Eur. J. Inorg. Chem. 2008•© WILEY-VCH Verlag GmbH \& Co. KGaA, 69451 Weinheim, $2008 \cdot$ ISSN 1434-1948

SUPPORTING INFORMATION

Title: Magnetic Coupling and Anisotropy in a Series of Mixed Chain Charge-Transfer Salts $\left[\mathrm{M}\left(\mathrm{Cp}^{*}\right)_{2}\right]\left[\mathrm{M}^{\prime}(\mathrm{tds})_{2}\right]$ (M $=\mathrm{Fe}, \mathrm{Mn}, \mathrm{Cr} ; \mathrm{M}^{\prime}=\mathrm{Ni}, \mathrm{Pt}$)
Author(s): Sandra Rabaça, Bruno J. C. Vieira, Rui Meira, Isabel C. Santos, Laura C. J. Pereira, M. Teresa Duarte, Vasco da Gama*
Ref. No.: I200800380

The MM^{\prime} intrachain distances, $\mathrm{D}_{\mathrm{MM}^{\prime}}$, the angles between the stacking axis and the Cp rings, ξ_{D}, and the acceptors plane, ξ_{A}, as well as the dihedral angle between the Cp rings and the acceptors planes, ζ, are summarized in Table 1SP for compounds 1-6.

Table S1. Summary of the interatomic separations and angles in the mixed stacks of compounds 1-6.

	$\mathrm{M}-\mathrm{M}^{\prime}(\AA)^{[\mathrm{a}]}$	$\xi_{\mathrm{D}}\left(^{\mathrm{o}}\right)^{[\mathrm{b}]}$	$\xi_{\mathrm{A}}\left({ }^{(}\right)^{[\mathrm{cc}]}$	$\zeta\left(^{\circ}\right)^{[\mathrm{dd}]}$	$\mathrm{M}^{\prime}-\mathrm{C}(\AA) ; q^{[\mathrm{e}]}$	$\mathrm{M}^{\prime}-<\mathrm{C}>(\AA) ; q^{[\mathrm{f}]}$	$\mathrm{Se}-\mathrm{C}(\AA) ; q^{[\mathrm{g}]}$
$\mathbf{1}^{[\mathrm{h}]}$	5.566	81.3	80.5	2.2	$3.844 ; 1.04$	$3.891 ; 1.05$	$3.846 ; 1.07$
$\mathbf{2}^{[\mathrm{h}]}$	5.569	81.0	80.3	3.1	$3.826 ; 0.98$	$3.891 ; 1.00$	$3.878 ; 1.08$
$\mathbf{3}$	5.590	81.5	80.7	2.5	$3.803 ; 1.02$	$3.870 ; 1.05$	$3.833 ; 1.06$
$\mathbf{4}$	5.611	81.0	80.4	2.2	$3.813 ; 0.98$	$3.883 ; 1.00$	$3.866 ; 1.07$
$\mathbf{5}$	5.659	81.8	80.7	2.3	$3.810 ; 1.03$	$3.854 ; 1.04$	$3.827 ; 1.06$
$\mathbf{6}$	5.677	81.0	81.6	0.5	$3.781 ; 0.97$	$3.906 ; 1.00$	$3.914 ; 1.09$

[a] M-M' distance within the chain; [b] angle between the average plane of the Cp rings and the stacking axis; [c] angle between the average plane of the acceptors and the stacking axis; [d] dihedral angle between the average planes of the Cp rings and the acceptors; [e] shorter M'-C contact; [f] distance between M' and the Cp centroid; [g] closest separation between a Se atom from the acceptor and a C atom from the Cp ring; $[\mathrm{h}]$ from ref. [8].Table 2. Summary of the interatomic separations and angles in the mixed stacks of compounds $\mathbf{1 - 6}$.

The interchain separation, the closest $\mathrm{M}-\mathrm{M}\left(\mathrm{M}^{\prime}-\mathrm{M}^{\prime}\right), \mathrm{M}-\mathrm{M}^{\prime}$ and $\mathrm{Se}-\mathrm{Se}$ distances are summarized in Table 2SP for compounds 1-6.

Table S2. Summary of the interchain distances and selected interchain interatomic separations in compounds 1-6.

	$1^{[a]}$	$2{ }^{[1]}$	3	4	5	6
$\mathrm{d}^{\text {I-II }}(\AA)^{[\mathrm{b}]}$	8.338	8.388	8.342	8.403	8.352	8.382
$\mathrm{d}^{\text {l-III }}(\AA)^{[b]}$	10.898	11.002	10.875	10.983	10.859	10.842
$\mathrm{d}^{\mathrm{l}-\mathrm{VV}}(\AA)^{[b]}$	9.953	9.958	9.936	9.957	9.935	9.868
$\mathrm{MM}^{\text {I-II }}(\AA)^{[\mathrm{cc]}}$	8.059	8.606	8.582	8.614	8.580	8.568
$\mathrm{MM}^{\text {I-III }}(\AA)^{[d]}$	9.059	9.148	9.077	9.189	9.135	9.282
$\mathrm{MM}^{\text {[-III }}(\AA)^{[\mathrm{cc]}}$	12.097	12.218	12.107	12.249	12.165	12.311
$\mathrm{MM}^{\text {I-IIII }}(\AA)^{[\mathrm{d}]}$	10.902	11.005	10.879	10.985	10.862	10.842
$\mathrm{MM}^{\mathrm{I}-\mathrm{IV}}(\AA)^{[\mathrm{c}]}$	10.464	10.521	10.471	10.559	10.541	12.322
$\mathrm{MM}^{\text {I-IV }}(\AA)^{[\mathrm{d}]}$	10.225	10.194	10.195	10.175	10.163	10.026
$\mathbf{c}^{\mathrm{I}-\mathrm{II}}(\AA) ; q^{[\mathrm{e}]}$	4.582; 1.15	4.349; 1.09	4.574; 1.14	4.331; 1.08	4.568; 1.14	4.234; 1.06

[a] from ref. [8]; [b] interchain distance; [c] closest distance between the identical metallic elements in neighboring chains; [d] closest distance between the distinct metallic elements in neighboring chains; [e] shorter Se-Se contact in neighbouring chain (pair I-II).

