ADVANCED MATERIALS

Supporting Information

for

Advanced Materials, adma.200600222

© Wiley-VCH 2006 69451 Weinheim, Germany

Supporting Information for Advanced Materials adma.200600222

Porous, Hollow, and Ball-in-ball Metal Oxide Microspheres: Preparation, Endocytosis, and Cytotoxicity

Won Hyuk Suh¹, Ah Ram Jang², Yoo-Hun Suh^{*2†} and Kenneth S. Suslick^{*1††}

¹School of Chemical Sciences, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, ²Department of Pharmacology, College of Medicine, Neuroscience Research Institute, Medical Research Council, National Creative Research Initiative Center for Alzheimer's Dementia, Seoul National University, 28 Yeongeon-dong, Jongno-gu, Seoul 110-799, South Korea. *Corresponding authors: [†]e-mail: yhsuh@snu.ac.kr, ^{††}e-mail: ksuslick@uiuc.edu.

Figure S1. Ultrasonic spray pyrolysis (USP). (a) Macrophotograph of an ultrasonic fountain and mist produced at 1.7 MHz (0.033 s exposure, total width ~ 8 cm). W. H. Suh, K. S. Suslick, *J. Am.Chem. Soc.* 2005, *127*, 12007. (b) Ultrasonic spray pyrolysis (USP) apparatus with single furnace. (c) Low magnification SEM of USP products, 4 (left) and post-etching products, 4-etched (right).

Figure S2. TEM and Selected Area Electron Diffraction (SAED) analysis of prepared titania spheres. (a, b) TEM of **2-etched**. (c) Anatase phase USP titania, d-spacing = 0.337 nm. (d) SAED of USP titania.

Figure S3. Effect of silica/titania ratio on particle morphology. First and third column of images before etching; second and fourth images after etching. The pairs of SEM and (S)TEM images shown are for microspheres **3** (a, Si:Ti = 1:5, 70-100 nm silica), **4** (b, Si:Ti = 1:1, 70-100 nm silica), and **5** (c, Si:Ti = 8:1, 70-100 nm silica). In a typical preparation, Snowtex ZL (0.02 mol for **4**, 70-100 nm silica), titanium(IV) bis(ammonium lactato) dihydroxide or (in certain cases) titanium(IV) oxysulfate (0.02 mol), and purified water (50 mL, Barnstead Nanopure ion exchanged) were mixed and nebulized. Alternatively, a 1:5 silica/Ti molar ratio for **3** and 8:1 for **5** were used. Furnace temperature was set at 700-900 °C with an air flow rate of 1 SLPM. For nebulization, a Sunbeam 1.7 MHz household ultrasonic humidifier (<\$30) was used. After 6 hours of collection into water-filled bubblers, the grey colloidal particles were obtained by centrifugation at 8000 x g. The products were washed with purified water at least three times and sampled for analysis.

а

C

Figure S4. Cell culture optical microscope pictures. (a) Control PC12 cells only, 24 hrs. (b) PC12 cell and particle 1 cultured together, 24 hrs. (c) PC 12 cells alone, day 6. (d) PC12 cell and particle 1 cultures together, day 6. **Cell culturing with microspheres.** PC12 cells were incubated with a known number ratio of particles to cells in a 6 well plate at 37 °C under 5% CO₂. Cell growth was monitored visually and optical micrographs were taken using a digital camera attached to an Olympus IX50 optical microscope.

Figure S5. WST-1 assay on BV2 macrophage cells. Ctl=control. 0.2 μ g of microspheres/10⁴ cells ~ a number ratio of 16 microspheres/cells. **2-reduced** is microsphere **2** treated with 5% hydrogen (95% nitrogen) at 600 °C for 4 hours, which converts the cobalt oxide into cobalt metal.

Figure S6. WST-1 assay on BV2 and SHSY5Y cells. Ctl=control. 0.2 μ g of microspheres/10⁴ cells ~ a number ratio of 16 microspheres/cells. All tests here were 10⁴ cells in 100 μ L). (a) 4 hour BV2 cell assay for microspheres 1 and 1-etched. (b) 4 hour BV2 cell assay for microspheres 4 and 4-etched. (c) 4 hour SHSY5Y cell assay for microspheres 1 and 1-etched. (d) 4 hour SHSY5Y cell assay for microspheres 4 and 4-etched. (e) 1 day BV2 and SHSY5Y cell assay for 1-etched and 4-etched. All the results combined with Figure 4, S4 and S5 are consistent with very low cytotoxicity of the as-prepared titania-based microspheres. (f) Optical micrograph showing 4 μ g of microspheres 1-etched (the black particles) for approximately 10⁴ cells in a 100 μ L volume.

Figure S7. XRD distributions of nanocrystalline anatase TiO_2 samples and their TEM. (a) Commercially available Degussa TiO_2 P25; a small amount of the Rutile phase is also observed. TEM shows particle sizes are between 20-50 nm. According to Degussa average particle size is 21 nm. (b) USP synthesized anastase titania (1); no other phase is observed. TEM of **1-etched** shows that particle sizes are sub-20 nm. Similar to **5-etched** in Figure S3c. The broader [101] peak suggests that USP titania is smaller in crystallite size. Calculation of this line broadening using the Scherrer equation¹ revealed that while Degussa P25 is 13 nm, USP titania is 9 nm, which is consistent with the TEM data.

¹ R. Jenkins, R. L. Snyder, *Introduction to X-ray Powder Diffractometry*; John Wiley & Sons, Inc., New York, NY, **1996**, p 90.

Figure S8. XRD patterns of samples in Figure 2. (a) 1 and 1-etched. (b) 2 and 2-etched. (c) 900 °C. (d) Colors of the solids.

Figure S9. STEM line scan analysis of 1-etched.

Figure S10. STEM spot analysis of 2-etched from Figures 2f and S2a.

Figure S11. STEM elemental map analysis of PDDA filled porous titania **4-etched**. SEM and STEM are shown in Figure 5. BF = bright field, Ti K α and O K α comes from titania and C K α and Cl K α comes from PDDA. Structure of PDDA is given to show that Cl should be present in the final product.

Figure S12. Silica deposition on porous titania microspheres. (a) Schematic of the deposition process. (b) The chemical structure of DHED, which was pre-adsorbed on the 20 nm silica nanoparticles. (c) SEM images corresponding to the schematic above; leftmost image is before HF etching, middle image after etching, rightmost image is after coating of the middle material with DHED. Refer to Figure 6 in the text.

20 nm silica

Figure S13. TEM images of silica deposited porous titania 4-etched. (a) TEM on whole particle shows that the internal voids are filled up with 20 nm silica nanoparticles. (b) Close-up of the red box in the left figure. Crystalline titania phases are clearly shown as well as the amorphous and spherical 20 nm silica.

mn 01

Table S1. Surface area (m^2/g) measurements for USP microspheres. Before etching (middle column) and after etching (right) values differ in a sense that when silica nanoparticles are sacrificed the surface area increased for all cases. The increased surface area for 2 is much higher than 1 or 4 because there are cobalt oxide nanoparticles supported on to the porous and hollow titania microspheres. In addition, there is a ball of silica inside which also contributes to the total surface area measurement. 5-etched (basically titania nanoparticles) were measured to have 93 m²/g, which is considerably higher than commercial nanoparticles. Additionally, full isotherms of 1, 2 and 2-etched is given on the right side. They show that 1 is mesoporous (Type IV), 2 resemble Type II (nonporous) materials where as 2-etched is type IV, meaning with the hysteresis it is mesoporous or macroporous adsorbents, as expected. Pore volume at relative pressure 0.99 (adsorption) for 2 is 0.03 mL/g (pore size<116 nm) and for 2-etched it is 0.33 mL/g (pore size<116 nm). 11-fold increase is possibly due to the interior core having more free space. Pore volume of 1 is about 0.084 mL/g (pore size<85 nm).

*20-25 m²/g according to Sigma-Aldrich, TiO₂ nanopowder, 25-70 nm particles, anatase/rutile mixture, product #634662.

a

50 \pm 15 m²/g according to Degussa, TiO₂ P25, 21 nm (average) particles. *40-70 m²/g according to Sigma-Aldrich, Co₃O₄ nanopowder, 20-30 nm particles, product #637025.