2) -51.2 (3) -170.0 (2) 73.5 (3) 41.1 (3) -82.1 (3) 154.9 (2) -44.7 (3) 79.5 (3) -157.8 (2) 180.0 (2)
$\begin{array}{c} 06 & - C1 & - C2 & - C3 \\ C1 & - C2 & - C3 & - C4 \\ C2 & - C3 & - C4 & - C12 \\ C2 & - C3 & - C4 & - C25 \\ C1 & - 06 & - C7 & - C8 \\ C16 & - 011 & - C12 & - C13 \\ C16 & - 011 & - C12 & - C13 \\ C16 & - 011 & - C12 & - C11 \\ C3 & - C4 & - C12 & - O11 \\ C3 & - C4 & - C12 & - O11 \\ C3 & - C4 & - C12 & - C13 \\ C15 & - O14 & - C13 & - C12 \\ O11 & - C12 & - C13 & - O14 \\ C4 & - C12 & - C13 & - O14 \\ C20 & - O19 & - C15 & - O14 \\ \end{array}$	$\begin{array}{c} 170 \ (4) \\ -58 \ (13) \\ -34 \ (11) \\ 93 \ (11) \\ -156.0 \ (4) \\ -58.6 \ (2) \\ 179.45 \ (18) \\ -63.9 \ (2) \\ 169.43 \ (18) \\ 177.30 \ (19) \\ 50.6 \ (3) \\ -58.3 \ (3) \\ 57.5 \ (2) \\ 173.48 \ (18) \\ -65.7 \ (3) \end{array}$	$\begin{array}{c} C10-C15-C16-O17\\ O19-C15-C16-O11\\ O14-C15-C16-O11\\ C10-C15-C16-O11\\ O19-C15-C16-C9\\ O14-C15-C16-C9\\ C10-C15-C16-C9\\ C24-O23-C22-O21\\ C24-O23-C22-C27\\ C24-O23-C22-C28\\ C26-O21-C22-C23\\ C26-O21-C22-C28\\ C26-O21-C22-C28\\ C22-O23-C24-O29\\ C22-O23-C24-O29\\ C22-O23-C24-C25\\ \end{array}$	-49.7 (3) 66.8 (2) -52.0 (2) -168.5 (2) -51.2 (3) -170.0 (2) 73.5 (3) 41.1 (3) -82.1 (3) 154.9 (2) -44.7 (3) 79.5 (3) -157.8 (2) 180.0 (2) 0.3 (3)
$\begin{array}{c} 06 & - C1 & - C2 & - C3 \\ C1 & - C2 & - C3 & - C4 \\ C2 & - C3 & - C4 & - C12 \\ C2 & - C3 & - C4 & - C25 \\ C1 & - 06 & - C7 & - C8 \\ C16 & - 011 & - C12 & - C13 \\ C16 & - 011 & - C12 & - C4 \\ C3 & - C4 & - C12 & - 011 \\ C25 & - C4 & - C12 & - 011 \\ C3 & - C4 & - C12 & - C13 \\ C15 & - 014 & - C13 & - C12 \\ 011 & - C12 & - C13 & - 014 \\ C4 & - C12 & - C13 & - 014 \\ C20 & - 019 & - C15 & - 014 \\ C20 & - 019 & - C15 & - C10 \\ \end{array}$	$\begin{array}{c} 170 \ (4) \\ -58 \ (13) \\ -34 \ (11) \\ 93 \ (11) \\ -156.0 \ (4) \\ -58.6 \ (2) \\ 179.45 \ (18) \\ -63.9 \ (2) \\ 169.43 \ (18) \\ 177.30 \ (19) \\ 50.6 \ (3) \\ -58.3 \ (3) \\ 57.5 \ (2) \\ 173.48 \ (18) \\ -65.7 \ (3) \\ 52.3 \ (3) \end{array}$	$\begin{array}{c} C10-C15-C16-O17\\ O19-C15-C16-O11\\ O14-C15-C16-O11\\ C10-C15-C16-O11\\ O19-C15-C16-C9\\ O14-C15-C16-C9\\ C10-C15-C16-C9\\ C24-O23-C22-O21\\ C24-O23-C22-C27\\ C24-O23-C22-C28\\ C26-O21-C22-C28\\ C26-O21-C22-C28\\ C26-O21-C22-C28\\ C22-O23-C24-O29\\ C22-O23-C24-O29\\ C22-O23-C24-C25\\ O29-C24-C25-C26\\ \end{array}$	-49.7 (3) 66.8 (2) -52.0 (2) -168.5 (2) -51.2 (3) -170.0 (2) 73.5 (3) 41.1 (3) -82.1 (3) 154.9 (2) -44.7 (3) 79.5 (3) -157.8 (2) 180.0 (2) 0.3 (3) 141.1 (2)
$\begin{array}{c} 06 & - C1 & - C2 & - C3 \\ C1 & - C2 & - C3 & - C4 \\ C2 & - C3 & - C4 & - C12 \\ C2 & - C3 & - C4 & - C25 \\ C1 & - 06 & - C7 & - C8 \\ C16 & - 011 & - C12 & - C13 \\ C16 & - 011 & - C12 & - C13 \\ C16 & - 011 & - C12 & - C11 \\ C3 & - C4 & - C12 & - O11 \\ C3 & - C4 & - C12 & - O11 \\ C3 & - C4 & - C12 & - C13 \\ C15 & - O14 & - C13 & - C12 \\ O11 & - C12 & - C13 & - O14 \\ C4 & - C12 & - C13 & - O14 \\ C20 & - O19 & - C15 & - O14 \\ \end{array}$	$\begin{array}{c} 170 \ (4) \\ -58 \ (13) \\ -34 \ (11) \\ 93 \ (11) \\ -156.0 \ (4) \\ -58.6 \ (2) \\ 179.45 \ (18) \\ -63.9 \ (2) \\ 169.43 \ (18) \\ 177.30 \ (19) \\ 50.6 \ (3) \\ -58.3 \ (3) \\ 57.5 \ (2) \\ 173.48 \ (18) \\ -65.7 \ (3) \end{array}$	$\begin{array}{c} C10-C15-C16-O17\\ O19-C15-C16-O11\\ O14-C15-C16-O11\\ C10-C15-C16-O11\\ O19-C15-C16-C9\\ O14-C15-C16-C9\\ C10-C15-C16-C9\\ C24-O23-C22-O21\\ C24-O23-C22-C27\\ C24-O23-C22-C28\\ C26-O21-C22-C23\\ C26-O21-C22-C28\\ C26-O21-C22-C28\\ C22-O23-C24-O29\\ C22-O23-C24-O29\\ C22-O23-C24-C25\\ \end{array}$	-49.7 (3) 66.8 (2) -52.0 (2) -168.5 (2) -51.2 (3) -170.0 (2) 73.5 (3) 41.1 (3) -82.1 (3) 154.9 (2) -44.7 (3) 79.5 (3) -157.8 (2) 180.0 (2) 0.3 (3)
$\begin{array}{c} 06 & - C1 & - C2 & - C3 \\ C1 & - C2 & - C3 & - C4 \\ C2 & - C3 & - C4 & - C12 \\ C2 & - C3 & - C4 & - C25 \\ C1 & - 06 & - C7 & - C8 \\ C16 & - 011 & - C12 & - C13 \\ C16 & - 011 & - C12 & - C4 \\ C3 & - C4 & - C12 & - 011 \\ C25 & - C4 & - C12 & - 011 \\ C3 & - C4 & - C12 & - C13 \\ C15 & - 014 & - C13 & - C12 \\ 011 & - C12 & - C13 & - 014 \\ C4 & - C12 & - C13 & - 014 \\ C20 & - 019 & - C15 & - 014 \\ C20 & - 019 & - C15 & - C10 \\ C20 & - 019 & - C15 & - C16 \\ \end{array}$	$\begin{array}{c} 170 \ (4) \\ -58 \ (13) \\ -34 \ (11) \\ 93 \ (11) \\ -156.0 \ (4) \\ -58.6 \ (2) \\ 179.45 \ (18) \\ -63.9 \ (2) \\ 169.43 \ (18) \\ 177.30 \ (19) \\ 50.6 \ (3) \\ -58.3 \ (3) \\ 57.5 \ (2) \\ 173.48 \ (18) \\ -65.7 \ (3) \\ 52.3 \ (3) \\ 176.0 \ (2) \end{array}$	$\begin{array}{c} C10-C15-C16-O17\\ O19-C15-C16-O11\\ O14-C15-C16-O11\\ C10-C15-C16-O11\\ O19-C15-C16-C9\\ O14-C15-C16-C9\\ C10-C15-C16-C9\\ C24-O23-C22-O21\\ C24-O23-C22-C27\\ C24-O23-C22-C28\\ C26-O21-C22-C28\\ C26-O21-C22-C28\\ C26-O21-C22-C28\\ C22-O23-C24-O29\\ C22-O23-C24-O29\\ C22-O23-C24-C25\\ O29-C24-C25-C26\\ \end{array}$	-49.7 (3) 66.8 (2) -52.0 (2) -168.5 (2) -51.2 (3) -170.0 (2) 73.5 (3) 41.1 (3) -82.1 (3) 154.9 (2) -44.7 (3) 79.5 (3) -157.8 (2) 180.0 (2) 0.3 (3) 141.1 (2) -39.2 (3)
$\begin{array}{c} 06 & - C1 & - C2 & - C3 \\ C1 & - C2 & - C3 & - C4 \\ C2 & - C3 & - C4 & - C12 \\ C2 & - C3 & - C4 & - C25 \\ C1 & - 06 & - C7 & - C8 \\ C16 & - 011 & - C12 & - C13 \\ C16 & - 011 & - C12 & - C13 \\ C16 & - 011 & - C12 & - C11 \\ C25 & - C4 & - C12 & - O11 \\ C25 & - C4 & - C12 & - O11 \\ C3 & - C4 & - C12 & - C13 \\ C15 & - O14 & - C13 & - C12 \\ O11 & - C12 & - C13 & - O14 \\ C4 & - C12 & - C13 & - O14 \\ C20 & - O19 & - C15 & - O14 \\ C20 & - O19 & - C15 & - C16 \\ C13 & - O14 & - C15 & - O19 \\ \end{array}$	$\begin{array}{c} 170 \ (4) \\ -58 \ (13) \\ -34 \ (11) \\ 93 \ (11) \\ -156.0 \ (4) \\ -58.6 \ (2) \\ 179.45 \ (18) \\ -63.9 \ (2) \\ 169.43 \ (18) \\ 177.30 \ (19) \\ 50.6 \ (3) \\ -58.3 \ (3) \\ 57.5 \ (2) \\ 173.48 \ (18) \\ -65.7 \ (3) \\ 52.3 \ (3) \\ 176.0 \ (2) \\ -60.0 \ (2) \end{array}$	$\begin{array}{c} C10-C15-C16-O17\\ O19-C15-C16-O11\\ O14-C15-C16-O11\\ C10-C15-C16-O11\\ O19-C15-C16-C9\\ O14-C15-C16-C9\\ O14-C15-C16-C9\\ C24-O23-C22-O21\\ C24-O23-C22-C27\\ C24-O23-C22-C28\\ C26-O21-C22-C28\\ C26-O21-C22-C28\\ C26-O21-C22-C28\\ C22-O23-C24-O29\\ C22-O23-C24-O29\\ C22-O23-C24-C25\\ O29-C24-C25-C26\\ O29-C24-C25-C26\\ O29-C24-C25-C4\\ \end{array}$	-49.7 (3) 66.8 (2) -52.0 (2) -168.5 (2) -51.2 (3) -170.0 (2) 73.5 (3) 41.1 (3) -82.1 (3) 154.9 (2) -44.7 (3) 79.5 (3) -157.8 (2) 180.0 (2) 0.3 (3) 141.1 (2) -39.2 (3) 11.0 (3)
$\begin{array}{c} 06 & - C1 & - C2 & - C3 \\ C1 & - C2 & - C3 & - C4 \\ C2 & - C3 & - C4 & - C12 \\ C2 & - C3 & - C4 & - C25 \\ C1 & - 06 & - C7 & - C8 \\ C16 & - 011 & - C12 & - C13 \\ C16 & - 011 & - C12 & - C13 \\ C16 & - 011 & - C12 & - C13 \\ C3 & - C4 & - C12 & - O11 \\ C3 & - C4 & - C12 & - O11 \\ C3 & - C4 & - C12 & - O11 \\ C3 & - C4 & - C12 & - C13 \\ C15 & - O14 & - C13 & - C12 \\ O11 & - C12 & - C13 & - O14 \\ C4 & - C12 & - C13 & - O14 \\ C20 & - O19 & - C15 & - O14 \\ C20 & - O19 & - C15 & - C10 \\ C20 & - O19 & - C15 & - C10 \\ C13 & - O14 & - C15 & - O19 \\ C13 & - O14 & - C15 & - C10 \\ \end{array}$	$\begin{array}{c} 170 \ (4) \\ -58 \ (13) \\ -34 \ (11) \\ 93 \ (11) \\ -156.0 \ (4) \\ -58.6 \ (2) \\ 179.45 \ (18) \\ -63.9 \ (2) \\ 169.43 \ (18) \\ 177.30 \ (19) \\ 50.6 \ (3) \\ -58.3 \ (3) \\ 57.5 \ (2) \\ 173.48 \ (18) \\ -65.7 \ (3) \\ 52.3 \ (3) \\ 176.0 \ (2) \\ -60.0 \ (2) \\ 176.3 \ (2) \end{array}$	$\begin{array}{c} C10-C15-C16-O17\\ 019-C15-C16-O11\\ 014-C15-C16-O11\\ C10-C15-C16-O11\\ 019-C15-C16-C9\\ 014-C15-C16-C9\\ 014-C15-C16-C9\\ C10-C15-C16-C9\\ C24-O23-C22-O21\\ C24-O23-C22-C27\\ C24-O23-C22-C28\\ C26-O21-C22-C28\\ C26-O21-C22-C28\\ C26-O21-C22-C28\\ C22-O23-C24-O29\\ C22-O23-C24-C25\\ O29-C24-C25-C26\\ O29-C24-C25-C4\\ O23-C24-C25-C4\\ O23-C24-C25-C4\\ O23-C24-C25-C4\\ O23-C24-C25-C4\\ \end{array}$	$\begin{array}{c} -49.7 (3) \\ 66.8 (2) \\ -52.0 (2) \\ -168.5 (2) \\ -51.2 (3) \\ -170.0 (2) \\ 73.5 (3) \\ 41.1 (3) \\ -82.1 (3) \\ 154.9 (2) \\ -44.7 (3) \\ 79.5 (3) \\ -157.8 (2) \\ 180.0 (2) \\ 0.3 (3) \\ 141.1 (2) \\ -39.2 (3) \\ 11.0 (3) \\ -169.40 (19) \end{array}$
$\begin{array}{c} 06 & - C1 & - C2 & - C3 \\ C1 & - C2 & - C3 & - C4 \\ C2 & - C3 & - C4 & - C12 \\ C2 & - C3 & - C4 & - C25 \\ C1 & - 06 & - C7 & - C8 \\ C16 & - 011 & - C12 & - C13 \\ C16 & - 011 & - C12 & - C13 \\ C16 & - 011 & - C12 & - C13 \\ C25 & - C4 & - C12 & - O11 \\ C3 & - C4 & - C12 & - C13 \\ C25 & - C4 & - C12 & - C13 \\ C15 & - 014 & - C13 & - C12 \\ O11 & - C12 & - C13 & - O14 \\ C4 & - C12 & - C13 & - O14 \\ C20 & - O19 & - C15 & - O14 \\ C20 & - O19 & - C15 & - C16 \\ C13 & - O14 & - C15 & - C10 \\ C13 & - O14 & - C15 & - C16 \\ \end{array}$	$\begin{array}{c} 170 \ (4) \\ -58 \ (13) \\ -34 \ (11) \\ 93 \ (11) \\ -156.0 \ (4) \\ -58.6 \ (2) \\ 179.45 \ (18) \\ -63.9 \ (2) \\ 169.43 \ (18) \\ 177.30 \ (19) \\ 50.6 \ (3) \\ -58.3 \ (3) \\ 57.5 \ (2) \\ 173.48 \ (18) \\ -65.7 \ (3) \\ 52.3 \ (3) \\ 176.0 \ (2) \\ -60.0 \ (2) \\ 176.3 \ (2) \\ 54.9 \ (3) \end{array}$	$\begin{array}{c} C10-C15-C16-O17\\ 019-C15-C16-O11\\ 014-C15-C16-O11\\ C10-C15-C16-O11\\ 019-C15-C16-C9\\ 014-C15-C16-C9\\ 014-C15-C16-C9\\ C24-O23-C22-O21\\ C24-O23-C22-C27\\ C24-O23-C22-C28\\ C26-O21-C22-C28\\ C26-O21-C22-C28\\ C26-O21-C22-C28\\ C22-O23-C24-O29\\ C22-O23-C24-O29\\ C22-O23-C24-C25\\ O29-C24-C25-C26\\ O29-C24-C25-C4\\ O23-C24-C25-C4\\ O23-C24-C25-C4\\ C3-C4-C25-C26\\ \end{array}$	$\begin{array}{c} -49.7 (3) \\ 66.8 (2) \\ -52.0 (2) \\ -168.5 (2) \\ -51.2 (3) \\ -170.0 (2) \\ 73.5 (3) \\ 41.1 (3) \\ -82.1 (3) \\ 154.9 (2) \\ -44.7 (3) \\ 79.5 (3) \\ -157.8 (2) \\ 180.0 (2) \\ 0.3 (3) \\ 141.1 (2) \\ -39.2 (3) \\ 11.0 (3) \\ -169.40 (19) \\ -52.8 (3) \end{array}$
$\begin{array}{c} 06 & - C1 & - C2 & - C3 \\ C1 & - C2 & - C3 & - C4 \\ C2 & - C3 & - C4 & - C12 \\ C2 & - C3 & - C4 & - C25 \\ C1 & - 06 & - C7 & - C8 \\ C16 & - 011 & - C12 & - C13 \\ C16 & - 011 & - C12 & - C13 \\ C16 & - 011 & - C12 & - C13 \\ C25 & - C4 & - C12 & - O11 \\ C3 & - C4 & - C12 & - O11 \\ C3 & - C4 & - C12 & - C13 \\ C15 & - 014 & - C13 & - C12 \\ O11 & - C12 & - C13 & - O14 \\ C4 & - C12 & - C13 & - O14 \\ C20 & - O19 & - C15 & - O14 \\ C20 & - O19 & - C15 & - C16 \\ C13 & - O14 & - C15 & - C10 \\ C13 & - O14 & - C15 & - C16 \\ C13 & - O14 & - C15 & - C16 \\ C18 & - O17 & - C16 & - O11 \\ \end{array}$	$\begin{array}{c} 170 \ (4) \\ -58 \ (13) \\ -34 \ (11) \\ 93 \ (11) \\ -156.0 \ (4) \\ -58.6 \ (2) \\ 179.45 \ (18) \\ -63.9 \ (2) \\ 169.43 \ (18) \\ 177.30 \ (19) \\ 50.6 \ (3) \\ -58.3 \ (3) \\ 57.5 \ (2) \\ 173.48 \ (18) \\ -65.7 \ (3) \\ 52.3 \ (3) \\ 176.0 \ (2) \\ -60.0 \ (2) \\ 176.3 \ (2) \\ 54.9 \ (3) \\ -62.4 \ (3) \end{array}$	$\begin{array}{c} C10-C15-C16-O17\\ 019-C15-C16-O11\\ 014-C15-C16-O11\\ C10-C15-C16-O11\\ 019-C15-C16-C9\\ 014-C15-C16-C9\\ 014-C15-C16-C9\\ C24-O23-C22-O21\\ C24-O23-C22-C27\\ C24-O23-C22-C28\\ C26-O21-C22-C28\\ C26-O21-C22-C28\\ C26-O21-C22-C28\\ C26-O21-C22-C28\\ C22-O23-C24-O29\\ C22-O23-C24-C25\\ O29-C24-C25-C26\\ O23-C24-C25-C4\\ O23-C24-C25-C4\\ C3-C4-C25-C26\\ C12-C4-C25-C26\\ \end{array}$	$\begin{array}{c} -49.7 (3) \\ 66.8 (2) \\ -52.0 (2) \\ -168.5 (2) \\ -51.2 (3) \\ -170.0 (2) \\ 73.5 (3) \\ 41.1 (3) \\ -82.1 (3) \\ 154.9 (2) \\ -44.7 (3) \\ 79.5 (3) \\ -157.8 (2) \\ 180.0 (2) \\ 0.3 (3) \\ 141.1 (2) \\ -39.2 (3) \\ 11.0 (3) \\ -169.40 (19) \\ -52.8 (3) \\ 73.4 (2) \end{array}$
$\begin{array}{c} 06 & - C1 & - C2 & - C3 \\ C1 & - C2 & - C3 & - C4 \\ C2 & - C3 & - C4 & - C12 \\ C2 & - C3 & - C4 & - C25 \\ C1 & - 06 & - C7 & - C8 \\ C16 & - 011 & - C12 & - C13 \\ C16 & - 011 & - C12 & - C13 \\ C16 & - 011 & - C12 & - C13 \\ C25 & - C4 & - C12 & - O11 \\ C3 & - C4 & - C12 & - C13 \\ C25 & - C4 & - C12 & - C13 \\ C15 & - 014 & - C13 & - C12 \\ O11 & - C12 & - C13 & - O14 \\ C4 & - C12 & - C13 & - O14 \\ C20 & - O19 & - C15 & - O14 \\ C20 & - O19 & - C15 & - C16 \\ C13 & - O14 & - C15 & - C10 \\ C13 & - O14 & - C15 & - C16 \\ \end{array}$	$\begin{array}{c} 170 \ (4) \\ -58 \ (13) \\ -34 \ (11) \\ 93 \ (11) \\ -156.0 \ (4) \\ -58.6 \ (2) \\ 179.45 \ (18) \\ -63.9 \ (2) \\ 169.43 \ (18) \\ 177.30 \ (19) \\ 50.6 \ (3) \\ -58.3 \ (3) \\ 57.5 \ (2) \\ 173.48 \ (18) \\ -65.7 \ (3) \\ 52.3 \ (3) \\ 176.0 \ (2) \\ -60.0 \ (2) \\ 176.3 \ (2) \\ 54.9 \ (3) \end{array}$	$\begin{array}{c} C10-C15-C16-O17\\ 019-C15-C16-O11\\ 014-C15-C16-O11\\ C10-C15-C16-O11\\ 019-C15-C16-C9\\ 014-C15-C16-C9\\ 014-C15-C16-C9\\ C24-O23-C22-O21\\ C24-O23-C22-C27\\ C24-O23-C22-C28\\ C26-O21-C22-C28\\ C26-O21-C22-C28\\ C26-O21-C22-C28\\ C22-O23-C24-O29\\ C22-O23-C24-O29\\ C22-O23-C24-C25\\ O29-C24-C25-C26\\ O29-C24-C25-C4\\ O23-C24-C25-C4\\ O23-C24-C25-C4\\ C3-C4-C25-C26\\ \end{array}$	$\begin{array}{c} -49.7 (3) \\ 66.8 (2) \\ -52.0 (2) \\ -168.5 (2) \\ -51.2 (3) \\ -170.0 (2) \\ 73.5 (3) \\ 41.1 (3) \\ -82.1 (3) \\ 154.9 (2) \\ -44.7 (3) \\ 79.5 (3) \\ -157.8 (2) \\ 180.0 (2) \\ 0.3 (3) \\ 141.1 (2) \\ -39.2 (3) \\ 11.0 (3) \\ -169.40 (19) \\ -52.8 (3) \end{array}$
$\begin{array}{c} 06 & - C1 & - C2 & - C3 \\ C1 & - C2 & - C3 & - C4 \\ C2 & - C3 & - C4 & - C12 \\ C2 & - C3 & - C4 & - C25 \\ C1 & - 06 & - C7 & - C8 \\ C16 & - 011 & - C12 & - C13 \\ C16 & - 011 & - C12 & - C13 \\ C16 & - 011 & - C12 & - C13 \\ C25 & - C4 & - C12 & - O11 \\ C3 & - C4 & - C12 & - O11 \\ C3 & - C4 & - C12 & - C13 \\ C15 & - 014 & - C13 & - C12 \\ O11 & - C12 & - C13 & - O14 \\ C4 & - C12 & - C13 & - O14 \\ C20 & - O19 & - C15 & - O14 \\ C20 & - O19 & - C15 & - C16 \\ C13 & - O14 & - C15 & - C10 \\ C13 & - O14 & - C15 & - C16 \\ C13 & - O14 & - C15 & - C16 \\ C18 & - O17 & - C16 & - O11 \\ \end{array}$	$\begin{array}{c} 170 \ (4) \\ -58 \ (13) \\ -34 \ (11) \\ 93 \ (11) \\ -156.0 \ (4) \\ -58.6 \ (2) \\ 179.45 \ (18) \\ -63.9 \ (2) \\ 169.43 \ (18) \\ 177.30 \ (19) \\ 50.6 \ (3) \\ -58.3 \ (3) \\ 57.5 \ (2) \\ 173.48 \ (18) \\ -65.7 \ (3) \\ 52.3 \ (3) \\ 176.0 \ (2) \\ -60.0 \ (2) \\ 176.3 \ (2) \\ 54.9 \ (3) \\ -62.4 \ (3) \\ 55.8 \ (3) \end{array}$	$\begin{array}{c} C10-C15-C16-O17\\ 019-C15-C16-O11\\ 014-C15-C16-O11\\ C10-C15-C16-O11\\ 019-C15-C16-C9\\ 014-C15-C16-C9\\ 014-C15-C16-C9\\ C24-O23-C22-O21\\ C24-O23-C22-C27\\ C24-O23-C22-C28\\ C26-O21-C22-C28\\ C26-O21-C22-C28\\ C26-O21-C22-C28\\ C26-O21-C22-C28\\ C22-O23-C24-O29\\ C22-O23-C24-C25\\ O29-C24-C25-C26\\ O23-C24-C25-C4\\ O23-C24-C25-C4\\ C3-C4-C25-C26\\ C12-C4-C25-C26\\ \end{array}$	$\begin{array}{c} -49.7 (3) \\ 66.8 (2) \\ -52.0 (2) \\ -168.5 (2) \\ -51.2 (3) \\ -170.0 (2) \\ 73.5 (3) \\ 41.1 (3) \\ -82.1 (3) \\ 154.9 (2) \\ -44.7 (3) \\ 79.5 (3) \\ -157.8 (2) \\ 180.0 (2) \\ 0.3 (3) \\ 141.1 (2) \\ -39.2 (3) \\ 11.0 (3) \\ -169.40 (19) \\ -52.8 (3) \\ 73.4 (2) \\ 74.6 (2) \end{array}$
$\begin{array}{c} 06-01-02-03\\ C1-02-03-04\\ C2-03-04-012\\ C2-03-04-025\\ C1-06-07-08\\ C16-011-012-013\\ C16-011-012-013\\ C16-011-012-013\\ C16-011-012-013\\ C16-011-012-013\\ C25-04-012-011\\ C3-04-012-013\\ C25-04-012-013\\ C15-014-013-014\\ C20-019-015-014\\ C20-019-015-014\\ C20-019-015-014\\ C20-019-015-014\\ C20-019-015-014\\ C20-019-015-016\\ C13-014-015-019\\ C13-014-015-010\\ C13-014-015-010\\ C13-014-015-010\\ C13-014-015-010\\ C13-014-015-010\\ C13-014-015-010\\ C13-014-015-010\\ C13-014-015-010\\ C13-014-015-010\\ C18-017-016-011\\ C18-017-016-011\\ C18-017-016-015\\ \end{array}$	$\begin{array}{c} 170 \ (4) \\ -58 \ (13) \\ -34 \ (11) \\ 93 \ (11) \\ -156.0 \ (4) \\ -58.6 \ (2) \\ 179.45 \ (18) \\ -63.9 \ (2) \\ 169.43 \ (18) \\ 177.30 \ (19) \\ 50.6 \ (3) \\ -58.3 \ (3) \\ 57.5 \ (2) \\ 173.48 \ (18) \\ -65.7 \ (3) \\ 52.3 \ (3) \\ 176.0 \ (2) \\ -60.0 \ (2) \\ 176.3 \ (2) \\ 54.9 \ (3) \\ -62.4 \ (3) \\ 55.8 \ (3) \\ 178.91 \ (19) \end{array}$	$\begin{array}{c} C10-C15-C16-O17\\ 019-C15-C16-O11\\ 014-C15-C16-O11\\ 019-C15-C16-O11\\ 019-C15-C16-C9\\ 014-C15-C16-C9\\ 014-C15-C16-C9\\ 014-C15-C16-C9\\ 014-C23-C22-O21\\ 024-O23-C22-C27\\ 024-O23-C22-C28\\ 023-C22-C28\\ 026-O21-C22-C28\\ 026-O21-C22-C28\\ 026-O21-C22-C28\\ 022-O23-C24-O29\\ 022-O23-C24-O29\\ 022-O23-C24-C25\\ 029-C24-C25-C26\\ 023-C24-C25-C4\\ 023-C24-C25-C26\\ 023-C24-C25-C26\\ 023-C24-C25-C26\\ 023-C4-C25-C26\\ 023-C4-C25-C26\\ 023-C4-C25-C24\\ 023-C24-C25-C24\\ 023-C4-C25-C24\\ 023-C4-C$	$\begin{array}{c} -49.7 (3) \\ 66.8 (2) \\ -52.0 (2) \\ -168.5 (2) \\ -51.2 (3) \\ -170.0 (2) \\ 73.5 (3) \\ 41.1 (3) \\ -82.1 (3) \\ 154.9 (2) \\ -44.7 (3) \\ 79.5 (3) \\ -157.8 (2) \\ 180.0 (2) \\ 0.3 (3) \\ 141.1 (2) \\ -39.2 (3) \\ 11.0 (3) \\ -169.40 (19) \\ -52.8 (3) \\ 73.4 (2) \\ 74.6 (2) \\ -159.25 (19) \end{array}$
$\begin{array}{c} 06 & - C1 & - C2 & - C3 \\ C1 & - C2 & - C3 & - C4 \\ C2 & - C3 & - C4 & - C12 \\ C2 & - C3 & - C4 & - C25 \\ C1 & - 06 & - C7 & - C8 \\ C16 & - 011 & - C12 & - C13 \\ C16 & - 011 & - C12 & - C4 \\ C3 & - C4 & - C12 & - O11 \\ C25 & - C4 & - C12 & - O11 \\ C3 & - C4 & - C12 & - C13 \\ C15 & - O14 & - C13 & - C12 \\ O11 & - C12 & - C13 & - O14 \\ C20 & - O19 & - C15 & - O14 \\ C20 & - O19 & - C15 & - O14 \\ C20 & - O19 & - C15 & - O14 \\ C20 & - O19 & - C15 & - C10 \\ C20 & - O19 & - C15 & - C10 \\ C13 & - O14 & - C15 & - C10 \\ C13 & - O14 & - C15 & - C10 \\ C13 & - O14 & - C15 & - C16 \\ C18 & - O17 & - C16 & - O11 \\ C18 & - O17 & - C16 & - C15 \\ C12 & - O11 & - C16 & - O17 \\ \end{array}$	170 (4) $-58 (13)$ $-34 (11)$ $93 (11)$ $-156.0 (4)$ $-58.6 (2)$ $179.45 (18)$ $-63.9 (2)$ $169.43 (18)$ $177.30 (19)$ $50.6 (3)$ $-58.3 (3)$ $57.5 (2)$ $173.48 (18)$ $-65.7 (3)$ $52.3 (3)$ $176.0 (2)$ $-60.0 (2)$ $176.3 (2)$ $54.9 (3)$ $-62.4 (3)$ $55.8 (3)$ $178.91 (19)$ $-59.8 (2)$	$\begin{array}{c} C10-C15-C16-O17\\ 019-C15-C16-O11\\ 014-C15-C16-O11\\ 019-C15-C16-O11\\ 019-C15-C16-C9\\ 014-C15-C16-C9\\ 014-C15-C16-C9\\ 014-C15-C16-C9\\ 024-023-C22-O21\\ 024-023-C22-C27\\ 024-023-C22-C28\\ 023-C22-C28\\ 026-021-C22-C28\\ 026-021-C22-C28\\ 022-023-C24-O29\\ 022-023-C24-O29\\ 022-023-C24-C25\\ 029-C24-C25-C26\\ 023-C24-C25-C4\\ 023-C24-C25-C26\\ 023-C24-C25-C26\\ 023-C24-C25-C26\\ 023-C4-C25-C26\\ 023-C4-C25-C26\\ 023-C4-C25-C26\\ 023-C4-C25-C24\\ 023-C4-C25$	$\begin{array}{c} -49.7 (3) \\ 66.8 (2) \\ -52.0 (2) \\ -168.5 (2) \\ -51.2 (3) \\ -170.0 (2) \\ 73.5 (3) \\ 41.1 (3) \\ -82.1 (3) \\ 154.9 (2) \\ -44.7 (3) \\ 79.5 (3) \\ -157.8 (2) \\ 180.0 (2) \\ 0.3 (3) \\ 141.1 (2) \\ -39.2 (3) \\ 11.0 (3) \\ -169.40 (19) \\ -52.8 (3) \\ 73.4 (2) \\ 74.6 (2) \\ -159.25 (19) \\ -174.2 (2) \end{array}$
$\begin{array}{c} 06-01-02-03\\ C1-02-03-04\\ C2-03-04-012\\ C2-03-04-025\\ C1-06-07-08\\ C16-011-012-013\\ C16-011-012-013\\ C16-011-012-013\\ C16-011-012-013\\ C16-011-012-013\\ C25-04-012-011\\ C3-04-012-013\\ C25-04-012-013\\ C15-014-013-014\\ C20-019-015-014\\ C20-019-015-014\\ C20-019-015-014\\ C20-019-015-014\\ C20-019-015-014\\ C20-019-015-016\\ C13-014-015-019\\ C13-014-015-010\\ C13-014-015-010\\ C13-014-015-010\\ C13-014-015-010\\ C13-014-015-010\\ C13-014-015-010\\ C13-014-015-010\\ C13-014-015-010\\ C13-014-015-010\\ C18-017-016-011\\ C18-017-016-011\\ C18-017-016-015\\ \end{array}$	$\begin{array}{c} 170 \ (4) \\ -58 \ (13) \\ -34 \ (11) \\ 93 \ (11) \\ -156.0 \ (4) \\ -58.6 \ (2) \\ 179.45 \ (18) \\ -63.9 \ (2) \\ 169.43 \ (18) \\ 177.30 \ (19) \\ 50.6 \ (3) \\ -58.3 \ (3) \\ 57.5 \ (2) \\ 173.48 \ (18) \\ -65.7 \ (3) \\ 52.3 \ (3) \\ 176.0 \ (2) \\ -60.0 \ (2) \\ 176.3 \ (2) \\ 54.9 \ (3) \\ -62.4 \ (3) \\ 55.8 \ (3) \\ 178.91 \ (19) \end{array}$	$\begin{array}{c} C10-C15-C16-O17\\ 019-C15-C16-O11\\ 014-C15-C16-O11\\ 019-C15-C16-O11\\ 019-C15-C16-C9\\ 014-C15-C16-C9\\ 014-C15-C16-C9\\ 014-C15-C16-C9\\ 014-C23-C22-O21\\ 024-O23-C22-C27\\ 024-O23-C22-C28\\ 023-C22-C28\\ 026-O21-C22-C28\\ 026-O21-C22-C28\\ 026-O21-C22-C28\\ 022-O23-C24-O29\\ 022-O23-C24-O29\\ 022-O23-C24-C25\\ 029-C24-C25-C26\\ 023-C24-C25-C4\\ 023-C24-C25-C26\\ 023-C24-C25-C26\\ 023-C24-C25-C26\\ 023-C4-C25-C26\\ 023-C4-C25-C26\\ 023-C4-C25-C24\\ 023-C24-C25-C24\\ 023-C4-C25-C24\\ 023-C4-C$	$\begin{array}{c} -49.7 (3) \\ 66.8 (2) \\ -52.0 (2) \\ -168.5 (2) \\ -51.2 (3) \\ -170.0 (2) \\ 73.5 (3) \\ 41.1 (3) \\ -82.1 (3) \\ 154.9 (2) \\ -44.7 (3) \\ 79.5 (3) \\ -157.8 (2) \\ 180.0 (2) \\ 0.3 (3) \\ 141.1 (2) \\ -39.2 (3) \\ 11.0 (3) \\ -169.40 (19) \\ -52.8 (3) \\ 73.4 (2) \\ 74.6 (2) \\ -159.25 (19) \end{array}$

C24—C25—C26—O30	-143.8 (2)	C24—C25—C26—O21	35.9 (3)
C4—C25—C26—O30	-15.5 (3)	C4—C25—C26—O21	164.15 (19)

References

Mackay, S., Gilmore, C. J., Edwards, C., Stewart, N. & Shankland, K. (1999). maXus Computer Program for the Solution and Refinement of Crystal Structures. Bruker Nonius, The Netherlands, MacScience, Japan & The University of Glasgow.

Johnson, C. K. (1976). *ORTEP*--II. A Fortran Thermal--Ellipsoid Plot Program. Report ORNL-5138. Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.

Otwinowski, Z. and Minor, W, (1997). In Methods in Enzymology, 276, edited by C. W. Carter, Jr. & R. M. Sweet pp. 307--326, New York: Academic Press.

Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G & Spagna, R. (1999). J. *Appl. Cryst.* 32, 115--119.

Sheldrick, G. M. (1997). SHELXL97. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.