SUPPORTING INFORMATION

<u>Title:</u> Aminoalkylbis(phosphonates): Their Complexation Properties in Solution and in the Solid State

Author(s): Vojtěch Kubíček,* Jan Kotek, Petr Hermann, Ivan Lukeš

Ref. No.: I200600615

Synthesis Discussion

Scheme S1. Syntheses of the ligands. i) 1) H₃PO₃, PCl₃, MeSO₃H, 65 °C; 2) water, reflux; ii) 160 °C; iii) H₂, Pd/C, EtOH, reflux; iv) 6 M HCl, reflux; v) CH₃C(O)Cl, acetonitrile, Na₂CO₃, –40 °C; vi) 30 % HBr/AcOH, RT; vii) 150 °C; viii) MeOH, CH₂O, NHEt₂, reflux; ix) p-toluenesulfonic acid, toluene, reflux; x) MeNO₂, NaH, THF, RT; xi) H₂, Pd/C, EtOH, reflux; xii) 6 M HCl, reflux

Ligands H₄pam (ref.^[1]), H₄ale (ref.^[1]), H₄meth (ref.^[2]) and H₄prop (ref.^[3]) were prepared by modification of reported procedures. Hydroxy-bis(phosphonates) H₄pam and H₄ale can be prepared in one step from commercially available aminocarboxylic acids (Scheme S1). The low yields of these reactions (25 % and 56 %, not optimized) are fully compensated by a simple isolation of the pure products. Syntheses of other ligands require multi-step procedures (Scheme S1).

Formation of aminomethyl-bis(phosphonate) fragment occurs in one step by reaction of triethylorthoformate, dibenzylamine and diethylphosphite. The low yield and a presence of many by-products make chromatografic purification of the dibenzyl derivative 1 complicated. Debenzylation with H₂/Pd/C followed by hydrolysis of ester groups in azeotropic hydrochloric acid yields ligand H₄meth almost quantitatively. Tetraethyl aminomethyl-bis(phosphonate) 2 was converted quantitatively into compound 3 by means of a substitution reaction with an excess of acetylchloride. After deesterification in a solution of HBr in dry AcOH, ligand H₄aca was crystallized from water by diffusion of organic solvent as an adduct with THF. Arbuzov reaction of dibromomethane with triethylphosphite results in tetraethyl methylenebis(phosphonate) 4 in a high yield. The two-step preparation of vinylidene-bis(phosphonate) 6 can be performed without isolation of the methoxy intermediate 5 in a high yield. Further addition of nitromethane anion to the

¹ G. R. Kieczykowski, D. F. Jobson, D. G. Melillo, D. F. Reinhold, V. J. Grenda, I. Shinkai, *J. Org. Chem.* **1995**, *60*, 8310–8312.

² D. Kantoci, J. K. Denike, W. J. Wechter, Synth. Commun., **1996**, 26, 2037–2043.

³ W. Winckler, T. Pieper, B. K. Keppler, *Phosphorus Sulfur Silicon Rel. Elem.* **1996**, *112*, 137–141.

vinylidene-bis(phosphonate) **6** gives nitroderivative **7**. As compound **7** can react with another molecule of vinylidene-bis(phosphonate) **6**, double-substituted product (observed also in the original paper^[3]) is present in the reaction mixture. This can be easily removed by a column chromatography. During reduction of the nitro group, compound **8** undergoes a slow decomposition and several by-products were formed. Therefore, a careful control of the reaction time by ³¹P NMR is necessary to assure a high yield of the synthesis. The final hydrolysis of ester groups proceeds quantitatively and ligand H₄prop was obtained in a high yield.

Experimental Section

ω-Aminoalkyl-1-hydroxy-1,1-bis(phosphonic acid) (H₄pam and H₄ale) – General Procedure^[1] Appropriate ω-aminocarboxylic acid (85.4 mmol) and H₃PO₃ (7.0 g, 85.4 mmol) were dissolved in methanesulfonic acid (33 mL) and heated at 65 °C. PCl₃ (24.7 g, 180 mmol) was added dropwise with vigorous stirring and the mixture was heated at 65 °C overnight. The resulting solution was poured into water (150 mL) and the mixture was refluxed for 8 h. After cooling at RT, EtOH (350 mL) was added. After 12 h, the crystals were collected by filtration, washed with water, EtOH and dried *in vacuo* at 80 °C.

3-Aminopropyl-1-hydroxy-1,1-bis(phosphonic acid) (H₄pam)

Yield 5.0 g (25 %). Anal. Calcd. for $C_3H_{11}NO_7P_2$: C, 15.33; H, 4.72; N, 5.96. Found: C, 15.36; H, 4.90; N, 6.00. ¹H NMR (D₂O/NaOD): δ = 1.82 (m, 2H, CH₂–CH₂–C), 2.70 (t, 2H, –CH₂–NH₂, ³J_{HH} = 8.0 Hz) ppm. ³¹P NMR (D₂O/NaOD): δ = 21.7 (t, ³J_{HP} = 32.0 Hz) ppm. ESI/MS: calculated 258.1, observed 257.9 (M+Na⁺).

4-Aminobutyl-1-hydroxy-1,1-bis(phosphonic acid) (H₄ale)

Yield 12.1 g (56 %). Anal. Calcd. for C₄H₁₃NO₇P₂: C, 19.29; H, 5.26; N, 5.62. Found: C, 19.55; H, 5.05; N, 5.48. ¹H NMR (D₂O/NaOD): δ = 1.6–1.9 (m, 4H, CH₂–CH₂–CH₂–C), 2.52 (t, 2H, –`CH₂–NH₂, ³J_{HH} = 6.8 Hz) ppm. ³¹P NMR (D₂O/NaOD): δ = 21.9 (t, ³J_{HP} = 32.0 Hz) ppm. ESI/MS: calculated 272.1, observed 272.0 (M+Na⁺).

Tetraethyl (N,N-dibenzyl)aminomethyl-bis(phosphonate) (1)[2]

Triethyl orthoformate (10.6 g, 71 mmol), diethyl phosphite (25.6 g, 186 mmol) and dibenzylamine (11.8 g, 59.9 mmol) were mixed in a 100 mL three-necked round bottom flask. The solution was refluxed under argon atmosphere (150 °C in an oil bath). After 5 h, the cooler was removed and the solution was heated for 24 h at 160 °C under argon flux to remove the ethanol. After cooling to RT, CHCl₃ (300 mL) was added and the solution was washed with 3×60 mL of 5 % aq. NaOH and 2×75 mL of brine. The organic phase was dried with anhydrous Na₂SO₄ and the solvent was removed by rotary evaporation. The resulting oil was purified by column chromatography on silica gel (6x20 cm) (hexane:EtOH, from 100:0 to 0:100). Yield 12.4 g (43 %) of viscous, colourless oil. R_f (hexane:EtOAc, 1:1) = 0.2–0.3. ¹H NMR (CDCl₃): δ = 1.32 (td, 12H, – CH_3 , $^3J_{HH}$ = 7.2 Hz, $^4J_{PH}$ = 2.0 Hz), 3.55 (t, 1H, P–CH-P, $^2J_{PH}$ = 25.2 Hz), 4.07 (m, 4H, N– CH_2 -Ph), 4.15 (m,

8H, O–C H_2 –), 7.20–7.45 (m, 10H, Ar–H) ppm. ³¹P NMR (CDCl₃): δ = 20.7 (d, ² J_{HP} = 25.2 Hz) ppm. ESI/MS: calculated 506.5, observed 506.7 (M+Na⁺).

Tetraethyl aminomethyl-bis(phosphonate) (2)[2]

A 250 mL three-necked round bottom flask was flushed with argon, charged with 10 % Pd/C (0.8 g) and then a solution of **1** (4.0 g, 8.3 mmol) in anhydrous EtOH (150 mL) was added. The mixture was vigorously stirred at 70 °C under hydrogen atmosphere for 24 h. After filtration of the solids and evaporation of volatiles, the product was obtained as colourless oil. Yield 2.4 g (96 %). ¹H NMR (CDCl₃): δ = 1.36 (t, 12H, –C H_3 , ³ J_{HH} = 6.8 Hz), 3.43 (t, 1H, P–CH–P, ² J_{PH} = 20.4 Hz), 4.23 (m, 8H, O–C H_2 –) ppm. ³¹P NMR (CDCl₃): δ = 20.8 (d, ² J_{HP} = 20.4 Hz) ppm. ESI/MS: calculated 326.2, observed 326.2 (M+Na⁺).

Aminomethyl-bis(phosphonic acid) (H₄meth)^[2]

A solution of **2** (3.0 g, 9.9 mmol) in 6 M HCl (50 mL) was refluxed overnight. After cooling to room temperature, the precipitate formed was collected by filtration, washed with water, EtOH and dried *in vacuo* at 60 °C. Yield 1.8 g (95 %). Anal. Calcd. for CH₇NO₆P₂: C, 6.29; H, 3.69; N, 7.33. Found: C, 6.11; H, 3.73; N, 7.39. ¹H NMR (D₂O/NaOD): $\delta = 2.68$ (t, ${}^2J_{PH} = 17.5$ Hz) ppm. ³¹P NMR (D₂O/NaOD): $\delta = 16.9$ (d, ${}^2J_{HP} = 17.5$ Hz) ppm. ESI/MS: calculated 214.0, observed 213.8 (M+Na⁺).

Tetraethyl acetamidomethyl-bis(phosphonate) (3)

A solution of **2** (4.0 g, 13.2 mmol) in dry acetonitrile (50 mL) was added dropwise into a solution of acetylchloride (3.0 g, 38.2 mmol) with suspended Na₂CO₃ (5.2 g, 49 mmol) in dry acetonitrile (50 mL) at – 40 °C. After the addition was finished, the mixture was allowed to warm slowly to room temperature and stirred overnight. After treatment with charcoal and filtration, the excess of acetylchloride was removed by repeated vacuum evaporation with toluene. The product was obtained as colourless oil in yield of 4.4 g (97 %). Anal. Calcd. for C₇H₁₇NO₈P₂: C, 29.28; H, 5.27; N, 4.88. Found: C, 29.42; H, 5.41; N, 4.25. ¹H NMR (CDCl₃): δ = 1.34 (m, 12H, CH₂–CH₃), 2.08 (s, 3H, CH₃–CO), 4.19 (m, 8H, O–CH₂–), 5.06 (td, 1H, P–CH–P, $^2J_{PH}$ = 21.4 Hz, $^3J_{HH}$ = 10.4 Hz), 6.75 (bs, 1H, –N*H*) ppm. ³¹P NMR (CDCl₃): δ = 17.0 (d, $^2J_{HP}$ = 21.4 Hz) ppm. ESI/MS: calculated 368.3, observed 368.3 (M+Na⁺).

Acetamidomethyl-bis(phosphonic acid) (H₄aca)

4.35. ¹H NMR (D₂O/NaOD): δ = 1.94 (s, 3H, CH₃–CO), 4.46 (t, 1H, P–CH–P, ² J_{PH} = 21.3 Hz) ppm. ³¹P NMR (D₂O/NaOD): δ = 17.0 (d, ² J_{HP} = 21.3 Hz) ppm. ESI/MS: calculated 256.0, observed 255.8 (M+Na⁺).

Tetraethyl methylene-bis(phosphonate) (4)

250 mL three-necked flask equipped with thermostatted condenser was flushed with argon and charged with dibromomethane (100 g, 0.53 mol) and triethylphosphite (400 g, 2.41 mol). Resulting mixture was heated at 150 °C for 5 days under gentle stream of argon, while water in the cooler was maintained at 45 °C to allow a removal of ethylbromide. Vacuum distillation afforded product as colourless oil (b.p. 96–100 °C/0.1 mbar). Yield 130.4 g (85 %). ¹H NMR (CDCl₃): δ = 1.36 (t, 12H, –C H_3 , ³ J_{HH} = 7.2 Hz), 2.45 (t, 2H, P–C H_2 –P, ² J_{PH} = 20.8 Hz), 4.19 (m, 8H, O–C H_2 –) ppm. ³¹P NMR (CDCl₃): δ = 19.8 (m) ppm. ESI/MS: calculated 311.2, observed 311.0 (M+Na⁺).

Tetraethyl vinylidene-1,1-bis(phosphonate) (6)[3]

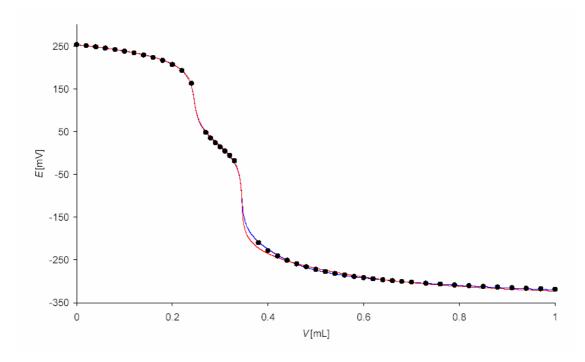
In 1000 mL round-bottom flask, the compound **4** (23.5 g, 81 mmol) was mixed with paraformaldehyde (12.5 g, 0.42 mol), diethylamine (6 g, 82 mmol) and dissolved in 235 mL of MeOH. Mixture was refluxed overnight and the volatiles were removed by rotary evaporation and traces of MeOH were removed by codistillation with toluene. Resulting methoxy intermediate **5** was dissolved in toluene (200 mL) and *p*-toluenesulfonic acid monohydrate (0.5 g, 2.6 mmol) was added. Solution was refluxed overnight and volatiles were removed by rotary evaporation. Vacuum distillation yielded product as colourless oil (b.p. 80–83 °C/0.05 mbar). Yield 20.6 g (94 %). ¹H NMR (CDCl₃): δ = 1.18 (t, 12H, –CH₃, ³J_{HH} = 7.2 Hz), 3.98 (m, 8H, O–CH₂–), 6.82 (m, 2H, C=CH₂) ppm. ³¹P NMR (CDCl₃): δ = 11.3 (m) ppm. ESI/MS: calculated 323.2, observed 323.4 (M+Na⁺).

Tetraethyl 3-nitropropyl-1,1-bis(phosphonate) (7)[3]

100 mL three-necked flask was flushed with argon and charged with NaH (54 mg, 2.3 mmol) and dry tetrahydrofurane (20 mL). Nitromethane (21.6 g, 0.35 mol) was added dropwise to the stirred suspension. After 1 h, the compound **6** (3.0 g, 10.0 mmol) was added in one portion and the mixture was stirred for 3 days at RT. After evaporation of volatiles, the resulting oil was purified by column chromatography on silica gel (EtOAc:EtOH, 3:1). Yield 3.0 g (83 %) of viscous colourless oil. R_f (EtOAc:EtOH, 3:1) = 0.8–0.9. ¹H NMR (CDCl₃): δ = 1.36 (td, 12H, –C H_3 , ³ J_{HH} = 7.2 Hz, ⁴ J_{PH} = 1.2 Hz), 2.4–2.7 (m, 3H, C H_2 –CH–), 4.21 (m, 8H, O–C H_2 –), 4.72 (t, 2H, –C H_2 –NO₂, ³ J_{HH} = 6.8 Hz) ppm. ³¹P NMR (CDCl₃): δ = 19.0 (m) ppm. ESI/MS: calculated 384.3, observed 384.0 (M+Na⁺).

Tetraethyl 3-aminopropyl-1,1-bis(phosphonate) (8)[3]

A 250 mL two-necked round bottom flask was flushed with argon, charged with 10 % Pd/C (0.6~g) and then a solution of 7 (6.0~g, 16.6 mmol) in anhydrous EtOH (150~mL) was added. The mixture was vigorously stirred at 70 °C under hydrogen atmosphere for 24 h. After filtration of the solids and evaporation of volatiles, the resulting oil was purified by column chromatography on silica gel ($NEt_3:MeOH:H_2O$, from


0:100:100 to 4:100:100). Yield 3.4 g (62 %) of viscous, colourless oil. R_f (NEt₃:MeOH:H₂O, 2:100:100) = 0.3–0.4. ¹H NMR (CDCl₃): δ = 1.28 (t, 12H, –C H_3 , $^3J_{HH}$ = 7.2 Hz), 2.02 (m, 2H, CH₂–C H_2 –CH), 2.52 (tt, 1H, P–CH–P, $^3J_{HH}$ = 6.4 Hz, $^2J_{PH}$ = 24.0 Hz), 2.85 (bs, 2H, –N H_2), 2.91 (t, 2H, –C H_2 –NH₂, $^3J_{HH}$ = 7.2 Hz), 4.12 (m, 8H, O–C H_2) ppm. ³¹P NMR (CDCl₃): δ = 21.9 (m) ppm. ESI/MS: calculated 354.3, observed 354.1 (M+Na⁺).

3-Aminopropyl-1,1-bis(phosphonic acid) (H₄prop)

A solution of **8** (3.0 g, 9.1 mmol) in 6 M HCl (100 mL) was refluxed overnight. After cooling to room temperature, volatiles were removed by rotary evaporation and the resulting oil was dissolved in water (10 mL). After 12 h, the precipitate was filtered, washed with water, EtOH and dried *in vacuo* at 80 °C. Yield 1.8 g (93 %). Anal. Calcd. for C₃H₁₁NO₆P₂: C, 16.45; H, 5.06; N, 6.39. Found: C, 16.60; H, 5.03; N, 6.22. ¹H NMR (D₂O/NaOD): δ = 1.45 (tt, 1H, P–C*H*–P, ³*J*_{HH} = 6.0 Hz, ²*J*_{PH} = 22.0 Hz), 1.75 (m, 2H, CH₂–C*H*₂–CH), 2.65 (t, 2H, –C*H*₂–NH₂, ³*J*_{HH} = 7.6 Hz) ppm. ³¹P NMR (D₂O/NaOD): δ = 23.9 (m) ppm. ESI/MS: calculated 242.1, observed 242.0 (M+Na⁺).

Figure S1

Fitting of the experimental data of the Na(I):H₄prop system. Experimental points (dots), fit including hydroxospecies (blue; the sum of squares of residuals was 5614), fit without hydroxospecies (red; the sum of squares of residuals was 41136).

Table S1pH ranges skipped during titration due to the precipitate formation

metal ion	L:M ratio	H ₄ pam	H ₄ ale	H ₄ meth	H ₄ aca	H ₄ prop
Cu(II)	1:1	2.8-5.9	2.8-5.8	а	5.2-9.8	3.8-10.3
	2:1	3.7-6.3	3.7-6.3	а	5.6-10.4	6.9-10.3
	1:2	2.8-9.8	2.8-9.8	а	2.9-10.0	3.5-10.6
Zn(II)	1:1	3.4-9.5	3.4-9.5	2.4-10.8	2.9-10.7	3.2-10.1
	2:1	3.2-10.0	3.2-10.0	2.6-9.1	3.0-10.6	3.0-10.3
	1:2	2.8-10.9	2.8-10.9	а	3.4-11.5	3.2^{b}
Ca(II)	1:1	а	3.8-10.8	а	а	6.1-11.2
	2:1	а	3.3-10.5	а	а	6.5-10.9
	1:2	а	3.3-11.8	а	а	5.8 ^b
Mg(II)	1:1	5.8-10.9	5.8-10.9	3.3-10.5	3.0-10.9	7.6-10.7
	2:1	6.8-10.2	6.8-10.2	3.2-8.4	3.1-10.4	7.1-9.9
	1:2	5.6-11.4	5.6-11.4	а	3.3-10.6	6.8^{b}

^a System was not studied due to an excessive precipitate formation.

^b System was studied only in acidic region as a precipitate does not dissolve at alkaline solution.

Table S2 Comparison of the determined dissociation constants pK_a with those reported in literature.

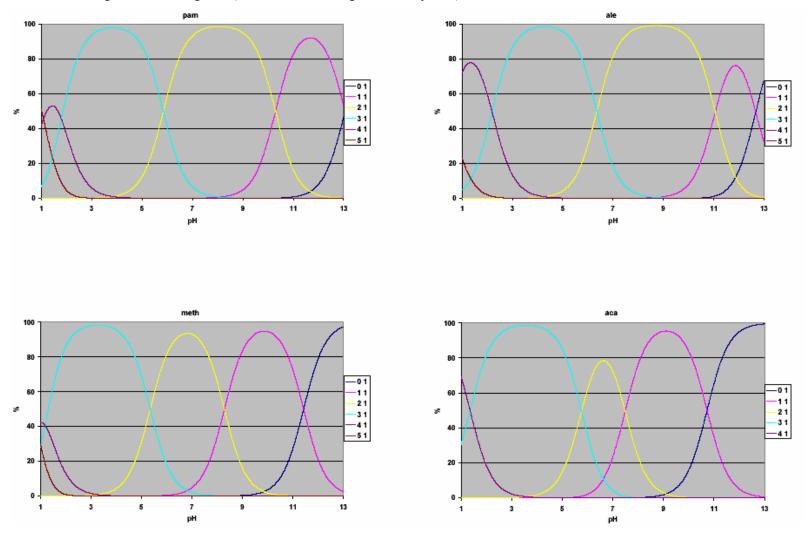
Species	H ₄ pam			H ₄ ale				H ₄ meth			
Бросто	a	ref. 4 ^b	ref. 5 ^f	a	ref. 4 ^b	ref. 6 ^d	ref. 7 ^e	a	ref. 8 ^b	ref. 9 ^c	ref. 10 ^e
HL ³⁻	13.06	10.8	>12	12.68	11.6	~12	12.04	11.43	10.42	11.72	11.03
H_2L^{2-}	10.30	9.9	9.36	11.07	10.5	10.79	10.77	8.29	8.06	8.42	8.85
H_3L^-	5.85	5.83	5.72	6.36	8.73	6.36	6.21	5.35	5.59	5.42	5.18
H_4L	1.80	2.55	1.8	2.19	2.72	2.38	2.16	1.18	1.7	1.4	1.5
H_5L^+	<1.2			<1.2		~1	~1	<1.2			<1.0

^a This work; ^b 0.1M KCl; ^c 0.1 M NMe₄NO₃; ^d 0.1 M KNO₃; ^e 0.2 M KCl; ^f 1.0 M KNO₃

⁴ M. I. Kabashnik, T. J. Medved, N. M. Djatlova, J. M. Polikarpov, B. K. Sherbakov, F. I. Belskij, *Izv. Akad. Nauk., Ser. Khim.* **1978**, 433–437.

⁵ S. V. Mamveev, F. I. Beljskii, A. G. Mamveeva, A. Yu. Gukasova, Yu. M. Polikarpov, M. Kabachnik, *Izv. Akad. Nauk.*, *Ser. Khim.* **1998**, 1784–1787.

⁶ M. Dyba, H. Kozlowski, A. Tlalka, Y. Leroux, D. E. Manouni, *Pol. J. Chem.* **1998**, *72*, 1148–1153.


⁷ M. Dyba, M. Jezowska-Bojczuk, E. Kiss, T. Kiss, H. Kozlowski, Y. Leroux, D. E. Manouni, *J. Chem. Soc., Dalton Trans.* **1996**, 1119–1123.

⁸ M. N. Rusina, T. M. Baleshova, B. V. Valeshov, A. J. Shitrina, I. A. Poljakova, *Zh. Obsch. Khim.* **1977**, *47*, 1721–1726.

⁹ J. E. Bollinger, D. M. Roundhill, *Inorg. Chem.* **1994**, *33*, 6421–6424.

¹⁰ B. Boduszek, M. Dyba, M. Jezowska-Bojczuk, T. Kiss, H. Kozlowski, J. Chem. Soc., Dalton Trans. 1997, 973–976.

Figure S2Distribution diagrams of free ligands (abundance of the ligand on the y axis)

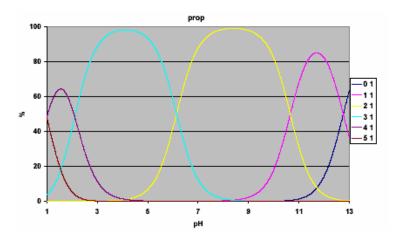
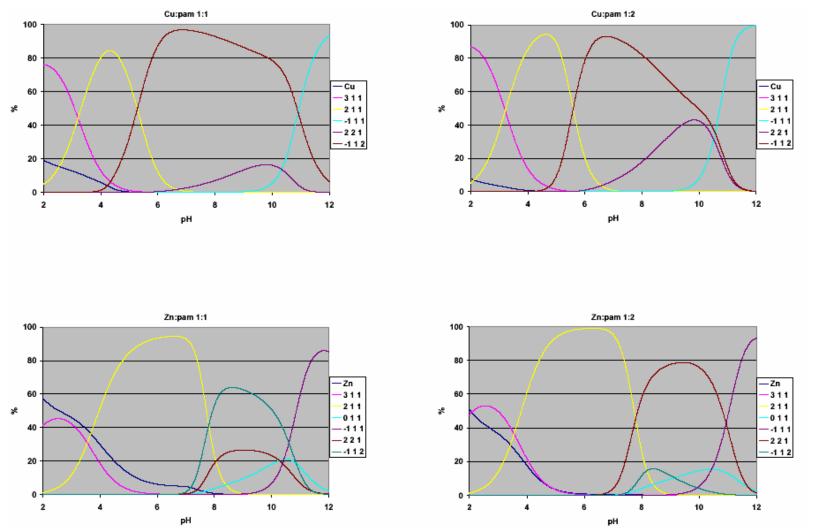
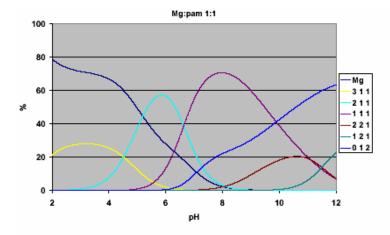
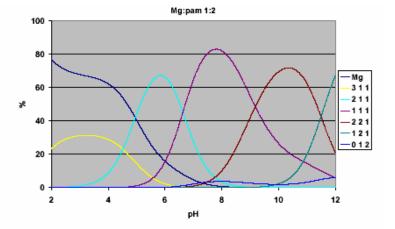
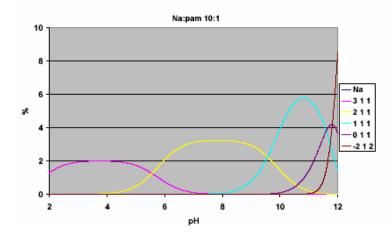
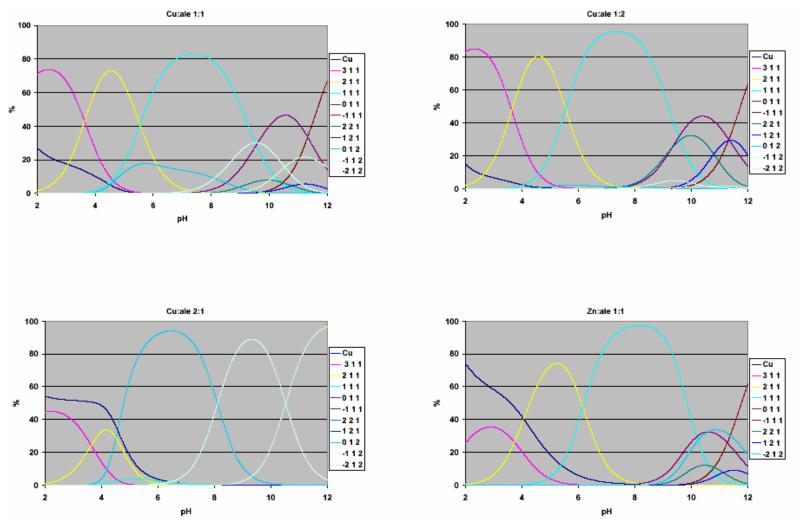
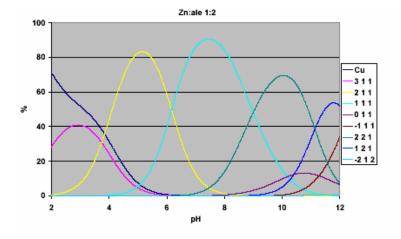
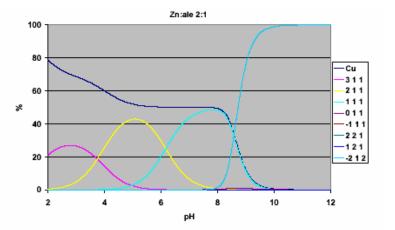
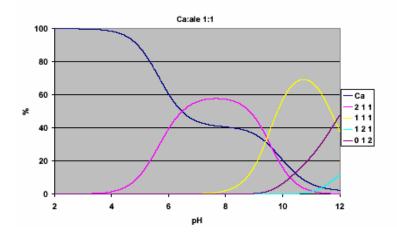
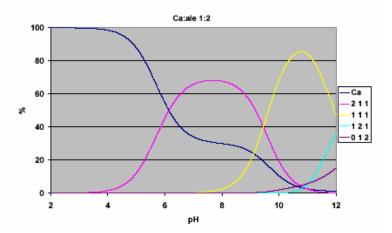





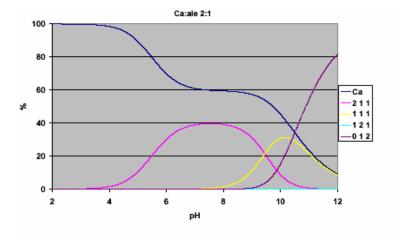
Figure S3

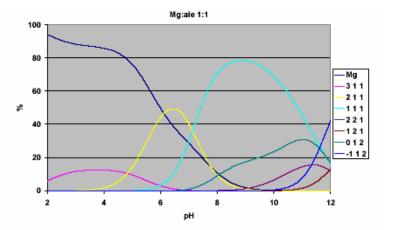
Distribution diagrams of metal:H₄pam systems (abundance of the metal ions on the y axis, for pH region with precipitates see Table S1)

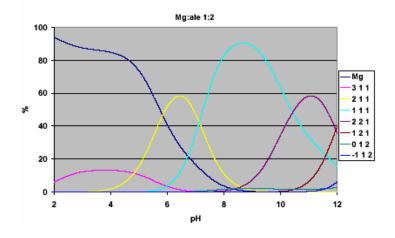





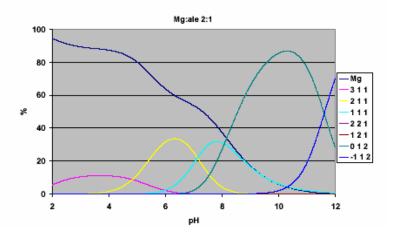

Figure S4


Distribution diagrams of metal: H₄ale systems (abundance of the metal ions on the y axis, for pH region with precipitates see Table S1)









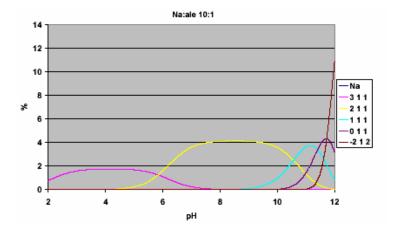
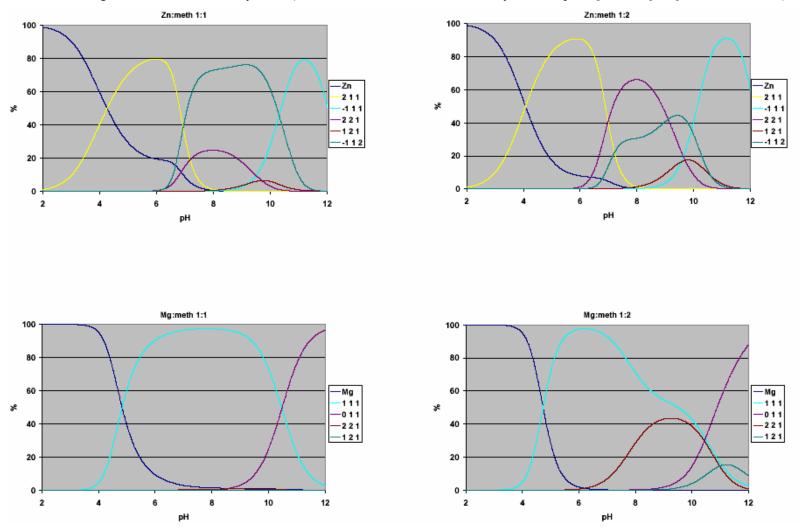
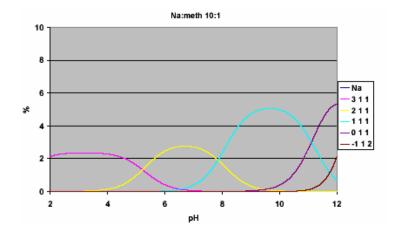
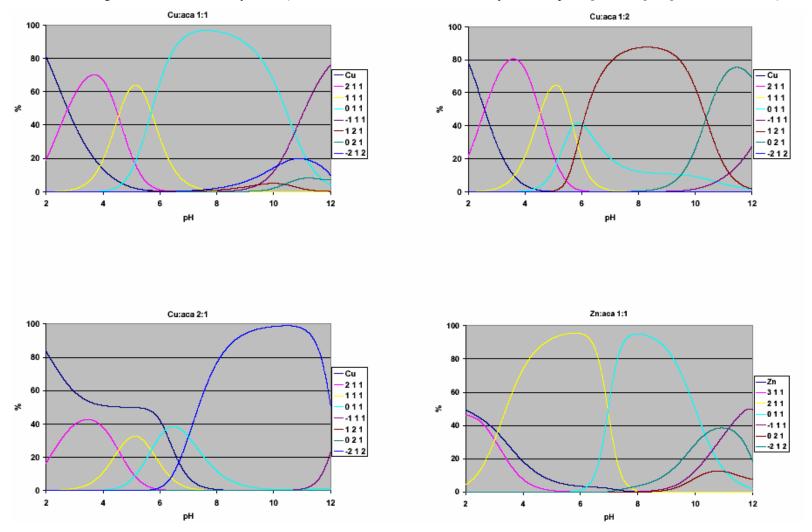
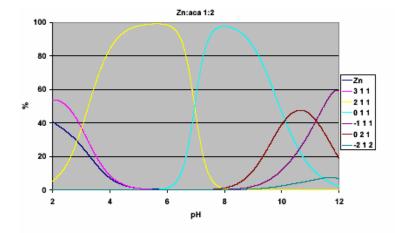
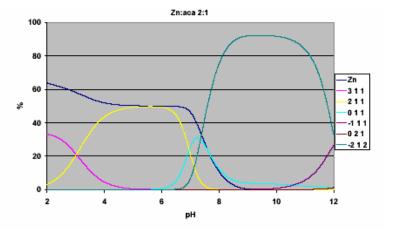
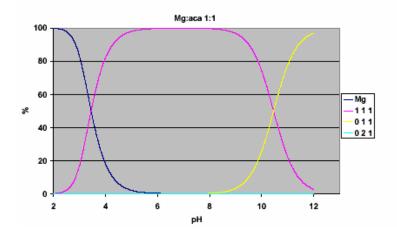
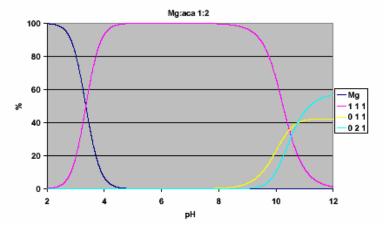



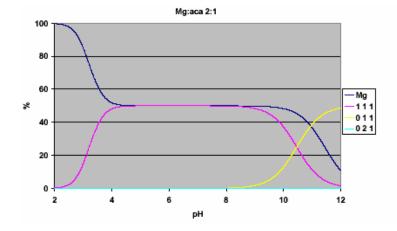
Figure S5

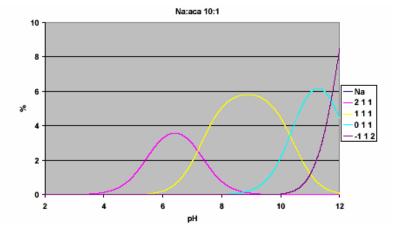
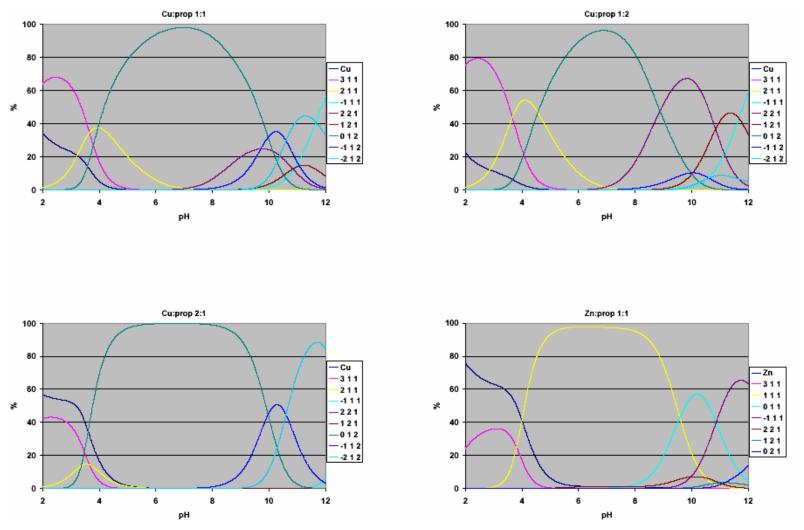
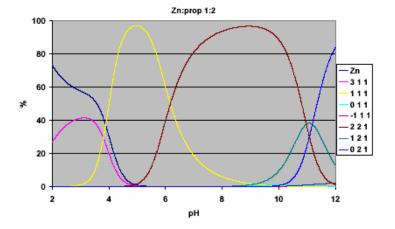
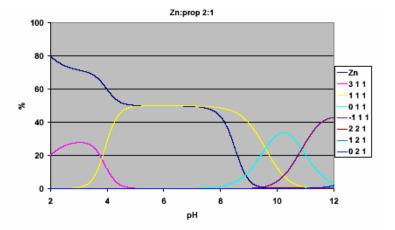
Distribution diagrams of metal:H₄meth systems (abundance of the metal ions on the y axis, for pH region with precipitates see Table S1)

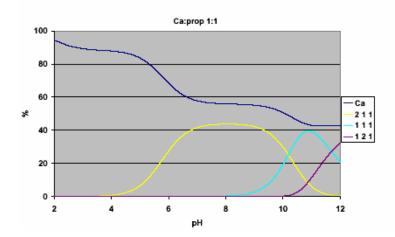





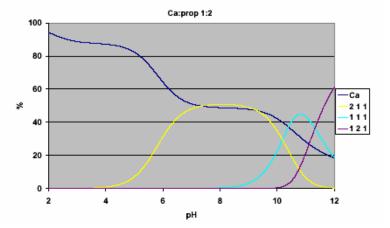

Figure S6

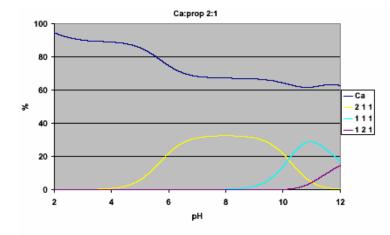

Distribution diagrams of metal: H₄aca systems (abundance of the metal ions on the y axis, for pH region with precipitates see Table S1)

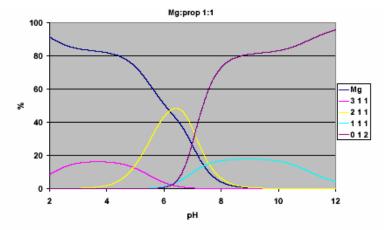


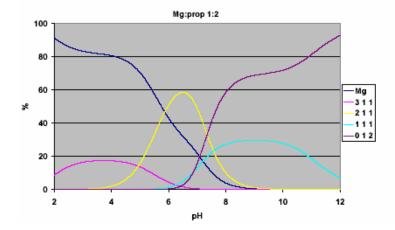





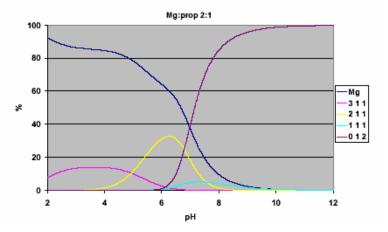

Figure S7


Distribution diagrams of metal:H₄prop systems (abundance of the metal ions on the y axis, for pH region with precipitates see Table S1)









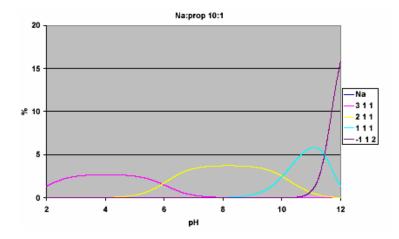


Table S3 Hydrogen bonds in the structure of H₄aca·THF with H··A < r(A) + 2.000 Å and <DHA $> 110^{\circ}$

D–H	d(D-H)	d(H··A)	<dha< th=""><th><i>d</i>(D··A)</th><th>A</th></dha<>	<i>d</i> (D··A)	A
N1-H11N	0.811	2.102	173	2.910	O13 [x-1, y, z]
O11–H11O	0.994	1.463	174	2.455	O23 [x+1, y, z]
O12–H12O	0.932	1.660	177	2.591	O13 [-x, -y+1, -z+2]
O21–H21O	0.998	1.500	171	2.490	O1A [-x, -y, -z+2]
O22–H22O	0.892	1.645	164	2.514	O1S

Table S4 Hydrogen bonds in the structure of (NH₄)(H₃prop)·H₂O with H··A < r(A) + 2.000 Å and <DHA > 110°

D–H	d(D–H)	d(H··A)	<dha< th=""><th><i>d</i>(D··A)</th><th>A</th></dha<>	<i>d</i> (D··A)	A
O11–H11O	0.932	1.644	171	2.569	O12 [-x+1/2, y-1/2, -z+1/2]
O21–H21O	0.753	1.958	166	2.693	O1W
N4-H41	0.926	2.027	171	2.946	O23 [x-1/2, y-1/2, z]
N4-H42	0.942	1.801	167	2.727	O22 [-x+1/2, -y-1/2, -z]
N4-H43	0.923	1.932	155	2.798	O12 [x, y-1, z]
N1A-H1A1	0.900	2.064	153	2.894	O13 [x+1/2, y+1/2, z]
N1A-H1A2	0.899	1.996	168	2.881	O23
N2A-H2A1	0.893	1.875	165	2.747	O13
N2A-H2A2	0.914	1.932	164	2.822	O23 [-x+1/2, y+1/2, -z+1/2]
O1W-H1W1	0.815	2.023	170	2.830	O22 [x, y+1, z]
O1W-H1W2	0.802	2.027	178	2.828	O13 [x+1/2, y+1/2, z]

Table S5 Hydrogen bonds in the structure of $(NH_4)_3Hmeth \cdot H_2O$ with $H \cdot A < r(A) + 2.000$ Å and $<DHA > 110^\circ$

D–H	d(D-H)	d(H··A)	<dha< th=""><th><i>d</i>(D··A)</th><th>A</th></dha<>	<i>d</i> (D··A)	A
N1-H1N1	0.842	2.161	150	2.922	O1W [-x+1/2, y-1/2, z-1/2]
N1-H1N1	0.842	2.621	112	3.036	O12
N1-H1N2	0.934	1.772	174	2.702	O21 [-x, -y, z+1/2]
N1-H1N3	0.886	1.962	157	2.801	O23 [-x, -y, z-1/2]

O1W-H1W1	0.847	2.065	167	2.895	O12
O1W-H1W2	0.870	1.910	170	2.771	O13 [x, y, z+1]
N1A-H1A1	0.847	2.045	164	2.868	O13 [x, y, z+1]
N1A-H1A2	0.897	1.841	170	2.729	011
N1A-H1A3	0.827	2.041	177	2.867	O22 [-x, -y+1, z+1/2]
N1A-H1A4	0.955	1.863	176	2.817	O12 [-x+1/2, y+1/2, z+1/2]
N2A-N2A1	0.862	1.898	177	2.760	O13 [x, y, z+1]
N2A-N2A2	0.873	1.968	168	2.829	O12
N2A-N2A3	0.849	1.980	172	2.824	O11 [-x+1/2, y-1/2, z+1/2]
N2A-N2A4	0.933	1.787	160	2.683	O23 [-x, -y, z+1/2]
N3A-H3A1	0.803	1.993	177	2.795	O22 [-x, -y+1, z-1/2]
N3A-H3A2	0.836	2.194	153	2.963	O1W [-x+1/2, y+1/2, z-1/2]
N3A-H3A3	0.922	1.957	149	2.789	O22
N3A-H3A3	0.922	2.462	119	3.014	011
N3A-H3A4	0.875	1.836	167	2.697	O21 [-x, -y+1, z+1/2]

Table S6 Hydrogen bonds in the structure of $\{[Cu_2(H_2pam)_2]\cdot H_2O\}_n$ with $H\cdot\cdot A < r(A) + 2.000$ Å and $<DHA > 110^\circ$

D–H	d(D-H)	d(H··A)	<dha< th=""><th><i>d</i>(D··A)</th><th>A</th></dha<>	<i>d</i> (D··A)	A
O12-H12O	1.036	1.387	178	2.423	O22 [-x+2, y+1/2, -z+1/2]
O1C-H1C	0.863	1.856	169	2.708	O11 [x+1, y, z]
N4-H41	0.777	2.082	149	2.777	O1W
N4-H42	0.895	2.196	160	3.052	O1C [-x+2, -y+1, -z]
N4-H43	0.856	2.070	162	2.897	O21 [x, -y+1/2, z-1/2]
O1W-H1W1	0.814	2.248	139	2.912	O13 [-x+2, y-1/2, -z+1/2]
O1W-H1W2	0.769	2.094	170	2.855	O22 [x-1, y, z]