Angewandte
 Eine Zeitschrijt der Gesellschaft Deutscher Chemiker Chemie

Supporting Information

© Wiley-VCH 2007
69451 Weinheim, Germany

Bimetallic Ru-Sn Nanoparticle Catalysts for the Solvent-free, Selective Hydrogenation of 1,5,9-Cyclododecatriene to Cyclododecene

Richard D. Adams ${ }^{*}$, Erin M. Boswell, Burjor Captain, Ana B. Hungria, Paul A. Midgley, Robert Raja*, John Meurig Thomas* ${ }^{*}$

General Data. All reactions were performed under a nitrogen atmosphere using standard Schlenk techniques. Reagent grade solvents were dried by standard procedures and were freshly distilled prior to their use. Nonane, 99%, was purchased from Alfa Aesar and used without further purification. Infrared spectra were recorded on a Nicolet Avatar 360 FTIR spectrophotometer. ${ }^{1} \mathrm{H}$-NMR spectra were recorded on a Varian Mercury 400 spectrometer operating at 400 MHz . Mass spectrometric measurements performed by direct exposure probe using electron impact ionization (EI) were made on a VG 70S instrument. Triphenylstannane, $\mathrm{Ph}_{3} \mathrm{SnH}$, was purchased from Aldrich and was used without further purification. $\mathrm{Ru}_{4}(\mathrm{CO})_{12}(\mu-\mathrm{H})_{4}{ }^{[1]}$ was prepared via

Prof. Dr. R. D. Adams, E. M.Boswell, Dr. B. Captain
Department of Chemistry and Biochemistry
University of South Carolina, Columbia, SC 29208 (USA)
Fax: (+1) 803-777-6781
Email: Adams@mail.chem.sc.edu
Dr. A. B. Hungria, Dr. P. A. Midgley and Prof. Sir J. M. Thomas,
Department of Materials Science
University of Cambridge
Cambridge, UK CB2 3QZ
Fax: (+44) 1223-334-563
Email: jmt2@cam.ac.uk
Prof. Dr. R. Raja
School of Chemistry
University of Southampton
Highfield
Southampton SO17 1BJ
Email: R.Raja@soton.ac.uk

literature methods. Product separations were performed by TLC in air by using Analtech 0.25 , 0.5 , and 1.0 mm silica gel $60 \AA \mathrm{~F}_{254}$ glass plates.

Crystallographic Analyses: Dark single crystals of $\mathbf{1}$ suitable for x-ray diffraction analyses were obtained by slow evaporation of solvent from a solution of octane/methylene chloride at $-25^{\circ} \mathrm{C}$. Dark purple single crystals of $\mathbf{2}$ were obtained by slow evaporation of solvent at $-25^{\circ} \mathrm{C}$ from a solution of octane/methylene chloride. Dark purple crystals of $\mathbf{3}$ were grown from slow evaporation of solvent from a solution in an octane/diethylether solvent mixture at $7{ }^{\circ} \mathrm{C}$. Dark blue single crystals of 4 were obtained by slow evaporation of solvent from a solution in an octane/diethylether solvent mixture at $7{ }^{\circ} \mathrm{C}$. Each data crystal was glued onto the end of a thin glass fiber. X-ray intensity data were measured by using a Bruker SMART APEX CCD-based diffractometer using Mo $\mathrm{K} \alpha$ radiation $(\lambda=0.71073 \AA$) . The raw data frames were integrated with the SAINT+ program by using a narrow-frame integration algorithm. ${ }^{[2]}$ Correction for Lorentz and polarization effects were also applied with SAINT+. An empirical absorption correction based on the multiple measurement of equivalent reflections was applied using the program SADABS. All structures were solved by a combination of direct methods and difference Fourier syntheses, and refined by full-matrix least-squares on F^{2}, using the SHELXTL software package. ${ }^{[3]}$ All non-hydrogen atoms were refined with anisotropic displacement parameters. Hydrogen atoms were placed in geometrically idealized positions and included as standard riding atoms during the least-squares refinements. Crystal data, data collection parameters, and results of the analyses are listed in Tables 1 and 2. Selected bond distances and angles are listed in Tables 3-6.

Compound 1-4 all crystallized in the triclinic crystal system. The space group $P \bar{l}$ was assumed and confirmed by the successful solution and refinement of the structure. For
compounds $\mathbf{1}$ and $\mathbf{4}$, the molecule lies on a center of symmetry. Only half a formula equivalent of the molecule occupies the asymmetric crystal unit.

References.

[1] H. D. Kaesz, S. A. R. Knox, J. W. Koepke, M. A. Andrews, J. Am. Chem. Soc. 1975, 97, 3942.
[2] SAINT+ Version 6.2a. Bruker Analytical X-ray System, Inc., Madison, Wisconsin, USA, 2001.
[3] G. M. Sheldrick, SHELXTL Version 6.1; Bruker Analytical X-ray Systems, Inc., Madison, Wisconsin, USA, 1997.

Figure 1. An ORTEP diagram of $\mathbf{2}$ showing 30% thermal ellipsoid probability.

Figure 2. An ORTEP diagram of $\mathbf{3}$ showing 30% thermal ellipsoid probability.

Table 1. Crystallographic Data for Compounds 1 and 2.

	$\mathbf{1}$	$\mathbf{2}$
Empirical formula	$\mathrm{Ru}_{4} \mathrm{Sn}_{2} \mathrm{O}_{12} \mathrm{C}_{24} \mathrm{H}_{10}$	$\mathrm{Ru}_{4} \mathrm{Sn}_{4} \mathrm{O}_{10} \mathrm{C}_{46} \mathrm{H}_{30}$
Formula weight	1131.98	1621.74
Crystal system	Triclinic	Triclinic
Lattice parameters		
$a(\AA \AA)$	$9.1416(4)$	$11.8757(6)$
$b(\AA)$	$9.6670(4)$	$12.9166(7)$
$c(\AA)$	$9.7105(4)$	$18.0535(9)$
$\alpha($ deg $)$	$74.889(1)$	$80.993(1)$
$\beta($ deg $)$	$66.258(1)$	$81.988(1)$
$\gamma($ deg $)$	$86.839(1)$	$66.009(1)$
$\mathrm{V}\left(\AA^{3}\right)$	$757.16(6)$	$2490.0(2)$
Space group	$\mathrm{P}-1$	$\mathrm{P}-1$
Z value	1	2
$\rho_{\text {calc }}\left(\mathrm{g} / \mathrm{cm}^{3}\right)$	2.483	2.163
$\mu($ Mo K $\alpha)(\mathrm{mm}$		
Temperature (K)	3.626	3.203
2 $\Theta_{\text {max }}\left({ }^{\circ}\right)$	294	294
No. Obs. $(\mathrm{I}>2 \sigma(\mathrm{I}))$	56.62	56.70
No. Parameters	3202	10078
Goodness of fit	190	559
Max. shift in cycle	1.073	1.024
Residuals*: R1; wR2	$0.0358 ; 0.0820$	$0.0354 ; 0.0817$
Absorption Correction,	Multi-scan,	Multi-scan
Max/min	$1.000 / 0.813$	$1.000 / 0.894$
Largest peak in Final	2.090	1.312
Diff. Map $\left(\mathrm{e}^{-} / \AA^{3}\right)$		

$* \mathrm{R}=\Sigma_{\mathrm{hkl}}\left(| | \mathrm{F}_{\mathrm{obs}}\left|-\left|\mathrm{F}_{\text {calc }}\right|\right|\right) / \Sigma_{\mathrm{hkl}}\left|\mathrm{F}_{\mathrm{obs}}\right| ; \mathrm{R}_{\mathrm{w}}=\left[\Sigma_{\mathrm{hkl}} \mathrm{W}\left(\left|\mathrm{F}_{\text {obs }}\right|-\left|\mathrm{F}_{\text {calc }}\right|\right)^{2} / \Sigma_{\mathrm{hkl}} \mathrm{W} \mathrm{F}_{\mathrm{obs}}{ }^{2}\right]^{1 / 2}$, $\mathrm{w}=1 / \sigma^{2}\left(\mathrm{~F}_{\text {obs }}\right) ; \mathrm{GOF}=\left[\Sigma_{\text {hklW }}\left(\left|\mathrm{F}_{\text {obs }}\right|-\left|\mathrm{F}_{\text {calc }}\right|\right)^{2} /\left(\mathrm{n}_{\text {data }}-\mathrm{n}_{\text {vari }}\right)\right]^{1 / 2}$.

Table 2. Crystallographic Data for Compounds 3 and 4.

	$\mathbf{3}$	$\mathbf{4}$
Empirical formula	$\mathrm{Ru}_{4} \mathrm{Sn}_{5} \mathrm{O}_{9} \mathrm{C}_{57} \mathrm{H}_{40}$	$\mathrm{Ru}_{4} \mathrm{Sn}_{6} \mathrm{O}_{8} \mathrm{C}_{68} \mathrm{H}_{50}$
Formula weight	1866.62	2111.50
Crystal system	Triclinic	Triclinic
Lattice parameters		
$a(\AA)$	$13.3973(3)$	$11.9551(5)$
$b(\AA \AA)$	$13.8172(3)$	$12.3520(5)$
$c(\AA)$	$17.8555(4)$	$12.6818(5)$
$\alpha($ deg $)$	$89.312(1)$	$78.933(1)$
$\beta($ deg $)$	$89.351(1)$	$70.662(1)$
$\gamma($ deg)	$64.805(1)$	$75.589(1)$
$\mathrm{V}\left(\AA^{3}\right)$	$299.55(11)$	$1699.12(12)$
Space group	$\mathrm{P}-1$	$\mathrm{P}-1$
Z value	2	1
$\rho_{\text {calc }}\left(\mathrm{g} / \mathrm{cm}^{3}\right)$	2.073	2.064
$\mu($ Mo K $\alpha)(\mathrm{mm}$		
Temperature (K)	3.082	3.078
2 $\Theta_{\text {max }}\left({ }^{\circ}\right)$	293	293
No. Obs. $(\mathrm{I}>2 \sigma(\mathrm{I}))$	56.60	56.58
No. Parameters	10690	6452
Goodness of fit	676	388
Max. shift in cycle	1.021	0.988
Residuals*: R1; wR2	$0.0405 ; 0.0884$	$0.0322 ; 0.0 .0588$
Absorption Correction,	Multi-scan	Multi-scan
Max/min	$1.000 / 0.864$	$1.000 / 0.870$
Largest peak in Final	1.546	0.674
Diff. Map $\left(\mathrm{e}^{-} / \AA^{3}\right)$		

$* \mathrm{R}=\Sigma_{\mathrm{hkl}}\left(\left|\mathrm{F}_{\text {obs }}\right|-\left|\mathrm{F}_{\text {calc }}\right| \mid\right) / \Sigma_{\mathrm{hkl}}\left|\mathrm{F}_{\text {obs }}\right| ; \mathrm{R}_{\mathrm{w}}=\left[\Sigma_{\mathrm{hkl}}\left(\left|\mathrm{F}_{\text {obs }}\right|-\left|\mathrm{F}_{\text {calc }}\right|\right)^{2} / \Sigma_{\mathrm{hkl}} \mathrm{WF}_{\mathrm{obs}}{ }^{2}\right]^{1 / 2}$,
$\mathrm{w}=1 / \sigma^{2}\left(\mathrm{~F}_{\text {obs }}\right) ; \operatorname{GOF}=\left[\Sigma_{\mathrm{hkl}}\left(\left|\mathrm{F}_{\text {obs }}\right|-\left|\mathrm{F}_{\text {calc }}\right|\right)^{2} /\left(\mathrm{n}_{\text {data }}-\mathrm{n}_{\text {vari }}\right)\right]^{1 / 2}$.

Table 3. Selected Intramolecular Bond Distances for Compounds 1 and $2^{\text {a }}$

1			2		
atom	atom	distance (A)	atom	atom	distance (\AA)
$\mathrm{Ru}(1)$	$\mathrm{Ru}(2)$	2.9597(6)	$\mathrm{Ru}(1)$	$\mathrm{Ru}(2)$	2.8440(5)
$\mathrm{Ru}(1) *$	$\mathrm{Ru}(2)$	2.9578(6)	$\mathrm{Ru}(2)$	$\mathrm{Ru}(3)$	2.8689(5)
$\mathrm{Ru}(1)$	$\mathrm{Sn}(1)$	2.7135(5)	$\mathrm{Ru}(3)$	$\mathrm{Ru}(4)$	3.1166(5)
$\mathrm{Ru}(2)$	$\mathrm{Sn}(1)$	2.7153(6)	$\mathrm{Ru}(1)$	$\mathrm{Ru}(4)$	3.0937(5)
$\mathrm{Ru}(1) *$	$\mathrm{Sn}(1)$	2.7147(5)	$\mathrm{Ru}(1)$	C(1)	2.053(5)
$\mathrm{Ru}(1)$	Sn(1)*	2.7146(5)	$\mathrm{Ru}(1)$	$\mathrm{Sn}(4)$	2.6925(5)
$\mathrm{Ru}(2)$	$\mathrm{Sn}(1){ }^{*}$	2.7134(5)	$\mathrm{Ru}(2)$	C(1)	2.122(5)
C	O	1.128(6)(av.)	$\mathrm{Ru}(2)$	C(2)	$2.108(5)$
			$\mathrm{Ru}(3)$	C(2)	2.088(5)
			$\mathrm{Ru}(3)$	$\mathrm{Sn}(3)$	2.6719(5)
			$\mathrm{Ru}(4)$	$\mathrm{Sn}(3)$	2.6552(5)
			$\mathrm{Ru}(4)$	$\mathrm{Sn}(4)$	2.6227(5)
			$\mathrm{Ru}(1)$	$\mathrm{Sn}(1)$	2.7328(4)
			$\mathrm{Ru}(2)$	$\mathrm{Sn}(1)$	2.7814(5)
			$\mathrm{Ru}(3)$	$\mathrm{Sn}(1)$	2.7122(5)
			$\mathrm{Ru}(4)$	$\mathrm{Sn}(1)$	2.6910(5)
			$\mathrm{Ru}(1)$	$\mathrm{Sn}(2)$	2.7320 (5)
			$\mathrm{Ru}(2)$	$\mathrm{Sn}(2)$	2.7571(5)
			$\mathrm{Ru}(3)$	$\mathrm{Sn}(2)$	2.7343(5)
			$\mathrm{Ru}(4)$	$\mathrm{Sn}(2)$	2.6581(4)
			C	O	1.137(6)(av.)

[^0]Table 4. Selected Intramolecular Bond Angles for Compounds 1 and $2^{\text {a }}$.

1				2			
atom	atom	atom	angle (deg)	atom	atom	atom	angle (deg)
$\mathrm{Ru}(1)$	$\mathrm{Ru}(2)$	$\mathrm{Ru}(1) *$	88.99(7)	$\mathrm{Ru}(1)$	$\mathrm{Ru}(2)$	$\mathrm{Ru}(3)$	94.83(4)
$\mathrm{Ru}(2) *$	$\mathrm{Ru}(1)$	$\mathrm{Ru}(2)$	90.01(7)	$\mathrm{Ru}(2)$	$\mathrm{Ru}(3)$	$\mathrm{Ru}(4)$	89.48(4)
$\mathrm{Ru}(1)$	$\mathrm{Sn}(1)$	$\mathrm{Ru}(2)$	66.07(5)	$\mathrm{Ru}(3)$	$\mathrm{Ru}(4)$	$\mathrm{Ru}(1)$	85.27(3)
$\mathrm{Ru}(2)$	$\mathrm{Sn}(1)$	$\mathrm{Ru}(1) *$	66.01(5)	$\mathrm{Ru}(4)$	$\mathrm{Ru}(1)$	$\mathrm{Ru}(2)$	90.39(4)
$\mathrm{Ru}(1)$ *	$\mathrm{Sn}(1)$	$\mathrm{Ru}(2)$ *	66.09(5)	$\mathrm{Ru}(1)$	$\mathrm{C}(1)$	$\mathrm{Ru}(2)$	85.89(8)
$\mathrm{Ru}(2) *$	$\mathrm{Sn}(1)$	$\mathrm{Ru}(1)$	66.05(5)	$\mathrm{Ru}(2)$	C(2)	$\mathrm{Ru}(3)$	86.3(8)
$\mathrm{Ru}(1)$	$\mathrm{Sn}(1)$	$\mathrm{Ru}(1) *$	100.85(5)	$\mathrm{Ru}(3)$	$\mathrm{Sn}(3)$	$\mathrm{Ru}(4)$	71.61(3)
$\mathrm{Ru}(2)$	$\mathrm{Sn}(1)$	$\mathrm{Ru}(2) *$	100.86(6)	$\mathrm{Ru}(4)$	$\mathrm{Sn}(4)$	$\mathrm{Ru}(1)$	71.18(3)
				$\mathrm{Ru}(1)$	$\mathrm{Sn}(1)$	$\mathrm{Ru}(2)$	62.09(2)
				$\mathrm{Ru}(2)$	$\mathrm{Sn}(1)$	$\mathrm{Ru}(3)$	62.95(3)
				$\mathrm{Ru}(3)$	$\mathrm{Sn}(1)$	$\mathrm{Ru}(4)$	70.45(3)
				$\mathrm{Ru}(4)$	$\mathrm{Sn}(1)$	$\mathrm{Ru}(1)$	69.55(3)
				$\mathrm{Ru}(1)$	$\mathrm{Sn}(2)$	$\mathrm{Ru}(2)$	64.41(2)
				$\mathrm{Ru}(2)$	$\mathrm{Sn}(2)$	$\mathrm{Ru}(3)$	62.99(2)
				$\mathrm{Ru}(3)$	$\mathrm{Sn}(2)$	$\mathrm{Ru}(4)$	70.59(2)
				$\mathrm{Ru}(4)$	$\mathrm{Sn}(2)$	$\mathrm{Ru}(1)$	70.04(2)
				$\mathrm{Ru}(1)$	$\mathrm{Sn}(1)$	$\mathrm{Ru}(3)$	101.16(4)
				$\mathrm{Ru}(2)$	$\mathrm{Sn}(1)$	$\mathrm{Ru}(4)$	100.79(4)
				$\mathrm{Ru}(1)$	$\mathrm{Sn}(2)$	$\mathrm{Ru}(3)$	100.62(4)
				$\mathrm{Ru}(2)$	$\mathrm{Sn}(2)$	$\mathrm{Ru}(4)$	102.26(4)

${ }^{\text {a }}$ Estimated standard deviations in the least significant figure are given in parentheses.

* Denotes atoms generated by symmetry

Table 5. Selected Intramolecular Bond Distances for Compounds 3 and $4^{\text {a }}$

3			4		
atom	atom	Distance(Å)	atom	atom	distance(Å)
$\operatorname{Ru}(1)$	$\mathrm{Ru}(2)$	$3.1032(6)$	$\mathrm{Ru}(1)$	$\mathrm{Ru}(2)$	$3.0580(5)$
$\mathrm{Ru}(2)$	$\mathrm{Ru}(3)$	$3.0890(6)$	$\mathrm{Ru}(1)$	$\mathrm{Ru}(2)^{*}$	$3.0656(5)$
$\mathrm{Ru}(3)$	$\mathrm{Ru}(4)$	$2.8371(6)$	$\mathrm{Ru}(1)$	$\mathrm{Sn}(2)$	$2.6477(4)$
$\mathrm{Ru}(4)$	$\mathrm{Ru}(1)$	$3.0555(6)$	$\mathrm{Ru}(1)$	$\mathrm{Sn}(3)$	$2.6187(4)$
$\mathrm{Ru}(1)$	$\mathrm{Sn}(3)$	$2.6399(5)$	$\mathrm{Ru}(2)$	$\mathrm{Sn}(3)$	$2.6519(4)$
$\mathrm{Ru}(1)$	$\mathrm{Sn}(5)$	$2.6446(5)$	$\mathrm{Ru}(2)$	$\mathrm{Sn}(2)^{*}$	$2.6269(4)$
$\mathrm{Ru}(2)$	$\mathrm{Sn}(3)$	$2.6402(6)$	$\mathrm{Ru}(1)$	$\mathrm{Sn}(1)$	$2.7327(4)$
$\mathrm{Ru}(2)$	$\mathrm{Sn}(4)$	$2.6449(6)$	$\mathrm{Ru}(2)$	$\mathrm{Sn}(1)$	$2.7413(4)$
$\mathrm{Ru}(3)$	$\mathrm{Sn}(4)$	$2.6612(6)$	$\mathrm{Ru}(1)^{*}$	$\mathrm{Sn}(1)$	$2.7310(4)$
$\mathrm{Ru}(3)$	$\mathrm{C}(1)$	$2.064(6)$	$\mathrm{Ru}(2)^{*}$	$\mathrm{Sn}(1)$	$2.7383(4)$
$\mathrm{Ru}(4)$	$\mathrm{C}(1)$	$2.109(6)$	$\mathrm{Ru}(1)$	$\mathrm{Sn}(1)^{*}$	$2.7311(4)$
$\mathrm{Ru}(4)$	$\mathrm{Sn}(5)$	$2.6669(6)$	$\mathrm{Ru}(2)$	$\mathrm{Sn}(1)^{*}$	$2.7383(4)$
$\mathrm{Ru}(1)$	$\mathrm{Sn}(1)$	$2.7716(5)$			
$\mathrm{Ru}(2)$	$\mathrm{Sn}(1)$	$2.7007(5)$			
$\mathrm{Ru}(3)$	$\mathrm{Sn}(1)$	$2.7567(6)$			
$\mathrm{Ru}(4)$	$\mathrm{Sn}(1)$	$2.7310(5)$			
$\mathrm{Ru}(1)$	$\mathrm{Sn}(2)$	$2.7069(5)$			
$\mathrm{Ru}(2)$	$\mathrm{Sn}(2)$	$2.7041(6)$			
$\mathrm{Ru}(3)$	$\mathrm{Sn}(2)$	$2.7619(6)$			
$\mathrm{Ru}(4)$	$\mathrm{Sn}(2)$	$2.7783(6)$			
C	O	$1.134(6)(\mathrm{av})$.			

[^1]Table 6. Selected Intramolecular Bond Angles for Compounds 3 and $4^{\text {a }}$.

3				4			
atom	atom	atom	angle (deg)	atom	atom	atom	angle (deg)
$\mathrm{Ru}(1)$	$\mathrm{Ru}(2)$	$\mathrm{Ru}(3)$	87.37(5)	$\mathrm{Ru}(1)$	$\mathrm{Ru}(2)$	$\mathrm{Ru}(1)$ *	89.73(2)
$\mathrm{Ru}(2)$	$\mathrm{Ru}(3)$	$\mathrm{Ru}(4)$	91.96(6)	$\mathrm{Ru}(2)$	$\mathrm{Ru}(1)$	$\mathrm{Ru}(2)$ *	90.27(2)
$\mathrm{Ru}(3)$	$\mathrm{Ru}(4)$	$\mathrm{Ru}(1)$	92.99(6)	$\mathrm{Ru}(1)$	$\mathrm{Sn}(3)$	$\mathrm{Ru}(2)$	70.93(2)
$\mathrm{Ru}(4)$	$\mathrm{Ru}(1)$	$\mathrm{Ru}(2)$	87.66(5)	$\mathrm{Ru}(1)$	$\mathrm{Sn}(2)$	$\mathrm{Ru}(2)$ *	71.07(2)
$\mathrm{Ru}(1)$	$\mathrm{Sn}(3)$	$\mathrm{Ru}(2)$	71.99(6)	$\mathrm{Ru}(1)$	$\mathrm{Sn}(1)$	$\mathrm{Ru}(2)$	67.92(2)
$\mathrm{Ru}(2)$	$\mathrm{Sn}(4)$	$\mathrm{Ru}(3)$	71.24(6)	$\mathrm{Ru}(2)$	$\mathrm{Sn}(1)$	$\mathrm{Ru}(1)$ *	68.14(1)
$\mathrm{Ru}(3)$	C(1)	$\mathrm{Ru}(4)$	85.6(2)	$\mathrm{Ru}(1)$ *	$\mathrm{Sn}(1)$	$\mathrm{Ru}(2)$ *	67.99(2)
$\mathrm{Ru}(4)$	$\mathrm{Sn}(5)$	$\mathrm{Ru}(1)$	70.24(5)	$\mathrm{Ru}(2)$ *	$\mathrm{Sn}(1)$	$\mathrm{Ru}(1)$	68.16(2)
$\mathrm{Ru}(1)$	$\mathrm{Sn}(1)$	$\mathrm{Ru}(2)$	69.79(5)	$\mathrm{Ru}(1)$	$\mathrm{Sn}(1)$	$\mathrm{Ru}(1)$ *	104.50(2)
$\mathrm{Ru}(2)$	$\mathrm{Sn}(1)$	$\mathrm{Ru}(3)$	68.94(6)	$\mathrm{Ru}(2)$	$\mathrm{Sn}(1)$	$\mathrm{Ru}(2) *$	104.75(2)
$\mathrm{Ru}(3)$	$\mathrm{Sn}(1)$	$\mathrm{Ru}(4)$	62.26(5)				
$\mathrm{Ru}(4)$	$\mathrm{Sn}(1)$	$\mathrm{Ru}(1)$	68.30(5)				
$\mathrm{Ru}(1)$	$\mathrm{Sn}(2)$	$\mathrm{Ru}(2)$	69.99(5)				
$\mathrm{Ru}(2)$	$\mathrm{Sn}(2)$	$\mathrm{Ru}(3)$	68.81(5)				
$\mathrm{Ru}(3)$	$\mathrm{Sn}(2)$	$\mathrm{Ru}(4)$	61.61(5)				
$\mathrm{Ru}(4)$	$\mathrm{Sn}(2)$	$\mathrm{Ru}(1)$	67.69(5)				
$\mathrm{Ru}(1)$	$\mathrm{Sn}(1)$	$\mathrm{Ru}(2)$	102.91(7)				
$\mathrm{Ru}(2)$	$\mathrm{Sn}(1)$	$\mathrm{Ru}(4)$	103.48(7)				
$\mathrm{Ru}(1)$	$\mathrm{Sn}(2)$	$\mathrm{Ru}(2)$	102.90(7)				
$\mathrm{Ru}(2)$	$\mathrm{Sn}(2)$	$\mathrm{Ru}(4)$	102.14(7)				

${ }^{\text {a }}$ Estimated standard deviations in the least significant figure are given in parentheses.

* Indicates atoms generated by symmetry

[^0]: ${ }^{\text {a }}$ Estimated standard deviations in the least significant figure are given in parentheses.

 * Denotes atoms generated by symmetry

[^1]: ${ }^{a}$ Estimated standard deviations in the least significant figure are given in parentheses.

 * Indicates atoms generated by symmetry

