

Supporting Information

© Wiley-VCH 2007

69451 Weinheim, Germany

Metal-Free Catalytic Hydrogenation**

Preston A. Chase, Gregory C. Welch, Titel Jurca, Douglas W. Stephan*

[*]Prof. Dr. D.W. Stephan, Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario, Canada, N9B 3P4,Fax: 519-973-7098, E-mail: stephan@uwindsor.ca

Materials and Methods: All experiments were performed on double manifold $N_2(H_2)/vacuum$ lines or in a N_2 -filled MBraun 130-BG glove box. Toluene was dried by passage through alumina and molecular sieves in a commercially available solvent purification system. H₂ gas (Praxair) was dried by passage through a column of 50:50 activated molecular sieves and Dririte. NMR experiments were performed on a Bruker Avance-300 spectrometer at 300K unless otherwise noted. ¹H and ¹³C{¹H} NMR spectra are referenced to SiMe₄ using the residual proton peak of the given solvent. ³¹P, ¹¹B and ¹⁹F NMR spectra were referenced to 85% H₃PO₄ ($\delta = 0$), BF₃(OEt₂) ($\delta = 0$), and CFCl₃ ($\delta = 0$), respectively. Chemical shifts (δ) are reported in ppm and coupling constants (*J*) in Hz. Combustion analyses were performed in house employing a Perkin Elmer CHN Analyzer. All imines, nitriles and 1,2,3-triphenylaziridine were purchased from Aldrich and used without further purification. Compounds (C₆F₅)₃BN(CH₂Ph)=C(H)Ph¹, (C₆F₅)₃BN=CMe,

¹ Blackwell, J. M.; Piers, W. E.; Parvez, M.; McDonald, R. Organometallics, 2002, 21, 1400.

 $(C_6F_5)_3BN\equiv CPh^2$ (($C_6H_2Me_3$)_2PH)(C_6F_4)BH(C_6F_5)_2 (1),³ (tBu_2PH)(C_6F_4)BH(C_6F_5)_2 (2), and (Cy_3P)(C_6F_4)BH(C_6F_5)_2⁴ were prepared by literature methods.

Synthesis of $(R_2PH)(C_6F_4)B(OCH_2Ph)(C_6F_5)_2$ (R = $C_6H_2Me_3$ (6) tBu (7)) These compounds were prepared in a similar fashion and thus only one preparation is detailed. To a solution of (2) (120 mg, 0.19 mmol) in CH₂Cl₂ (4 mL) was added a solution of benzaldehyde (20 mg, 0.19 mmol) in CH₂Cl₂. The reaction was stirred overnight and solvent was removed *in vacuo*. The product (7) was isolated as a white solid; 0.138 g, 98%. (6): ¹H NMR (CD₂Cl₂): δ 8.50 (d, 1H, ¹J_{PH} = 502 Hz, PH), 7.38 (d, 2H, ³J_{HH} = 7.0 Hz, o-ArH), 7.25 (t, 2H, ${}^{3}J_{\text{HH}} = 7.0 \text{ Hz}$, *m*-ArH), 7.14 (m, 4H, overlapping *p*-ArH and MesArH), 4.29 (s, 2H, PhCH₂O), 2.35 (s, 6H, *p*-CH₃), 2.27 (s, 12H, *o*-CH₃). ¹³C{¹H} NMR (CD₂Cl₂, partial): δ 148.3 (s, *p*-ArCMe), 148.1 (br d, ${}^{1}J_{CF} = 240$ Hz, ArCF), 146.5 (br d, ${}^{1}J_{CF} = 240$ Hz, ArCF), 144.2 (d, ${}^{2}J_{CP} = 12$ Hz, *o*-ArCMe), 137.0 (br d, ${}^{1}J_{CF} = 240$ Hz, ArCF), 132.9 (d, ${}^{2}J_{CP} = 12$ Hz, *m*-ArCH), 130.7 (b, *i*-ArC-O), 128.1 (s, ArCH), 126.7 (s, ArCH), 126.2 (s, ArCH), 108.6 (d, ${}^{1}J_{CP} = 87$ Hz, *i*-ArCP), 66.9 (s, OCH₂), 22.0 (d, ${}^{3}J_{CP} = 9.9$ Hz, 2,6-H₃CAr), 21.8 (4-H₃CAr). ¹⁹F NMR (CD₂Cl₂): δ -127.6 (br s, 2F, ArF_{linker}), -134.0 (m, 4F, o-ArF), -134.3 (m, 2F, ArF_{linker}), -162.8 (t, 2F, ${}^{3}J_{FF} = 20$ Hz, p-ArF), -166.9 (m, 4F, m-ArF). ¹¹B{¹H} NMR (CD₂Cl₂): δ -4.6 (s). ³¹P NMR (CD₂Cl₂): δ -37.8 (d, ¹J_{PH} = 502 Hz). (7): ¹H NMR (CD₂Cl₂): 7.39 (d, 2H, ³ J_{HH} = 7.7 Hz, *o*-ArH), 7.25 (t, 2H, ³ J_{HH} = 7.7 Hz, *m*-ArH), 7.14 (t, 1H, ${}^{3}J_{HH} = 7.7$ Hz, p-ArH), 6.22 (d, 1H, ${}^{1}J_{PH} = 450$ Hz, PH), 4.30 (s, 2H, PhCH₂O), 1.53 (d, 18H, ${}^{3}J_{PH} = 18$ Hz, PC(CH₃)₃). ${}^{13}C{}^{1}H{}$ NMR (CD₂Cl₂): δ 149.6 (br d, ${}^{1}J_{CF}$ = , ArCF), 148.5 (br d, ${}^{1}J_{CF}$ = , ArCF), 144.3 (s, Ar), 145.2 (br d, ${}^{1}J_{CF}$ = 240 Hz,

² Jacobsen, H.; Berke, H.; Döring, S.; Kehr, G.; Erker, G.; Fröhlich, R.; Meyer, O. Organometallics 1999, 18, 1724.

³ Welch, G. C.; San Juan, R. R.; Masoda, J. D.; Stephan, D. W. Science, 2006, 314, 1124.

⁴ Welch, G. C.; Cabrera, L.; Chase, P. A.; Hollink, E.; Masuda, J. D.; Wei, P.; Stephan, D. W. *Dalton*, **2007**, accepted (DOI 10.1039).

Ar*C*F), 139.0 (br d, ${}^{1}J_{CF}$ = 240 Hz, Ar*C*F), 137.0 (br d, ${}^{1}J_{CF}$ = 240 Hz, Ar*C*F), 127.9 (s, Ar), 126.6 (s, Ar), 126.0 (s, Ar), 123.7 (vbr s, B*C*) 89.0 (d of t, P*C*_{ArF}) 66.6 (s, Ph*C*H₂O), 36.5 (d, ${}^{1}J_{PC}$ = P*C*(CH₃)₃), 28.1 (s, PC(*C*H₃)₃). ¹⁹F NMR (CD₂Cl₂): δ -126.5 (m, overlapping 3F, Ar*F*_{linker}), -133.0 (m, 1F, Ar*F*_{linker}), -134.1 (m, 4F, *o*-Ar*F*), -162.8 (t, 2F, ${}^{3}J_{FF}$ = 20 Hz, *p*-Ar*F*), -166.9 (m, 4F, *m*-Ar*F*). ¹¹B{¹H} NMR (CD₂Cl₂): δ -4.6 (s). ³¹P NMR (CD₂Cl₂): δ 34.1 (d, ${}^{1}J_{PH}$ = 450 Hz). *Anal.* Calcd: C 53.11, H 3.51. Found: 53.78, H 3.62.

Synthesis of (C₆F₅)₃BN≡C(CH₂)₄C≡NB(C₆F₅)₃: To a solution of B(C₆F₅)₃ (1.024 g, 2 mmol) in CH₂Cl₂ (6 ml) was added a solution of N≡C(CH₂)₄C≡N (0.108g, 1 mmol) in CH₂Cl₂ (2 ml). Some white precipitate formed upon mixing and the reaction was stirred overnight. All volatiles were removed *in vacuo* **to obtain the product as a white solid. Yield: 1.120 g, 99%. ¹H NMR (C₆D₅Br, 393K): δ 2.34 (br s, 4H, NCCH₂), 1.52 (br s, 4H, CH₂). ¹³C{¹H} NMR (C₆D₅Br, 393K): δ 147.9 (d of m, ¹J_{CF} = 245 Hz,** *o***-ArCF), 141.2 (d of m, ¹J_{CF} = 260 Hz,** *p***-ArCF), 137.3 (d of m, ¹J_{CF} = 255 Hz,** *m***-ArCF), 114.7 (s, CN), 22.5 (s, NCCH₂), 16.1 (s, CH₂). ¹⁹F NMR (C₆D₅Br, 393K): -132.8 (br s, 12F,** *o***-ArF), -152.5 (br s, 6F,** *p***-ArF), -161.9 (br s, 12F,** *m***-ArF) δ. ¹¹B{¹H} NMR (C₆D₅Br, 393K): δ 10.5 (v br).** *Anal.* **Calcd: C 44.56, H 0.71, N 2.47, Found: C 44.34, H 0.63, N 2.27.**

Typical Catalysis Procedure:

Pressurized Reactions: Each catalytic run was performed in duplicate and the yields reported are the averages between the two runs. In the glove box, a 100 ml glass bomb equipped with a small stirbar and a teflon screw tap was charged with imine (1 mmol), catalyst (0.05 mmol, 5 mol%) and dry toluene (4 ml). The reaction was transferred to the vacuum/H₂ line and was degassed three times with a freeze/pump/thaw cycle. The reaction flask was cooled to -196°C, 1 atm. of H₂ was introduced and the flask then sealed and

warmed to room temperature. The reaction was placed in a preheated oil bath and stirred at 500 rpm; at 120 °C, this gives an H₂ pressure of \sim 5 atm. To take aliquots, the reaction is cooled rapidly in an ice bath, vented to release the H₂ pressure and taken into the glovebox. Reactions were periodically monitored by ¹H NMR until complete. In all cases, the crude mixtures of the completed reactions were pure to the limits of NMR spectroscopy.

Atmospheric Pressure Reactions: Each catalytic run was performed in duplicate and the yields reported are the averages between the two runs. In the glove box, the catalyst (0.05 mmol) was weighed into a 50 ml round bottomed Schlenk flask and slurried in toluene (2 ml). The reaction was attached to a vacuum/ H₂ line and freeze-pump-thaw cycled three times. The slurry was then allowed to equilibrate at the desired temperature under an atmosphere of H₂ with rapid stirring (500 rpm). A solution of substrate (1.0 mmol) in toluene (2 ml) was added via syringe. The reaction was monitored periodically by ¹H NMR until complete. In all cases, the crude mixtures of the completed reactions were pure to the limits of NMR spectroscopy.

Purification of unprotected amines: All volatiles were removed *in vacuo* and the product was purified by trap to trap vacuum distillation or filtration through a small plug of silica (\sim 30 cm) with hexanes/ ethyl acetate (3:1, 200ml) eluent to removed residual catalyst. The B(C₆F₅)₃ protected amines were not purified from residual catalyst.

Previously reported amines were identified by comparison of ¹H NMR spectra to literature values:

E1, E2; HN(*t*Bu)CH₂Ph: Froyen, P.; Juvvik, P. Tetrahedron Lett. 1995, 36, 9555.

E3, E4; HN(SO₂Ph)CH₂Ph: Nyasse, B.; Grehn, L.; Ragnarsson, U.; Maia, H. L. S.; Monteiro, L. S.; Leito, I.; Koppel, I.; Koppel, J. J. Chem. Soc. Perkin Trans. 1, 1995, 2025.
E5; HN(CHPh₂)CH₂Ph: Mehrotra, K. N.; Giri, B. P. Synthesis 1977, 470.

E6; HN(CH₂Ph)₂: Chandrasekhar, S.; Reddy, M. V.; Chandraiah, L. Synth. Comm. 1999, 29, 3981.

E7, E9; (C₆F₅)₃B-NH(CH₂Ph)₂, (C₆F₅)₃B-NH₂CH₂Ph: Mountford, A. J.; Lancaster, S. J.;
Coles, S. J.; Horton, P. N.; Hughes, D. L.; Hursthouse, M. B.; Light, M. E. *Inorg. Chem.*2005, 44, 5921.

E11; HN(Ph)C(Ph)CH₂Ph: Bytschkov, I.; Doye, S. Eur. J. Org. Chem. 2001, 4411.

Characterization data for new amines:

E8; $(C_6F_5)_3$ B-NH₂Et: ¹**H** NMR (CD₂Cl₂): δ 4.91 (br s, 2H, N*H*), 2.76 (m, 2H, NC*H*₂), 1.36 (t, ³*J*_{HH} = 7.3 Hz, 3H C*H*₃). ¹³C{¹H} NMR (CD₂Cl₂, partial): δ 41.2 (s, *C*H₂), 15.6 (s, *C*H₃). ¹⁹F NMR (CD₂Cl₂): δ -133.1 (d, 6F, ³*J*_{FF} = 23 Hz, *o*-Ar*F*), -154.9 (t, ³*J*_{FF} = 23 Hz, 3F, *p*-Ar*F*), -161.5 (m, 6F, *m*-Ar*F*). ¹¹B{¹H} NMR (CD₂Cl₂): δ -7.4 (br s).

E10; $(C_6F_5)_3BNH_2(CH_2)_6NH_2B(C_6F_5)_3$: ¹**H NMR** (CD_2Cl_2) : δ 4.94 (br, 4H, NH₂), 2.66 (br, 4H, NCH₂), 1.63 (br, 4H, CH₂), 1.30 (br, 4H, CH₂). ¹³C{¹H} **NMR** (CD_2Cl_2) : δ 148.5 (d of m, *o*-C₆F₅), 141.1 (d of m, *p*-C₆F₅), 137.9 (d of m, *m*-C₆F₅), 45.6 (s, NCH₂), 30.3 (s, CH₂), 26.4 (s, CH₂). ¹⁹**F NMR** (CD_2Cl_2) : δ -133.1 (m, 12F, *o*-C₆F₅), -154.5 (overlapping t, 6F, *p*-C₆F₅), -161.4 (m, 12F, *m*-C₆F₅), ¹¹B{¹H} **NMR** (CD_2Cl_2) : δ -6.4 (br s).

In situ reactions between **2** and *t*BuN=CPh(H): In the glovebox, $(tBu_2PH)(C_6F_4)BH(C_6F_5)_2$ (**2**) (21 mg, 33 µmol) was weighted into a J-Young NMR tube. A solution of *t*BuN=CPh(H) (5 mg, 31 µmol) in C₆D₅Br (0.5 ml) was added and the solution turned yellow. The tube was attached to a H₂/vacuum line and freeze/pump/thaw cycled three times. The reaction was cooled to -198°C and 1 atm. of H₂ was introduced. The reaction was allowed to warm to room temperature then was heated to 110°C for 1 hour during which time the colour discharged. ¹H NMR (C₆D₅Br): δ 7.09 (br s, 5H, Ar*H*), 4.00 (br s, 2H, NH₂), 3.75, (br m, 1H, B*H*). 3.66 (s, 2H, CH₂Ph), 1.12 (d, 9H ³*J*_{PH} = 13.7 Hz, PCCH₃), 1.05 (s, 9H, NCCH₃). ¹⁹F NMR (C₆D₅Br): δ -124.6 (s, 1F, Ar*F* linker), -131.5 (d, 1F, ³*J*_{FP} = 96 Hz, Ar*F* linker), -132.7 (m, 2F, Ar*F* linker), -133.5 (d, 4F, ³*J*_{FF} = 23 Hz, *o*-C₆F₅) -162.4 (t, 2F, ³*J*_{FF} = 23 Hz, *p*-C₆F₅), -165.9 (m, 4F, *m*-C₆F₅). ³¹P NMR (C₆D₅Br): δ 20.4 (d of m, ³*J*_{PF} = 93 Hz). ¹¹B NMR (C₆D₅Br): δ -24.3 (d, ¹*J*_{BH} = 73 Hz).