## Copyright Wiley-VCH Verlag GmbH, 69451, Weinheim, 2003 Chem. Eur. J. 2003

## **Supporting Information**

for

# **Structure-Nucleophilicity Relationships for Enamines**

Bernhard Kempf, Nathalie Hampel, Armin R. Ofial, and Herbert Mayr<sup>\*[a]</sup>

Department Chemie der Ludwig-Maximilians-Universität München Butenandtstr. 5–13 (Haus F), D-81377 München, Germany Fax: (+49) 89-2180-77717, E-mail: Herbert.Mayr@cup.uni-muenchen.de

#### Content

### Page

A. Products of the reactions of enamines, pyrroles, or indoles with benzhydrylium salts S2B. Concentrations and rate constants of the individual kinetic runs S12

#### A. Products of the reactions of enamines, pyrroles, or indoles with benzhydrylium salts

The synthesis of enamines 1a-q, and their reactions with benzhydrylium salts  $Ar_2CH^+ BF_4^$ were performed under exclusion of moisture in an atmosphere of dry nitrogen in carefully dried Schlenk glassware. Dichloromethane was freshly distilled from CaH<sub>2</sub> before use.

<u>Procedure A:</u> A solution of the freshly distilled or recrystallized enamine was added dropwise to a stirred solution of the benzhydrylium salt in  $CH_2Cl_2$  at room temperature. After fading of the color (in cases of reversible reactions after 2 h at the latest) the solvent was evaporated in vacuo to yield the crude product, which was washed with dry  $Et_2O$  and dried several hours in vacuo ( $10^{-2}$  mbar).

<u>Procedure B:</u> The crude product obtained by Procedure A was dissolved in dilute HCl and stirred for 30 min. The solution was then neutralized by treatment with dilute NaOH. Extraction with  $CH_2Cl_2$  (3 × 30 mL), drying of the combined organic layers with MgSO<sub>4</sub>, filtration, and evaporation of the solvent in vacuo gave a product which was purified by recrystallization.

<u>Procedure C:</u> A solution of the benzhydryl salt in dichloromethane (25 mL) was added dropwise to a stirred solution of 10 equiv. of the freshly distilled or recrystallized pyrrole or indole in dichloromethane (25 mL) (An excess of the nucleophile is necessary for trapping the protons which are released during the electrophilic substitution. Reactions with equimolar amounts of the reactants usually do not proceed quantitatively and lead to the formation of side products, e.g., disubstituted arenes). After fading of the color, the solvent was evaporated in vacuo to yield the crude product, which was purified by column chromatography.

*N*-(2-(Bis(julolidin-9-yl)methyl)cyclopentylidene)pyrrolidinium tetrafluoroborate (2a) was obtained from 1-(*N*-pyrrolidino)cyclopentene (1a) (55 mg, 0.40 mmol) and (jul)<sub>2</sub>CH<sup>+</sup> BF<sub>4</sub><sup>-</sup> (0.18 g, 0.40 mmol) as an orange solid (144 mg, 62 %) following Procedure A. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>): = 1.50–2.25 (m, 16 H), 2.52–3.00 (m, 10 H), 3.01–3.15 (m, 8 H), 3.48–4.05 (m, 6 H), 6.42, 6.64 (2 s,  $2 \times 2$  H, ArH); <sup>13</sup>C NMR (75.5 MHz, CDCl<sub>3</sub>): = 20.2 (t, C-4), 22.0 (t, CH<sub>2</sub>), 24.6/24.8 (2 t, CH<sub>2</sub>), 27.7 (t, CH<sub>2</sub>), 30.0, 34.4 (2 t, C-3 and C-5), 50.5 (t, CH<sub>2</sub>), 50.9, 53.7 (2 d, Ar<sub>2</sub>CH and C-2), 55.0/55.2 (2 t, CH<sub>2</sub>), 121.7 (s, Ar), 126.6/126.9 (2 d, Ar), 128.7 (s, Ar), 141.9/142.1 (2 s, Ar), 197.0 (s, C-1).



**2-(Bis(***N***-methyl-1,2,3,4-tetrahydroquinolin-6-yl)methyl)cyclopentanone** (3a) was obtained from 1-(*N*-pyrrolidino)cyclopentene (1a) (137 mg, 1.00 mmol) and (thq)<sub>2</sub>CH<sup>+</sup> BF<sub>4</sub><sup>-</sup> (392 mg, 1.00 mmol) following Procedure B. Crystallization (EtOH) of the crude product gave a brown solid (207 mg, 39 %). <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>): = 1.65–2.29 (m, 10 H, 5 × CH<sub>2</sub>), 2.59–2.86 (m, 11 H, 2 × CH<sub>2</sub>, 2 × NMe, 2-H), 3.13–3.18 (m, 4 H, 2 × CH<sub>2</sub>), 4.40 (d, <sup>3</sup>*J* = 4.4 Hz, 1 H, Ar<sub>2</sub>C*H*), 6.42–7.00 (m, 6 H, ArH); <sup>13</sup>C NMR (75.5 MHz, CDCl<sub>3</sub>): = 20.6 (t, C-4), 22.5/22.6 (2 t, CH<sub>2</sub>), 27.1 (t, C-3), 27.8/27.9 (2 t, CH<sub>2</sub>), 38.6 (t, C-5), 39.1/39.2 (2 q, NMe), 48.2 (d, Ar<sub>2</sub>CH), 51.30/51.35 (2 t, CH<sub>2</sub>), 53.7 (d, C-2), 110.6/110.8 (2 d, Ar), 122.4/122.7 (2 s, Ar), 126.5/127.7, 129.1/129.6 (2 × 2 d, Ar), 130.9/132.0 (2 s, Ar), 145.0 (s, Ar), 220.4 (s, C-1); MS (70 eV, EI): *m/z* (%): 388 (4) [M<sup>+</sup>], 305 (100) [Ar<sub>2</sub>CH<sup>+</sup>], 269 (52), 207 (12).



**2-(Bis(4-dimethylaminophenyl)methyl)cyclohexanone**<sup>17</sup> (**3b**) was obtained from 1-(*N*-pyrrolidino)cyclohexene (**1b**) (151 mg, 0.998 mmol) and  $(dma)_2CH^+$  BF<sub>4</sub><sup>-</sup> (340 mg, 1.00 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (50 mL) following Procedure B. Recrystallization (EtOH) furnished **3b** as a light-brown solid (229 mg, 65 %) which showed identical <sup>1</sup>H and <sup>13</sup>C NMR spectra as the

corresponding sample that was obtained from 1-(morpholino)cyclohexene and  $(dma)_2CH^+$ BF<sub>4</sub><sup>-</sup> in ref. 17.

*N*-(2-(Bis(julolidin-9-yl)methyl)cyclopentylidene)piperidinium tetrafluoroborate (2c) was obtained from 1-(*N*-piperidino)cyclopentene (1c) (54 mg, 0.36 mmol) and (jul)<sub>2</sub>CH<sup>+</sup> BF<sub>4</sub><sup>-</sup> (160 mg, 0.360 mmol) as a dark orange solid (190 mg, 89 %) following Procedure A. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>): = 1.30–2.22 (m, 18 H), 2.45–2.87 (m, 8 H), 2.90–3.11 (m, 10 H), 3.27–3.90 (m, 3 H), 4.22 (d, <sup>3</sup>*J* = 4.4 Hz, 1 H, Ar<sub>2</sub>C*H*), 6.41, 6.55 (2 s, 2 × 2 H, ArH); MS (FAB): m/z (%): 504 (1), 464 (2), 442 (12), 438 (10), 373 (4), 357 (100) [Ar<sub>2</sub>CH<sup>+</sup>].



**2-(Bis(4-dimethylaminophenyl)methyl)cyclopentanone**<sup>43</sup> (**3c**) was obtained from 1-(*N*-piperidino)cyclopentene (**1c**) (153 mg, 1.01 mmol) and  $(dma)_2CH^+BF_4^-$  (340 mg, 1.00 mmol) following Procedure B. Crystallization (EtOH) of the crude product gave a light brown solid (166 mg, 49 %) which showed identical <sup>1</sup>H and <sup>13</sup>C NMR spectra as the corresponding sample that was obtained from 1-(trimethylsiloxy)cyclopentene and  $(dma)_2CH^+BF_4^-$  in ref. 43.

**2-(Bis(lilolidin-8-yl)methyl)cyclopentanone** (**3e**) was obtained from 1-(*N*-morpholino)-cyclopentene (**1e**) (0.216 mL, 1.35 mmol) and (lil)<sub>2</sub>CH<sup>+</sup> BF<sub>4</sub><sup>-</sup> (510 mg, 1.23 mmol) at -90 °C as described in Procedure B. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>): = 1.66–1.79 (m, 3 H, 3-H and 4-H<sub>2</sub>), 1.99–2.10 (m, 4 H, 2 × CH<sub>2</sub>), 2.15–2.27 (m, 3 H, 3-H and 5-H<sub>2</sub>), 2.56–2.67 (m, 4 H, 2 × CH<sub>2</sub>), 2.72–2.95 (m, 9 H, 2-H and 4 × CH<sub>2</sub>), 3.12–3.23 (m, 4 H, 2 × CH<sub>2</sub>), 4.42 (d, <sup>3</sup>*J* = 4.3 Hz, 1 H, Ar<sub>2</sub>CH), 6.51, 6.62, 6.73, 6.85 (4 s, 4 × 1 H, ArH); <sup>13</sup>C NMR (75.5 MHz, CDCl<sub>3</sub>): = 20.43 (t, C-4), 23.19/23.25, 23.82, 23.87 (2 × 2 t, CH<sub>2</sub>), 27.22 (t, C-3), 28.67/28.76 (2 t, CH<sub>2</sub>), 38.37 (t, C-5), 47.48/47.56 (2 t, CH<sub>2</sub>), 49.49 (d, Ar<sub>2</sub>CH), 53.81 (d, C-2), 55.20/55.29 (2 t, CH<sub>2</sub>), 118.65/118.78 (2 s, Ar), 121.96/122.58, 125.82/126.75 (2 × 2 d, Ar), 128.28/128.55, 133.76/134.90 (2 × 2 s, Ar), 148.05 (s, Ar), 220.08 (s, C-1), signal assignments are based on <sup>1</sup>H, <sup>13</sup>C-COSY experiments; MS (EI, 70 eV): m/z (%): 412 (14) [M<sup>+</sup>], 329 (100), 165 (12).



**2-(Bis(4-dimethylaminophenyl)methyl)cyclopentenylidene)morpholinium** tetrafluoroborate (2e) was obtained from 1-(*N*-morpholino)cyclopentene (1e) (0.168 mL, 1.12 mmol) and (dma)<sub>2</sub>CH<sup>+</sup> BF<sub>4</sub><sup>-</sup> (380 mg, 1.12 mmol) following Procedure A: pale green powder (498 mg, 90 %). <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>): = 1.89–2.35 (m, 4 H, 3-H and 4-H), 2.70–2.79 (m, 1 H,  $\frac{1}{2} \times CH_2$ ), 2.86–2.95 (m, partially superimposed, 1 H,  $\frac{1}{2} \times CH_2$ ), 2.86, 2.90 (2 s, 2 × 6 H, NMe<sub>2</sub>), 3.00–3.29 (m, 2 H, 5-H<sub>2</sub>), 3.60–4.04 (m, 8 H, 2-H, Ar<sub>2</sub>CH, 3 × CH<sub>2</sub>), 6.59–6.69 (m, 4 H, ArH), 7.02–7.05, 7.15–7.18 (2 m, 2 × 2 H, ArH); <sup>13</sup>C NMR (75.5 MHz, CDCl<sub>3</sub>): = 19.85 (t, C-4), 29.57 (t, C-3), 33.13 (t, C-5), 40.34/40.39 (2 q, NMe<sub>2</sub>), 50.74, 51.09 (2 d, Ar<sub>2</sub>CH and C-2), 54.23/54.89, 64.69/65.10 (2 × 2 t, CH<sub>2</sub>), 112.68/112.77 (2 d, Ar), 127.74/128.69 (2 s, Ar), 128.91/129.40 (2 d, Ar), 149.52/149.88 (2 s, Ar), 200.32 (s, C-1), signal assignments are based on <sup>1</sup>H, <sup>1</sup>H- and <sup>1</sup>H, <sup>13</sup>C-COSY experiments.



**3-(Bis(4-dimethylaminophenyl)methyl)-1-methylpiperidin-4-one (3g)** was obtained from 1,2,5,6-tetrahydro-1-methyl-4-(*N*-morpholino)pyridine (**1g**) (150 mg, 0.823 mmol) and (dma)<sub>2</sub>CH<sup>+</sup> CF<sub>3</sub>SO<sub>3</sub><sup>-</sup> (231 mg, 0.574 mmol) following Procedure B. Crystallization of the crude product gave **3g** (160 mg, 76 %) as colorless needles. M.p. 162–163 °C (decomp., from ethanol); <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>): = 2.28 (s, 1-Me), 2.32–2.45 (m, 1 H, 5-H), 2.47–2.50 (m, 2 H, 2-H<sub>2</sub>), 2.52–2.68 (m, 2 H, 5-H and 6-H), 2.76–2.83 (m, 1 H, 6-H), 2.86, 2.89 (2s, NMe<sub>2</sub>), 3.25–3.31 (m, 1 H, 3-H), 4.45 (d, *J* = 11.2 Hz, 1 H, Ar<sub>2</sub>C*H*), 6.60–6.67, 7.10–7.19 (2 m, 2 × 4 H, ArH); <sup>13</sup>C NMR (75.5 MHz, CDCl<sub>3</sub>): = 40.64 (q, NMe<sub>2</sub>), 40.83 (t, C-5), 45.29 (q, 1-Me), 48.37 (d, Ar<sub>2</sub>CH), 55.33 (d, C-3), 57.15 (t, C-6), 60.09 (t, C-2), 112.74/112.85, 128.40/128.67 (2 × 2 d, Ar), 131.26/131.41, 148.94/149.05 (2 × 2 s, Ar), 211.00 (s, C-4), signal assignments are based on <sup>1</sup>H, <sup>1</sup>H- and <sup>1</sup>H, <sup>13</sup>C-COSY-experiments; MS (EI, 70 eV): *m/z* (%): 365 (8) [M<sup>+</sup>], 254 (18), 253 (100); elemental analysis calcd (%) for C<sub>23</sub>H<sub>31</sub>N<sub>3</sub>O (365.52): C 75.58, H 8.55, N 11.50; found: C 75.55, H 8.58, N 11.56.



*N*-(3,3-Bis(4-(phenyl(2,2,2-trifluoroethyl)amino)phenyl)-2,2-dimethylpropylidene)morpholinium tetrafluoroborate (2j) was generated by mixing (*N*-morpholino)isobutene (1j) (22 mg, 0.16 mmol) and (pfa)<sub>2</sub>CH<sup>+</sup> BF<sub>4</sub><sup>-</sup> (92 mg, 0.15 mmol) in CDCl<sub>3</sub> (1 mL). The reaction mixture was transferred into an NMR tube and analyzed without isolation. <sup>1</sup>H NMR (200 MHz, CDCl<sub>3</sub>): = 1.50 (s, 6 H, CH<sub>3</sub>), 3.35, 3.67, 3.90, 4.00 (4 m<sub>c</sub>, 4 × 2 H, morpholino-CH<sub>2</sub>), 4.25 (q, *J*(H,F) = 8.7 Hz, 4 H, NC*H*<sub>2</sub>CF<sub>3</sub>), 4.40 (s, 1 H, Ar<sub>2</sub>C*H*), 6.82–7.35 (m, 18 H, ArH), 8.52 (s, 1 H, N<sup>+</sup>=CH).



**3,3-Bis(4-dimethylaminophenyl)-2,2-dimethylpropanal** (**3j**) was obtained from (*N*-morpholino)isobutene (**1j**) (270 mg, 1.91 mmol) and  $(dma)_2CH^+ CF_3SO_3^-$  (379 mg, 0.942 mmol) following Procedure B. Crystallization from ethanol gave **3j** as beige needles (170 mg, 52 %). M.p. 102 °C (ethanol); <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>): = 1.12 (s, 6 H, 2-CH<sub>3</sub>), 2.89 (s, 12 H, NMe<sub>2</sub>), 3.99 (s, 1 H, Ar<sub>2</sub>CH), 6.60–6.66, 7.08–7.13 (2 m, 2 × 4 H, ArH), 9.69 (s, 1 H, 1-H); <sup>13</sup>C NMR (75.5 MHz, CDCl<sub>3</sub>): = 21.5 (q, 2-CH<sub>3</sub>), 40.5 (q, NMe<sub>2</sub>), 49.8 (s, C-2), 56.9 (d, Ar<sub>2</sub>CH), 112.3 (d, Ar), 129.3 (s, Ar), 130.2 (d, Ar), 149.0 (s, Ar), 207.0 (d, C-1); MS (EI, 70 eV): *m/z* (%): 324 (2) [M<sup>+</sup>], 254 (34), 253 (100), 237 (14), 126 (20); elemental analysis calcd (%) for C<sub>21</sub>H<sub>28</sub>N<sub>2</sub>O (324.47): C 77.74, H 8.70, N 8.63; found: C 77.74, H 8.87, N 8.73.



**3,3-Bis(4-diphenylaminophenyl)-2-phenylpropanal** (**3k**) was obtained from (*E*)- -(*N*-morpholino)styrene (**1k**) (189 mg, 1.00 mmol) and  $(dpa)_2CH^+$  BF<sub>4</sub><sup>-</sup> (589 mg, 1.00 mmol)

following Procedure B. Crystallization of the crude product gave a pale green solid (432 mg, 70 %). M.p. 130–131 °C (CH<sub>2</sub>Cl<sub>2</sub>/*n*-pentane); <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>): = 4.30 (dd, <sup>3</sup>*J* = 11.7 Hz, <sup>3</sup>*J* = 3.3 Hz, 1 H, 2-H), 4.56 (d, <sup>3</sup>*J* = 11.7 Hz, 1 H, Ar<sub>2</sub>C*H*), 6.74–7.16 (m, 33 H, ArH), 9.66 (d, <sup>3</sup>*J* = 3.3 Hz, 1 H, 1-H); <sup>13</sup>C NMR (75.5 MHz, CDCl<sub>3</sub>): = 51.3 (d, Ar<sub>2</sub>CH), 63.9 (d, C-2), 122.6, 122.9, 123.9, 124.0, 124.1, 127.6, 128.9, 129.0, 129.2, 129.2, 129.4, 129.6 (12 d, Ar), 134.9, 136.0, 136.1, 146.0, 146.6, 147.8 (6 s, Ar), 199.3 (d, C-1).



*N*-(3,3-Bis(4-(phenyl(2,2,2-trifluoroethyl)amino)phenyl)-1-phenylpropylidene)morpholinium tetrafluoroborate (2l) was obtained from -(N-morpholino)styrene (1l) (51 mg, 0.27 mmol) and (pfa)<sub>2</sub>CH<sup>+</sup> BF<sub>4</sub><sup>-</sup> (163 mg, 0.272 mmol) as a pale violet solid (179 mg, 83 %) following Procedure A. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>): = 3.55–4.05 (m, 11 H, morpholino-CH<sub>2</sub>, 2-H<sub>2</sub>, Ar<sub>2</sub>CH), 4.17 (q, *J*(H,F) = 8.7 Hz, 4 H, NCH<sub>2</sub>CF<sub>3</sub>), 6.73–7.50 (m, 23 H, ArH); <sup>13</sup>C NMR (75.5 MHz, CDCl<sub>3</sub>): = 44.1 (t, C-2), 47.0 (d, Ar<sub>2</sub>CH), 54.1 (tq, *J*(C,F) = 30.2 Hz, NCH<sub>2</sub>CF<sub>3</sub>), 53.5, 56.1, 65.9, 66.4 (4 t, morpholino-CH<sub>2</sub>), 119.7, 123.1, 124.0 (3 d, Ar), 127.0 (s, Ar), 127.4, 128.5, 129.6, 129.7, 132.7 (5 d, Ar), 131.8, 134.6, 146.8 (3 s, Ar), 188.1 (s, C-1), the signal for CF<sub>3</sub> could not be identified.



**3,3-Bis(4-diphenylaminophenyl)-1-phenylpropan-1-one** (**3l**) was obtained from -(N-morpholino)styrene (**1l**) (189 mg, 1.00 mmol) and  $(dpa)_2CH^+$  BF<sub>4</sub><sup>-</sup> (589 mg, 1.00 mmol) following Procedure B. Crystallization of the crude product gave a pale green solid (284 mg, 46 %). M.p. 96–97 °C (CH<sub>2</sub>Cl<sub>2</sub>/*n*-pentane); <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>): = 3.67 (d, <sup>3</sup>J = 7.2 Hz, 2 H, 2-H), 4.71 (t, <sup>3</sup>J = 7.3 Hz, 1 H, Ar<sub>2</sub>CH), 6.95–7.93 (m, 33 H, ArH); <sup>13</sup>C NMR (75.5 MHz, CDCl<sub>3</sub>): = 45.07 (t, C-2), 45.09 (d, Ar<sub>2</sub>CH), 122.6, 124.0, 124.1, 128.1, 128.6, 129.1, 133.0 (7 d, Ar), 137.2, 138.5, 146.0, 147.8 (4 s, Ar), 198.5 (s, C-1); MS (70 eV, EI):

m/z (%): 620 (22) [M<sup>+</sup>], 501 (100) [Ar<sub>2</sub>CH<sup>+</sup>], 251 (10); elemental analysis calcd (%) for C<sub>45</sub>H<sub>36</sub>N<sub>2</sub>O (620.8): C 87.07, H 5.84, N 4.51; found C 87.26, H 6.00, N 4.42.



#### N-(2-(Bis(4-dimethylaminophenyl)methyl)cyclopentylidene)methylphenylammonium

**tetrafluoroborate** (**2o**) was obtained from 1-(methylphenylamino)cyclopentene (**1o**) (72 mg, 0.42 mmol) and (dma)<sub>2</sub>CH<sup>+</sup> BF<sub>4</sub><sup>-</sup> (142 mg, 0.417 mmol) as a green solid (197 mg, 92 %) following Procedure A. <sup>13</sup>C NMR (75.5 MHz, CDCl<sub>3</sub>): = 20.4 (t), 29.8 (t), 36.0 (t), 40.4 (q, NMe<sub>2</sub>), 40.6 (q, NMe<sub>2</sub>), 48.8, 51.3, 52.1 (2 d and 1 q, C-2, Ar<sub>2</sub>CH, and N<sup>+</sup>CH<sub>3</sub>), 112.6, 112.9 (2 d, Ar), 117.4 (s, Ar), 122.9, 123.4, 129.1, 129.4, 130.7 (5 d, Ar), 143.4, 149.6, 150.0 (3 s, Ar), 205.5 (s, C-1); MS (FAB): m/z (%): 426 (2) [M<sup>+</sup>], 253 (100) [Ar<sub>2</sub>CH<sup>+</sup>], 237 (11), 174 (13).



**2-(Bis(4-diphenylaminophenyl)methyl)cyclohexanone**  $(3p)^{17}$  was obtained from 1-(methylphenylamino)cyclohexene (1p) (187 mg, 1.00 mmol) and (dpa)<sub>2</sub>CH<sup>+</sup> BF<sub>4</sub><sup>-</sup> (589 mg, 1.00 mmol) following Procedure B. Crystallization (CH<sub>2</sub>Cl<sub>2</sub>/*n*-pentane) of the crude product gave **3p** as a pale brown solid (207 mg, 35 %) which showed identical <sup>1</sup>H and <sup>13</sup>C NMR spectra as the corresponding sample that was obtained from 1-(trimethylsiloxy)cyclohexene and (dpa)<sub>2</sub>CH<sup>+</sup> BF<sub>4</sub><sup>-</sup> in ref. 17.

**1-(2-(Bis(4-dimethylaminophenyl)methyl))cyclohexylidene)-4-methylpiperazinium** triflate (2q) was obtained from 1-(1-cyclohexenyl)-4-methylpiperazine (1q) (204 mg, 1.13 mmol) and  $(dma)_2CH^+ CF_3SO_3^-$  (456 mg, 1.13 mmol) as a pale green powder (650 mg, 93 %) following Procedure A. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>): = 1.35–1.40 (m, 1 H, 4-H), 1.50–1.56 (m, 1 H, <sup>1</sup>/<sub>2</sub> × CH<sub>2</sub>), 1.98–2.10 (m, partially superimposed, 2 H, 3-H and <sup>1</sup>/<sub>2</sub> × CH<sub>2</sub>), 2.03 (s, 3 H, NMe), 2.21–2.26 (m, 1 H, 5-H), 2.42–2.58 (m, 2 H, CH<sub>2</sub>), 2.76, 2.81 (2 s, 2 × 6 H, NMe<sub>2</sub>), 2.90–2.98, 3.12–3.16 (2 m, 2 × 1 H, 6-H<sub>2</sub>), 3.73–4.03 (m, 5 H, 2-H and 2 × CH<sub>2</sub>), 4.19 (br d, <sup>3</sup>*J* = 11.7 Hz, 1 H, Ar<sub>2</sub>C*H*), 6.48–6.59, 6.99–7.23 (2 m, 2 × 4 H, ArH); <sup>13</sup>C NMR (75.5 MHz, CDCl<sub>3</sub>): = 18.72 (t, C-4), 28.35 (t, C-5), 30.24 (t, C-6), 30.44 (t, C-3), 40.17/40.25 (2 q, 2 + 1)). NMe<sub>2</sub>), 43.80 (q, NMe), 47.09 (d, C-2), 51.51 (d, Ar<sub>2</sub>CH), 52.89/53.00 (2 t, CH<sub>2</sub>), 54.05/54.22 (2 t, CH<sub>2</sub>), 112.73/112.80 (2 d, Ar), 120.63 (q, *J*(C,F) = 321 Hz, CF<sub>3</sub>SO<sub>3</sub>), 127.03/128.55 (2 s, Ar), 127.99/128.71 (2 d, Ar), 149.39/149.56 (2 s, Ar), 194.86 (s, C-1), signal assignments are based on <sup>1</sup>H, <sup>1</sup>H- and <sup>1</sup>H, <sup>13</sup>C-COSY experiments.



**2-(Bis(4-dimethylaminophenyl)methyl)cyclohexanone**<sup>17</sup> (**3q**) was prepared from the iminium salt **2q** after hydrolysis according to Procedure B as pale beige needles (234 mg, 59 %) which showed identical <sup>1</sup>H and <sup>13</sup>C NMR spectra as the corresponding sample that was obtained from 1-(morpholino)cyclohexene and (dma)<sub>2</sub>CH<sup>+</sup> BF<sub>4</sub><sup>-</sup> in ref. 17.

2-(Bis(4-(phenyl(2,2,2-trifluoroethyl)amino)phenyl)methyl)pyrrole (5a) was obtained from pyrrole (4a) (179 mg, 2.67 mmol) and (pfa)<sub>2</sub>CH<sup>+</sup> BF<sub>4</sub><sup>-</sup> (160 mg, 0.267 mmol) following Procedure C. Column chromatography (silica gel/CHCl<sub>3</sub>) gave a colorless solid (50 mg, 32 %). <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>): = 4.19 (q, <sup>3</sup>*J*(H,F) = 8.7 Hz, 4 H, NCH<sub>2</sub>CF<sub>3</sub>), 5.29 (s, 1 H, Ar<sub>2</sub>C*H*), 5.71–5.75 (m, 1 H, 3-H), 6.07 (dd, *J* = 6.0 Hz, *J* = 2.7 Hz, 1 H, 4-H), 6.60–6.64 (m, 1 H, 5-H), 6.80–7.27 (m, 18 H, ArH), 7.73 (br s, 1 H, NH); <sup>13</sup>C NMR (75.5 MHz, CDCl<sub>3</sub>): = 49.1 (d, Ar<sub>2</sub>CH), 54.0 (tq, *J*(C,F) = 33 Hz, NCH<sub>2</sub>CF<sub>3</sub>) 107.8, 108.3, 117.1, 120.8, 121.7, 123.0 (6 d, Ar), 125.2 (sq, *J*(C,F) = 287 Hz, NCH<sub>2</sub>CF<sub>3</sub>), 129.5, 129.8 (2 d, Ar), 133.8, 137.2,

146.1, 147.3 (4 s, Ar), signal assignments are based on <sup>1</sup>H, <sup>1</sup>H-COSY experiments.



**3-(Bis(4-(phenyl(2,2,2-trifluoroethyl)amino)phenyl)methyl)pyrrole** (**5c**). A solution of  $(pfa)_2CH^+ BF_4^-$  (190 mg, 0.317 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (10 mL) was added dropwise to a stirred solution of *N*-(triisopropylsilyl)pyrrole (**4c**) (181 mg, 0.814 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (30 mL). After 5 min a solution of tetrabutylammonium fluoride in THF (c = 1 M, 1 mL, 1 mmol) was added. The reaction mixture was subsequently washed with 0.2 M hydrochloric acid (50 mL) and water (50 mL). Separation of the organic layer, drying over CaCl<sub>2</sub>, and evaporation of the

solvent in vacuo gave a brownish oil (134 mg, 73 %). Purification by column chromatography (silica gel/CHCl<sub>3</sub>) gave **5c** (88 mg, 48 %) and **5a** (17 mg, 9 %). Characterization of **5c**: <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>): = 4.27 (q, J(H,F) = 8.8 Hz, 4 H, NCH<sub>2</sub>CF<sub>3</sub>), 5.31 (s, 1 H, Ar<sub>2</sub>CH), 6.05 (br s, 1 H, 5-H), 6.36 (br s, 1 H, 2-H), 6.75 (br s, 1 H, 4-H), 6.91–7.33 (m, 18 H, ArH), 8.02 (br s, 1 H, NH); <sup>13</sup>C NMR (75.5 MHz, CDCl<sub>3</sub>): = 48.6 (d, Ar<sub>2</sub>CH), 54.1 (tq, J(C,F) = 32.7 Hz, NCH<sub>2</sub>CF<sub>3</sub>), 109.2 (d, C-5), 116.9 (d, C-2), 118.1 (d, C-4), 120.5, 121.7, 122.2, 129.4, 129.5 (5 d, Ar), 125.3 (sq, J = 279.4 Hz, NCH<sub>2</sub>CF<sub>3</sub>), 127.1, 140.2, 145.4, 147.6 (4 s Ar), signal assignments are based on <sup>1</sup>H, <sup>1</sup>H- and <sup>1</sup>H, <sup>13</sup>C-COSY, gHMBC and NOESY experiments.



**3-(Bis(4-(phenyl(2,2,2-trifluoroethyl)amino)phenyl)methyl)indole** (**7a**) was obtained from indole (**6a**) (150 mg, 1.28 mmol) and (pfa)<sub>2</sub>CH<sup>+</sup> BF<sub>4</sub><sup>-</sup> (75 mg, 0.13 mmol) following Procedure C. Column chromatography (silica gel/CHCl<sub>3</sub>) gave a colorless solid (55 mg, 70 %). <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>): = 4.20 (q, J(H,F) = 8.7 Hz, 4 H, NCH<sub>2</sub>CF<sub>3</sub>), 5.52 (br s, 1 H, Ar<sub>2</sub>CH), 6.55 (br s, 1 H, 2-H), 6.83–7.23 (m, 22 H, ArH), 7.86 (br s, 1 H, NH); <sup>13</sup>C NMR (75.5 MHz, CDCl<sub>3</sub>): = 47.4 (d, Ar<sub>2</sub>CH), 54.0 (tq, J(C,F) = 30.2 Hz, NCH<sub>2</sub>CF<sub>3</sub>), 111.0, 119.4, 119.9 (3d, Ar), 120.1 (s, Ar), 120.9, 121.4, 122.1, 122.4 (4 d, Ar), 123.8 (d, C-2), 125.2 (sq, J(C,F) = 283 Hz, NCH<sub>2</sub>CF<sub>3</sub>), 126.9 (s, Ar), 129.4, 129.9 (2 d, Ar), 136.7, 138.5, 145.6, 147.5 (4 s, Ar), signal assignments are based on <sup>1</sup>H, <sup>1</sup>H and <sup>1</sup>H, <sup>13</sup>C-COSY experiments; MS (70 eV, EI): m/z (%): 628 (35) [M]<sup>+</sup>, 513 (100) [Ar<sub>2</sub>CH]<sup>+</sup>, 379 (18), 264 (75).



**1-Methyl-3-(bis(4-(phenyl(2,2,2-trifluoroethyl)amino)phenyl)methyl)indole** (**7b**) was obtained from *N*-methylindole (**6b**) (360 mg, 2.74 mmol) and  $(pfa)_2CH^+BF_4^-$  (165 mg, 0.275 mmol) following Procedure C. Column chromatography (silica gel/CHCl<sub>3</sub>) gave a colorless solid (38 mg, 22 %). <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>): = 3.65 (s, 3 H, NCH<sub>3</sub>), 4.21 (q, *J*(H,F) =

8.7 Hz, 4 H, NCH<sub>2</sub>CF<sub>3</sub>), 5.52 (s, 1 H, Ar<sub>2</sub>C*H*), 6.41 (s, 1 H, 2-H), 6.84–7.24 (m, 22 H, ArH), the presence of additional resonances indicate a contamination of the sample with ca. 15 % of **6b**; <sup>13</sup>C NMR (75.5 MHz, CDCl<sub>3</sub>): = 32.7 (q, NCH<sub>3</sub>), 47.4 (d, Ar<sub>2</sub>CH), 54.1 (tq, *J*(C,F)= 38 Hz, NCH<sub>2</sub>CF<sub>3</sub>), 109.1, 118.8, 119.9, 120.9, 121.4, 121.6, 122.4 (7 d, Ar), 128.5 (d, C-2), 129.4, 129.9 (2 d, Ar), 138.7, 145.6, 147.5 (3 s, Ar), because of the low signal-to-noise ratio CF<sub>3</sub> and three aromatic carbons could not be identified in the spectra, signal assignments are based on <sup>1</sup>H, <sup>13</sup>C-COSY experiments; MS (70 eV, EI): m/z (%): 642 (32) [M]<sup>+</sup>, 513 (57) [Ar<sub>2</sub>CH]<sup>+</sup>, 393 (44), 264 (42).



**1,2-Dimethyl-3-(bis(4-(phenyl(2,2,2-trifluoroethyl)amino)phenyl)methyl)indole** (**7c**) was obtained from 1,2-dimethylindole (**6c**) (469 mg, 3.23 mmol) and (pfa)<sub>2</sub>CH<sup>+</sup> BF<sub>4</sub><sup>-</sup> (194 mg, 0.323 mmol) following Procedure C. Column chromatography (silica gel/CHCl<sub>3</sub>) gave a colorless solid (72 mg, 34 %). <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>): = 2.19 (s, 3 H, 2-CH<sub>3</sub>), 3.57 (s, 3 H, NCH<sub>3</sub>), 4.18 (q, *J*(H,F) = 8.7 Hz, 4 H, NCH<sub>2</sub>CF<sub>3</sub>), 5.61 (s, 1 H, Ar<sub>2</sub>CH), 6.83–7.19 (m, 22 H, ArH), the presence of additional resonances indicate a contamination of the sample with ca. 15 % of **6c**; <sup>13</sup>C NMR (75.5 MHz, CDCl<sub>3</sub>): = 10.7 (q, 2-CH<sub>3</sub>), 29.5 (q, NCH<sub>3</sub>), 46.7 (d, Ar<sub>2</sub>CH), 54.0 (tq, *J*(C,F) = 30.2 Hz, NCH<sub>2</sub>CF<sub>3</sub>), 108.6 (d, Ar), 113.5 (s, Ar), 118.7, 119.5, 120.2, 120.3, 122.0 (5 d, Ar), 125.2 (sq, *J*(C,F) = 287 Hz, NCH<sub>2</sub>CF<sub>3</sub>), 127.3 (s, Ar), 129.3, 130.2 (2 d, Ar), 133.7, 136.7, 139.1, 145.3, 147.7 (5 s, Ar); MS (70 eV, EI): *m/z* (%): 657 (38) [M<sup>+</sup>], 513 (100) [Ar<sub>2</sub>CH<sup>+</sup>], 407 (61), 264 (14).



B. Concentrations and rate constants of the individual kinetic runs (Tables S1-S55)

**Table S1.** 1-(*N*-Pyrrolidino)cyclopentene (**1a**) and (lil)<sub>2</sub>CH<sup>+</sup> BF<sub>4</sub><sup>-</sup> in CH<sub>2</sub>Cl<sub>2</sub> at  $\lambda = 640$  nm (Stopped flow).

| _ |          |                                |                                 |                  |               |                                         |
|---|----------|--------------------------------|---------------------------------|------------------|---------------|-----------------------------------------|
|   | No.      | [ <i>El</i> ] <sub>0</sub> / M | [ <i>Nuc</i> ] <sub>0</sub> / M | $[Nuc]_0/[El]_0$ | $T/^{\circ}C$ | $k_2 / \mathrm{M}^{-1} \mathrm{s}^{-1}$ |
|   | 011200-F | $8.456 \times 10^{-6}$         | $1.436 \times 10^{-4}$          | 17               | 20.0          | $1.251 \times 10^5$                     |
|   | 011200-В | $8.456\times 10^{-6}$          | $2.871\times10^{-4}$            | 34               | 20.0          | $1.245\times10^5$                       |
|   | 011200-С | $8.456\times 10^{-6}$          | $4.307\times10^{-4}$            | 51               | 20.0          | $1.307\times 10^5$                      |
|   | 011200-D | $8.456\times 10^{-6}$          | $5.743\times10^{-4}$            | 68               | 20.0          | $1.203\times10^5$                       |
|   | 011200-Е | $8.456\times 10^{-6}$          | $7.178\times10^{-4}$            | 85               | 20.0          | $1.290\times 10^5$                      |
|   |          |                                |                                 |                  |               |                                         |

 $<k_2>(20 \ ^{\circ}C) = (1.259 \pm 0.037) \times 10^5 \ M^{-1} \ s^{-1}$ 

**Table S2.** 1-(*N*-Pyrrolidino)cyclopentene (**1a**) and (jul)<sub>2</sub>CH<sup>+</sup> BF<sub>4</sub><sup>-</sup> in CH<sub>2</sub>Cl<sub>2</sub> at  $\lambda = 640$  nm (Stopped flow).

| No.      | [ <i>El</i> ] <sub>0</sub> / M | [ <i>Nuc</i> ] <sub>0</sub> / M | $[Nuc]_0/[El]_0$ | <i>T</i> / °C | $k_2 / \mathrm{M}^{-1} \mathrm{s}^{-1}$ |
|----------|--------------------------------|---------------------------------|------------------|---------------|-----------------------------------------|
| 011200-М | $7.130 \times 10^{-6}$         | $1.425\times10^{-4}$            | 20               | 20.0          | $3.387 \times 10^{5}$                   |
| 011200-О | $7.130\times10^{-6}$           | $2.851\times10^{-4}$            | 40               | 20.0          | $3.171\times10^5$                       |
| 011200-I | $7.130\times10^{-6}$           | $4.276\times10^{-4}$            | 60               | 20.0          | $3.182\times10^5$                       |
| 011200-J | $7.130\times10^{-6}$           | $5.702\times10^{-4}$            | 80               | 20.0          | $3.459\times 10^5$                      |
| 011200-К | $7.130\times10^{-6}$           | $7.127 \times 10^{-4}$          | 100              | 20.0          | $3.419\times 10^5$                      |

 $<k_2>(20 \text{ °C}) = (3.324 \pm 0.122) \times 10^5 \text{ M}^{-1} \text{ s}^{-1}$ 

**Table S3.** 1-(*N*-Pyrrolidino)cyclopentene (**1a**) and  $(thq)_2CH^+BF_4^-$  in  $CH_2Cl_2$  at  $\lambda = 628$  nm (Stopped flow).

| No.      | [ <i>El</i> ] <sub>0</sub> / M | [ <i>Nuc</i> ] <sub>0</sub> / M | $[Nuc]_0/[El]_0$ | T / °C | $k_2 / \mathrm{M}^{-1} \mathrm{s}^{-1}$ |
|----------|--------------------------------|---------------------------------|------------------|--------|-----------------------------------------|
| 100501-D | $5.099 \times 10^{-6}$         | $1.482 \times 10^{-5}$          | 3.4              | 20.0   | $4.707 \times 10^{6}$                   |
| 100501-B | $5.099\times 10^{-6}$          | $2.351\times10^{-5}$            | 5.1              | 20.0   | $4.112\times10^{6}$                     |
| 100501-E | $5.099\times 10^{-6}$          | $3.220\times10^{-5}$            | 6.8              | 20.0   | $4.698\times 10^6$                      |
| 100501-A | $5.099\times 10^{-6}$          | $4.088\times 10^{-5}$           | 8.5              | 20.0   | $4.176\times 10^6$                      |
| 100501-C | $5.099\times 10^{-6}$          | $4.957\times10^{-5}$            | 10               | 20.0   | $4.693\times10^6$                       |

 $< k_2 > (20 \ ^{\circ}\text{C}) = (4.477 \pm 0.273) \times 10^6 \ \text{M}^{-1} \ \text{s}^{-1}$ 

**Table S4.** 1-(*N*-Pyrrolidino)cyclohexene (**1b**) and  $(lil)_2CH^+$  BF<sub>4</sub><sup>-</sup> in CH<sub>2</sub>Cl<sub>2</sub> at  $\lambda = 640$  nm (Schölly).

| $/ M^{-1} s^{-1}$                |
|----------------------------------|
| $581 \times 10^2$                |
| $786 \times 10^2$                |
| $234 \times 10^2$                |
| $304 \times 10^3$                |
| $006 \times 10^{3}$              |
| 786 ><br>234 ><br>304 ><br>006 > |



$$k_2(20 \text{ °C}) = (1.482 \pm 0.167) \times 10^4 \text{ M}^{-1} \text{ s}^{-1}$$

**Table S5.** 1-(*N*-Pyrrolidino)cyclohexene (**1b**) and  $(jul)_2CH^+BF_4^-$  in  $CH_2Cl_2$  at = 640 nm (Stopped flow).

| - |          |                        |                        |                  |                          |                                         |
|---|----------|------------------------|------------------------|------------------|--------------------------|-----------------------------------------|
|   | No.      | $[El]_0 / M$           | $[Nuc]_0 / M$          | $[Nuc]_0/[El]_0$ | $T / ^{\circ}\mathrm{C}$ | $k_2 / \mathrm{M}^{-1} \mathrm{s}^{-1}$ |
|   | 021200-F | $6.698 \times 10^{-6}$ | $1.386 \times 10^{-4}$ | 21               | 20.0                     | $4.183 \times 10^{4}$                   |
|   | 021200-I | $6.698\times10^{-6}$   | $2.079\times 10^{-4}$  | 31               | 20.0                     | $4.722\times 10^4$                      |
|   | 021200-В | $6.698\times 10^{-6}$  | $2.772\times10^{-4}$   | 41               | 20.0                     | $4.451\times 10^4$                      |
|   | 021200-J | $6.698\times10^{-6}$   | $3.464\times10^{-4}$   | 52               | 20.0                     | $4.841\times 10^4$                      |
|   | 021200-С | $6.698\times 10^{-6}$  | $4.157\times10^{-4}$   | 62               | 20.0                     | $4.732\times 10^4$                      |
|   |          |                        |                        |                  |                          |                                         |

 $<k_2>(20 \ ^{\circ}C) = (4.586 \pm 0.239) \times 10^4 \text{ M}^{-1} \text{ s}^{-1}$ 

**Table S6.** 1-(*N*-Pyrrolidino)cyclohexene (**1b**) and  $(thq)_2CH^+$  BF<sub>4</sub><sup>-</sup> in CH<sub>2</sub>Cl<sub>2</sub> at  $\lambda = 628$  nm (Stopped flow).

| No.      | [ <i>El</i> ] <sub>0</sub> / M | [ <i>Nuc</i> ] <sub>0</sub> / M | $[Nuc]_0/[El]_0$ | T / °C | $k_2 / \mathrm{M}^{-1} \mathrm{s}^{-1}$ |
|----------|--------------------------------|---------------------------------|------------------|--------|-----------------------------------------|
| 030501-C | $6.119 \times 10^{-6}$         | $6.565 \times 10^{-5}$          | 11               | 20.0   | $7.508 	imes 10^5$                      |
| 030501-B | $6.119\times10^{-6}$           | $1.313\times10^{-4}$            | 22               | 20.0   | $7.000\times 10^5$                      |
| 030501-A | $6.119\times10^{-6}$           | $2.626\times10^{-4}$            | 43               | 20.0   | $7.377\times10^{5}$                     |

 $< k_2 > (20 \ ^{\circ}\text{C}) = (7.295 \pm 0.215) \times 10^5 \text{ M}^{-1} \text{ s}^{-1}$ 

**Table S7.** 1-(*N*-Pyrrolidino)cyclohexene (**1b**) and  $(dma)_2CH^+BF_4^-$  in  $CH_2Cl_2$  at  $\lambda = 613$  nm (Stopped flow).

| No.      | [ <i>El</i> ] <sub>0</sub> / M | [ <i>Nuc</i> ] <sub>0</sub> / M | $[Nuc]_0/[El]_0$ | T / °C | $k_2 / \mathrm{M}^{-1} \mathrm{s}^{-1}$ |
|----------|--------------------------------|---------------------------------|------------------|--------|-----------------------------------------|
| 160501-D | $5.033 \times 10^{-6}$         | $1.244 \times 10^{-5}$          | 3.0              | 20.0   | $4.972 \times 10^{6}$                   |
| 160501-B | $5.033\times10^{-6}$           | $2.241\times10^{-5}$            | 5.0              | 20.0   | $5.438\times 10^6$                      |
| 160501-C | $5.033\times10^{-6}$           | $3.238\times10^{-5}$            | 6.9              | 20.0   | $5.755 	imes 10^6$                      |
| 160501-A | $5.033\times10^{-6}$           | $4.733\times10^{-5}$            | 9.9              | 20.0   | $5.172\times10^{6}$                     |

 $< k_2 > (20 \ ^{\circ}\text{C}) = (5.334 \pm 0.294) \times 10^6 \text{ M}^{-1} \text{ s}^{-1}$ 

**Table S8.** 1-(*N*-Piperidino)cyclopentene (1c) and (lil)<sub>2</sub>CH<sup>+</sup> BF<sub>4</sub><sup>-</sup> in CH<sub>2</sub>Cl<sub>2</sub> at  $\lambda = 640$  nm (Schölly).

| No.        | [ <i>El</i> ] <sub>0</sub> / M | [ <i>Nuc</i> ] <sub>0</sub> / M | $[Nuc]_0/[El]_0$ | Conv. / % | T/°C  | $k_2 / \mathrm{M}^{-1} \mathrm{s}^{-1}$ |
|------------|--------------------------------|---------------------------------|------------------|-----------|-------|-----------------------------------------|
| 100500.PA1 | $4.658 \times 10^{-5}$         | $6.218 \times 10^{-4}$          | 13               | 74        | -77.7 | $2.301 \times 10^2$                     |
| 100500.PA2 | $5.053\times10^{-5}$           | $6.745\times10^{-4}$            | 13               | 60        | -71.8 | $3.297\times10^2$                       |
| 100500.PA3 | $4.417\times10^{-5}$           | $5.527\times 10^{-4}$           | 13               | 46        | -61.7 | $5.338 \times 10^2$                     |
| 100500.PA5 | $4.738\times10^{-5}$           | $4.744\times10^{-4}$            | 10               | 74        | -51.9 | $8.379\times 10^2$                      |
| 100500.PA7 | $5.150\times10^{-5}$           | $2.644\times10^{-4}$            | 5                | 61        | -41.5 | $1.383\times10^3$                       |
| 100500.PA8 | $4.031\times10^{-5}$           | $2.690\times 10^{-4}$           | 7                | 35        | -31.7 | $2.196\times10^3$                       |



 $k_2(20 \ ^\circ\text{C}) = (1.146 \pm 0.067) \times 10^4 \text{ M}^{-1} \text{ s}^{-1}$ 

**Table S9.** 1-(*N*-Piperidino)cyclopentene (1c) and (jul)<sub>2</sub>CH<sup>+</sup> BF<sub>4</sub><sup>-</sup> in CH<sub>2</sub>Cl<sub>2</sub> at  $\lambda = 640$  nm (Schölly).

| No.        | [ <i>El</i> ] <sub>0</sub> / M | [ <i>Nuc</i> ] <sub>0</sub> / M | $[Nuc]_0/[El]_0$ | Conv. / % | T / °C | $k_2 / \mathrm{M}^{-1} \mathrm{s}^{-1}$ |
|------------|--------------------------------|---------------------------------|------------------|-----------|--------|-----------------------------------------|
| 161100.PA0 | $2.200 \times 10^{-5}$         | $1.172 \times 10^{-3}$          | 53               | 65        | -80.6  | $6.366 \times 10^{2}$                   |
| 161100.PA1 | $1.975\times10^{-5}$           | $4.209\times10^{-4}$            | 21               | 60        | -78.8  | $7.672 \times 10^2$                     |
| 161100.PA2 | $2.636\times10^{-5}$           | $5.617\times10^{-4}$            | 21               | 41        | -75.3  | $8.529\times 10^2$                      |
| 161100.PA3 | $2.260\times10^{-5}$           | $3.854\times10^{-4}$            | 17               | 33        | -70.0  | $1.141\times10^3$                       |
| 161100.PA4 | $4.256\times 10^{-5}$          | $4.883\times10^{-4}$            | 11               | 73        | -68.1  | $1.296\times10^3$                       |
| 161100.PA5 | $2.835\times10^{-5}$           | $3.253\times10^{-4}$            | 11               | 55        | -60.5  | $2.145\times10^3$                       |
| 161100.PA6 | $3.815\times10^{-5}$           | $3.127\times10^{-4}$            | 8                | 48        | -53.1  | $2.964\times10^3$                       |
| 161100.PA7 | $3.427\times 10^{-5}$          | $1.685\times10^{-4}$            | 5                | 53        | -48.7  | $3.665\times 10^3$                      |



Eyring parameters:

Arrhenius parameters:

$$\Delta H^{\ddagger} = 17.969 \pm 0.556 \text{ kJ mol}^{-1} \qquad E_{a} = 19.695 \pm 0.561 \text{ kJ mol}^{-1}$$
$$\Delta S^{\ddagger} = -94.280 \pm 2.707 \text{ J mol}^{-1} \text{ K}^{-1} \qquad \ln A = 18.757 \pm 0.329$$
$$r^{2} = 0.9943 \qquad r^{2} = 0.9952$$

$$k_2(20 \text{ °C}) = (4.565 \pm 0.444) \times 10^4 \text{ M}^{-1} \text{ s}^{-1}$$

**Table S10.** 1-(*N*-Piperidino)cyclopentene (1c) and  $(thq)_2CH^+$  BF<sub>4</sub><sup>-</sup> in CH<sub>2</sub>Cl<sub>2</sub> at  $\lambda = 624$  nm (Stopped flow).

| No.      | $[El]_0 / M$           | [ <i>Nuc</i> ] <sub>0</sub> / M | $[Nuc]_0/[El]_0$ | <i>T</i> / °C | $k_2 / \mathrm{M}^{-1} \mathrm{s}^{-1}$ |
|----------|------------------------|---------------------------------|------------------|---------------|-----------------------------------------|
| 171100-A | $1.963 \times 10^{-5}$ | $2.034\times10^{-4}$            | 10               | 20.0          | $4.333 \times 10^{5}$                   |
| 171100-В | $1.963\times10^{-5}$   | $4.067\times10^{-4}$            | 21               | 20.0          | $4.429\times 10^5$                      |
| 171100-С | $1.963\times10^{-5}$   | $6.101\times10^{-4}$            | 31               | 20.0          | $4.455\times 10^5$                      |
| 171100-D | $1.963\times10^{-5}$   | $8.135\times10^{-4}$            | 41               | 20.0          | $4.451\times 10^5$                      |
| 171100-Е | $1.963\times10^{-5}$   | $1.017\times10^{-4}$            | 52               | 20.0          | $4.538\times 10^5$                      |
|          |                        |                                 |                  |               |                                         |

 $<k_2>(20 \ ^{\circ}\text{C}) = (4.441 \pm 0.066) \times 10^5 \text{ M}^{-1} \text{ s}^{-1}$ 

**Table S11.** 1-(*N*-Piperidino)cyclopentene (**1c**) and  $(dma)_2CH^+BF_4^-$  in  $CH_2Cl_2$  at  $\lambda = 613$  nm (Stopped flow).

| No.      | $[El]_0 / M$           | [ <i>Nuc</i> ] <sub>0</sub> / M | $[Nuc]_0/[El]_0$ | T / °C | $k_2 / \mathrm{M}^{-1} \mathrm{s}^{-1}$ |
|----------|------------------------|---------------------------------|------------------|--------|-----------------------------------------|
| 220301-C | $3.351 \times 10^{-6}$ | $1.845 \times 10^{-5}$          | 6                | 20.0   | $3.766 \times 10^{6}$                   |
| 220301-В | $3.351\times10^{-6}$   | $3.074\times10^{-5}$            | 9                | 20.0   | $3.605\times 10^6$                      |
| 220301-D | $3.351\times10^{-6}$   | $4.304\times10^{-5}$            | 13               | 20.0   | $3.703\times10^{6}$                     |
| 220301-A | $3.351\times10^{-6}$   | $6.149\times10^{-5}$            | 18               | 20.0   | $3.656\times 10^6$                      |

 $<k_2>(20 \text{ °C}) = (3.683 \pm 0.059) \times 10^6 \text{ M}^{-1} \text{ s}^{-1}$ 

| No.        | $[El]_0 / M$           | $[Nuc]_0 / M$          | $[Nuc]_0/[El]_0$ | Conv. / % | T/°C  | $k_2 / \mathrm{M}^{-1} \mathrm{s}^{-1}$ |
|------------|------------------------|------------------------|------------------|-----------|-------|-----------------------------------------|
| 040500.PA0 | $3.707 \times 10^{-5}$ | $1.173 \times 10^{-3}$ | 32               | 84        | -73.7 | 3.151                                   |
| 040500.PA1 | $3.123\times10^{-5}$   | $7.904\times10^{-4}$   | 25               | 84        | -62.6 | 6.784                                   |
| 040500.PA2 | $2.802\times10^{-5}$   | $4.433\times10^{-4}$   | 16               | 86        | -52.1 | $1.385\times10^1$                       |
| 040500.PA3 | $2.455\times10^{-5}$   | $7.768\times10^{-4}$   | 32               | 93        | -40.8 | $2.848\times10^1$                       |
| 040500.PA5 | $2.623\times 10^{-5}$  | $6.639\times 10^{-4}$  | 25               | 84        | -30.8 | $4.988\times 10^1$                      |
| 040500.PA6 | $2.382\times 10^{-5}$  | $4.522\times 10^{-4}$  | 19               | 90        | -20.4 | $8.150\times10^1$                       |
| 040500.PA7 | $2.468\times10^{-5}$   | $3.904\times10^{-4}$   | 16               | 66        | -10.5 | $1.358\times 10^2$                      |
| 040500.PA8 | $2.743\times10^{-5}$   | $6.941\times10^{-4}$   | 25               | 71        | 0.2   | $2.135\times10^2$                       |

**Table S12.** 1-(*N*-Morpholino)cyclopentene (**1e**) and (lil)<sub>2</sub>CH<sup>+</sup> BF<sub>4</sub><sup>-</sup> in CH<sub>2</sub>Cl<sub>2</sub> at  $\lambda = 640$  nm (Schölly).



 $k_2(20 \text{ °C}) = (4.703 \pm 0.075) \times 10^2 \text{ M}^{-1} \text{ s}^{-1}$ 

**Table S13.** 1-(*N*-Morpholino)cyclopentene (1e) and  $(jul)_2CH^+BF_4^-$  in  $CH_2Cl_2$  at  $\lambda = 640$  nm (Schölly).

| No.          | [ <i>El</i> ] <sub>0</sub> / M | [ <i>Nuc</i> ] <sub>0</sub> / M | $[Nuc]_0/[El]_0$ | Conv. / % | T / °C | $k_2 / \mathrm{M}^{-1} \mathrm{s}^{-1}$ |
|--------------|--------------------------------|---------------------------------|------------------|-----------|--------|-----------------------------------------|
| KK050520.PA2 | $2.594 \times 10^{-5}$         | $3.219 \times 10^{-4}$          | 12               | 34        | -67.6  | $2.523 \times 10^1$                     |
| KK050521.PA2 | $2.963\times10^{-5}$           | $3.677\times 10^{-4}$           | 12               | 83        | -58.2  | $4.650\times 10^1$                      |
| KK050522.PA2 | $2.429\times10^{-5}$           | $3.014\times10^{-4}$            | 12               | 72        | -58.1  | $4.741\times10^{1}$                     |
| KK050523.PA2 | $1.614\times10^{-5}$           | $1.001\times10^{-4}$            | 6                | 79        | -48.0  | $8.000\times10^1$                       |
| KK050524.PA2 | $2.765\times10^{-5}$           | $3.431\times10^{-4}$            | 12               | 73        | -38.2  | $1.528\times 10^2$                      |
| KK050525.PA2 | $2.551\times10^{-5}$           | $2.216\times10^{-4}$            | 9                | 75        | -28.3  | $2.407\times 10^2$                      |
| KK090523.PA0 | $1.423\times10^{-5}$           | $1.360\times10^{-4}$            | 10               | 64        | -23.3  | $3.084\times10^2$                       |



$$r^2 = 0.9986$$

 $k_2(20 \text{ °C}) = (1.760 \pm 0.081) \times 10^3 \text{ M}^{-1} \text{ s}^{-1}$ 

| No.        | $[El]_0 / M$           | $[Nuc]_0 / M$          | $[Nuc]_0/[El]_0$ | Conv. / % | <i>T</i> / °C | $k_2 / \mathrm{M}^{-1} \mathrm{s}^{-1}$ |
|------------|------------------------|------------------------|------------------|-----------|---------------|-----------------------------------------|
| 080520.PA1 | $2.363 \times 10^{-5}$ | $2.122 \times 10^{-4}$ | 9                | 85        | -71.7         | $4.398 \times 10^2$                     |
| 080520.PA2 | $3.623\times10^{-5}$   | $4.163\times10^{-4}$   | 12               | 66        | -61.2         | $8.128\times 10^2$                      |
| 080520.PA4 | $2.476\times10^{-5}$   | $1.779\times10^{-4}$   | 7                | 66        | -50.5         | $1.345\times10^3$                       |
| 080520.PA5 | $4.099\times 10^{-5}$  | $2.265\times10^{-4}$   | 6                | 56        | -40.6         | $1.846\times10^3$                       |
| 080520.PA6 | $2.423\times10^{-5}$   | $1.045\times10^{-4}$   | 4                | 51        | -30.9         | $3.215\times10^3$                       |
| 080520.PA7 | $3.374\times10^{-5}$   | $1.118\times10^{-4}$   | 3                | 47        | -20.7         | $4.738\times10^3$                       |
|            |                        |                        |                  |           |               |                                         |

**Table S14.** 1-(*N*-Morpholino)cyclopentene (**1e**) and  $(thq)_2CH^+BF_4^-$  in  $CH_2Cl_2$  at  $\lambda = 640$  nm (Schölly).



$$k_2(20 \text{ °C}) = (1.705 \pm 0.136) \times 10^4 \text{ M}^{-1} \text{ s}^{-1}$$

**Table S15.** 1-(*N*-Morpholino)cyclopentene (1e) and  $(dma)_2CH^+$  BF<sub>4</sub><sup>-</sup> in CH<sub>2</sub>Cl<sub>2</sub> at  $\lambda = 613$  nm (Stopped flow).

| _ |          |                                |                                 |                  |      |                                         |
|---|----------|--------------------------------|---------------------------------|------------------|------|-----------------------------------------|
|   | No.      | [ <i>El</i> ] <sub>0</sub> / M | [ <i>Nuc</i> ] <sub>0</sub> / M | $[Nuc]_0/[El]_0$ | T/°C | $k_2 / \mathrm{M}^{-1} \mathrm{s}^{-1}$ |
|   | 190401-B | $5.080 \times 10^{-6}$         | $8.628 \times 10^{-5}$          | 17               | 20.0 | $2.323 \times 10^5$                     |
|   | 190401-A | $5.080\times 10^{-6}$          | $1.726\times10^{-4}$            | 34               | 20.0 | $2.557\times 10^5$                      |
|   | 190401-C | $5.080\times10^{-6}$           | $2.588\times10^{-4}$            | 51               | 20.0 | $2.421\times 10^5$                      |
|   | 190401-D | $5.080\times 10^{-6}$          | $3.451\times10^{-4}$            | 68               | 20.0 | $2.446 \times 10^5$                     |
|   |          |                                |                                 |                  |      |                                         |

 $< k_2 > (20 \text{ °C}) = (2.437 \pm 0.083) \times 10^5 \text{ M}^{-1} \text{ s}^{-1}$ 

| No.      | $[El]_0 / M$           | $[Nuc]_0 / M$          | $[Nuc]_0/[El]_0$ | $T / ^{\circ}\mathrm{C}$ | $k_2 / \mathrm{M}^{-1} \mathrm{s}^{-1}$ |
|----------|------------------------|------------------------|------------------|--------------------------|-----------------------------------------|
| 150501-C | $4.911 \times 10^{-6}$ | $3.733 \times 10^{-5}$ | 8                | 20.0                     | $9.585 \times 10^{5}$                   |
| 150501-B | $4.911\times10^{-6}$   | $7.466\times10^{-5}$   | 15               | 20.0                     | $9.952\times 10^5$                      |
| 150501-Е | $4.911\times10^{-6}$   | $1.120\times10^{-4}$   | 23               | 20.0                     | $9.585\times 10^5$                      |
| 150501-F | $4.911\times10^{-6}$   | $1.493\times10^{-4}$   | 30               | 20.0                     | $9.669 \times 10^5$                     |
| 150501-D | $4.911\times10^{-6}$   | $1.867\times10^{-4}$   | 38               | 20.0                     | $9.742 \times 10^5$                     |

**Table S16.** 1-(*N*-Morpholino)cyclopentene (1e) and (mpa)<sub>2</sub>CH<sup>+</sup> BF<sub>4</sub><sup>-</sup> in CH<sub>2</sub>Cl<sub>2</sub> at  $\lambda = 622$  nm (Stopped flow).

 $< k_2 > (20 \ ^{\circ}C) = (9.707 \pm 0.136) \times 10^5 \ M^{-1} \ s^{-1}$ 

**Table S17.** 1,2,5,6-Tetrahydro-1-methyl-4-(*N*-morpholino)pyridine (**1g**) and (dma)<sub>2</sub>CH<sup>+</sup> BF<sub>4</sub><sup>-</sup> in CH<sub>2</sub>Cl<sub>2</sub> at  $\lambda = 600$  nm (Schölly).

| No.      | [ <i>El</i> ] <sub>0</sub> / M | $[Nuc]_0 / M$        | $[Nuc]_0/[El]_0$ | Conv. / % | T / °C | $k_2 / \mathrm{M}^{-1} \mathrm{s}^{-1}$ |
|----------|--------------------------------|----------------------|------------------|-----------|--------|-----------------------------------------|
| AO-162.2 | $2.63 \times 10^{-5}$          | $1.78 	imes 10^{-4}$ | 6.8              | 64        | -69.8  | $7.074 \times 10^1$                     |
| AO-162.3 | $3.02 \times 10^{-5}$          | $2.03 	imes 10^{-4}$ | 6.7              | 72        | -61.9  | $1.166 \times 10^2$                     |
| AO-162.4 | $2.84\times10^{-5}$            | $1.92\times10^{-4}$  | 6.8              | 72        | -48.7  | $3.886 \times 10^2$                     |
| AO-162.5 | $2.68\times 10^{-5}$           | $1.81\times10^{-4}$  | 6.8              | 81        | -38.3  | $5.568\times 10^2$                      |
| AO-162.6 | $2.60 	imes 10^{-5}$           | $1.75\times10^{-4}$  | 6.7              | 87        | -28.2  | $1.068\times10^3$                       |
|          |                                |                      |                  |           |        |                                         |



 $k_2(20 \text{ °C}) = (1.010 \pm 0.222) \times 10^4 \text{ M}^{-1} \text{ s}^{-1}$ 

| No.      | $[El]_0 / \mathbf{M}$  | [ <i>Nuc</i> ] <sub>0</sub> / M | $[Nuc]_0/[El]_0$ | T / °C | $k_2 / \mathrm{M}^{-1} \mathrm{s}^{-1}$ |
|----------|------------------------|---------------------------------|------------------|--------|-----------------------------------------|
| 270801-Е | $4.962 \times 10^{-6}$ | $5.488 \times 10^{-5}$          | 11               | 20.0   | $7.722 \times 10^5$                     |
| 270801-D | $4.962\times 10^{-6}$  | $1.098\times10^{-4}$            | 22               | 20.0   | $7.909 	imes 10^5$                      |
| 270801-A | $4.962\times10^{-6}$   | $1.646\times10^{-4}$            | 33               | 20.0   | $7.380\times10^5$                       |
| 270801-В | $4.962\times 10^{-6}$  | $2.195\times10^{-4}$            | 44               | 20.0   | $7.250\times10^5$                       |
| 270801-C | $4.962\times10^{-6}$   | $2.744{\times}~10^{-4}$         | 55               | 20.0   | $6.960\times 10^5$                      |
|          |                        |                                 |                  |        |                                         |

**Table S18.** (*E*)-1-(*N*-Morpholino)propene (**1h**) and  $(dpa)_2CH^+ BF_4^-$  in  $CH_2Cl_2$  at  $\lambda = 672$  nm (Stopped flow).

 $< k_2 > (20 \ ^{\circ}\text{C}) = (7.444 \pm 0.338) \times 10^5 \text{ M}^{-1} \text{ s}^{-1}$ 

**Table S19.** (*Z*)-1-(*N*-Morpholino)propene<sup>[a]</sup> (1i) and  $(dpa)_2CH^+BF_4^-$  in  $CH_2Cl_2$  at  $\lambda = 672$  nm (Stopped flow).

| No.      | $[El]_0 / \mathbf{M}$  | $[Nuc]_0 / M$          | $[Nuc]_0/[El]_0$ | T∕°C | $k_2 / \mathrm{M}^{-1} \mathrm{s}^{-1}$ |
|----------|------------------------|------------------------|------------------|------|-----------------------------------------|
| 170801-B | $4.650 \times 10^{-6}$ | $5.394 \times 10^{-5}$ | 12               | 20.0 | $1.148 \times 10^{6}$                   |
| 170801-C | $4.650\times 10^{-6}$  | $1.079\times10^{-4}$   | 23               | 20.0 | $1.036\times10^6$                       |
| 170801-A | $4.650\times 10^{-6}$  | $1.618\times10^{-4}$   | 35               | 20.0 | $9.775\times10^5$                       |
| 170801-D | $4.650\times 10^{-6}$  | $2.157\times10^{-4}$   | 46               | 20.0 | $1.141\times10^{6}$                     |
| 170801-E | $4.650\times 10^{-6}$  | $2.697 \times 10^{-4}$ | 58               | 20.0 | $1.046\times 10^6$                      |
|          |                        |                        |                  |      |                                         |

[a] contaminated by 11 % of (*E*)-1-(*N*-morpholino)propene (**1h**) (<sup>1</sup>H NMR)

 $<k_2>(20 \text{ °C}) = (1.070 \pm 0.065) \times 10^6 \text{ M}^{-1} \text{ s}^{-1}$ 

**Table S20.** (*N*-Morpholino)isobutylene (**1j**) and  $(dma)_2CH^+$  BF<sub>4</sub><sup>-</sup> in CH<sub>2</sub>Cl<sub>2</sub> at  $\lambda = 600$  nm (Schölly).

| No.        | [ <i>El</i> ] <sub>0</sub> / M | [ <i>Nuc</i> ] <sub>0</sub> / M | $[Nuc]_0/[El]_0$ | Conv. / % | T/°C  | $k_2 / \mathrm{M}^{-1} \mathrm{s}^{-1}$ |
|------------|--------------------------------|---------------------------------|------------------|-----------|-------|-----------------------------------------|
| 050701.PA1 | $6.349 \times 10^{-5}$         | $2.314 \times 10^{-3}$          | 37               | 81        | -73.6 | 2.133                                   |
| 050701.PA2 | $6.314\times10^{-5}$           | $2.301\times10^{-3}$            | 37               | 77        | -59.6 | 5.751                                   |
| 050701.PA3 | $5.656\times 10^{-5}$          | $3.298\times10^{-3}$            | 58               | 57        | -49.8 | $1.039\times10^1$                       |
| 050701.PA4 | $5.801\times10^{-5}$           | $2.537\times10^{-3}$            | 44               | 61        | -40.7 | $1.801\times 10^1$                      |
| 050701.PA5 | $6.162\times10^{-5}$           | $1.797\times10^{-3}$            | 29               | 51        | -29.7 | $3.048\times10^1$                       |



 $k_2(20 \text{ °C}) = (2.528 \pm 0.095) \times 10^2 \text{ M}^{-1} \text{ s}^{-1}$ 

**Table S21.** (*N*-Morpholino)isobutylene (**1j**) and (mpa)<sub>2</sub>CH<sup>+</sup> BF<sub>4</sub><sup>-</sup> in CH<sub>2</sub>Cl<sub>2</sub> at  $\lambda = 622$  nm (Stopped flow).

| No.      | [ <i>El</i> ] <sub>0</sub> / M | $[Nuc]_0 / M$          | $[Nuc]_0/[El]_0$ | T / °C | $k_{\rm eff}$ / s <sup>-1</sup> |
|----------|--------------------------------|------------------------|------------------|--------|---------------------------------|
| 090701-Е | $9.735 	imes 10^{-6}$          | $3.255 \times 10^{-4}$ | 33               | 20.0   | 1.250                           |
| 090701-D | $9.735\times10^{-6}$           | $6.509\times10^{-4}$   | 67               | 20.0   | 2.223                           |
| 090701-A | $9.735\times10^{-6}$           | $9.764\times10^{-4}$   | 100              | 20.0   | 3.274                           |
| 090701-B | $9.735\times10^{-6}$           | $1.302\times10^{-3}$   | 134              | 20.0   | 4.322                           |
| 090701-C | $9.735\times10^{-6}$           | $1.627\times 10^{-3}$  | 167              | 20.0   | 5.611                           |



 $< k_2 > (20 \ ^{\circ}\text{C}) = 3.325 \times 10^3 \text{ L mol}^{-1} \text{ s}^{-1}$  $< k_{-2} > (20 \ ^{\circ}\text{C}) = 8.931 \times 10^{-2} \text{ s}^{-1}$  $K(20 \ ^{\circ}\text{C}) = 3.723 \times 10^4 \text{ L mol}^{-1}$ 

| No.      | [ <i>El</i> ] <sub>0</sub> / M | [ <i>Nuc</i> ] <sub>0</sub> / M | $[Nuc]_0/[El]_0$ | T / °C | $k_2 / \mathrm{M}^{-1} \mathrm{s}^{-1}$ |
|----------|--------------------------------|---------------------------------|------------------|--------|-----------------------------------------|
| 030701-Е | $1.041 \times 10^{-5}$         | $7.322 \times 10^{-5}$          | 7                | 20.0   | $2.312 \times 10^4$                     |
| 030701-D | $1.041\times10^{-5}$           | $1.464\times10^{-4}$            | 14               | 20.0   | $2.368\times10^4$                       |
| 030701-A | $1.041\times10^{-5}$           | $2.197\times10^{-4}$            | 21               | 20.0   | $2.383\times 10^4$                      |
| 030701-B | $1.041\times10^{-5}$           | $2.929\times 10^{-4}$           | 28               | 20.0   | $2.434\times 10^4$                      |
| 030701-C | $1.041\times10^{-5}$           | $3.661 \times 10^{-4}$          | 35               | 20.0   | $2.557\times 10^4$                      |

**Table S22.** (*N*-Morpholino)isobutylene (**1j**) and  $(dpa)_2CH^+$  BF<sub>4</sub><sup>-</sup> in CH<sub>2</sub>Cl<sub>2</sub> at  $\lambda = 672$  nm (Stopped flow).

 $< k_2 > (20 \ ^{\circ}\text{C}) = (2.411 \pm 0.083) \times 10^4 \text{ M}^{-1} \text{ s}^{-1}$ 

**Table S23.** (*N*-Morpholino)isobutylene (**1j**) and  $(mfa)_2CH^+ BF_4^-$  in  $CH_2Cl_2$  at  $\lambda = 593$  nm (Stopped flow).

| No.          | [ <i>El</i> ] <sub>0</sub> / M | [ <i>Nuc</i> ] <sub>0</sub> / M | $[Nuc]_0/[El]_0$ | T / °C | $k_2 / \mathrm{M}^{-1} \mathrm{s}^{-1}$ |
|--------------|--------------------------------|---------------------------------|------------------|--------|-----------------------------------------|
| <br>030701-J | $1.033 \times 10^{-5}$         | $7.365 \times 10^{-5}$          | 7                | 20.0   | $1.251 \times 10^{5}$                   |
| 030701-I     | $1.033\times10^{-5}$           | $1.473\times10^{-4}$            | 14               | 20.0   | $1.273\times 10^5$                      |
| 030701-F     | $1.033\times10^{-5}$           | $2.209\times10^{-4}$            | 21               | 20.0   | $1.283\times 10^5$                      |
| 030701-G     | $1.033\times10^{-5}$           | $2.946\times10^{-4}$            | 29               | 20.0   | $1.298\times 10^5$                      |
| 030701-Н     | $1.033\times10^{-5}$           | $3.682 \times 10^{-4}$          | 36               | 20.0   | $1.311\times 10^5$                      |
|              |                                |                                 |                  |        |                                         |

 $<k_2>(20 \text{ °C}) = (1.283 \pm 0.021) \times 10^5 \text{ M}^{-1} \text{ s}^{-1}$ 

**Table S24.** (*N*-Morpholino)isobutylene (**1j**) and (pfa)<sub>2</sub>CH<sup>+</sup> BF<sub>4</sub><sup>-</sup> in CH<sub>2</sub>Cl<sub>2</sub> at  $\lambda = 601$  nm (Stopped flow).

| No.      | [ <i>El</i> ] <sub>0</sub> / M | [ <i>Nuc</i> ] <sub>0</sub> / M | $[Nuc]_0/[El]_0$ | T / °C | $k_2 / \mathrm{M}^{-1} \mathrm{s}^{-1}$ |
|----------|--------------------------------|---------------------------------|------------------|--------|-----------------------------------------|
| 030701-O | $6.030 	imes 10^{-6}$          | $6.246 \times 10^{-5}$          | 10               | 20.0   | $4.087 \times 10^{5}$                   |
| 030701-N | $6.030\times10^{-6}$           | $1.249\times10^{-4}$            | 21               | 20.0   | $4.260\times10^5$                       |
| 030701-K | $6.030\times10^{-6}$           | $1.874\times10^{-4}$            | 31               | 20.0   | $4.195\times 10^5$                      |
| 030701-L | $6.030\times 10^{-6}$          | $2.498\times10^{-4}$            | 41               | 20.0   | $4.420\times 10^5$                      |

 $< k_2 > (20 \ ^{\circ}\text{C}) = (4.240 \pm 0.121) \times 10^5 \text{ M}^{-1} \text{ s}^{-1}$ 

 $k_2 / \mathrm{M}^{-1} \mathrm{s}^{-1}$ No.  $T / ^{\circ}C$  $[El]_0 / M$  $[Nuc]_0 / M$  $[Nuc]_0/[El]_0$  $1.626 \times 10^{4}$  $6.099 \times 10^{-6}$  $5.041 \times 10^{-4}$ 120701-I 83 20.0  $7.561 \times 10^{-4}$  $1.476 imes 10^4$  $6.099 \times 10^{-6}$ 120701-K 124 20.0  $6.099 \times 10^{-6}$  $1.008 \times 10^{-3}$  $1.371 \times 10^{4}$ 120701-J 165 20.0

**Table S25.** (*E*)- -(*N*-Morpholino)styrene (**1k**) and (mpa)<sub>2</sub>CH<sup>+</sup> BF<sub>4</sub><sup>-</sup> in CH<sub>2</sub>Cl<sub>2</sub> at  $\lambda = 622$  nm (Stopped flow).

 $< k_2 > (20 \ ^{\circ}\text{C}) = (1.491 \pm 0.105) \times 10^4 \text{ M}^{-1} \text{ s}^{-1}$ 

**Table S26.** (*E*)- -(*N*-Morpholino)styrene (**1k**) and  $(dpa)_2CH^+BF_4^-$  in  $CH_2Cl_2$  at  $\lambda = 672$  nm (Stopped flow).

| No.      | $[El]_0 / M$          | $[Nuc]_0 / M$          | $[Nuc]_0/[El]_0$ | T∕°C | $k_2 / \mathrm{M}^{-1} \mathrm{s}^{-1}$ |
|----------|-----------------------|------------------------|------------------|------|-----------------------------------------|
| 120701-Е | $6.580 	imes 10^{-6}$ | $1.008 \times 10^{-4}$ | 15               | 20.0 | $2.118 \times 10^{5}$                   |
| 120701-D | $6.580\times10^{-6}$  | $2.016\times10^{-4}$   | 31               | 20.0 | $2.247 \times 10^5$                     |
| 120701-A | $6.580\times10^{-6}$  | $3.024\times10^{-4}$   | 46               | 20.0 | $2.218\times10^5$                       |
| 120701-В | $6.580\times10^{-6}$  | $4.033\times10^{-4}$   | 61               | 20.0 | $2.258\times 10^5$                      |
| 120701-C | $6.580\times10^{-6}$  | $5.041 \times 10^{-4}$ | 77               | 20.0 | $2.212\times 10^5$                      |
|          |                       |                        |                  |      |                                         |

 $< k_2 > (20 \ ^{\circ}C) = (2.210 \pm 0.050) \times 10^5 \ M^{-1} \ s^{-1}$ 

**Table S27.** (*E*)- -(*N*-Morpholino)styrene (**1k**) and (mfa)<sub>2</sub>CH<sup>+</sup> BF<sub>4</sub><sup>-</sup> in CH<sub>2</sub>Cl<sub>2</sub> at  $\lambda = 593$  nm (Stopped flow).

| No.      | $[El]_0$ / M           | [ <i>Nuc</i> ] <sub>0</sub> / M | $[Nuc]_0/[El]_0$ | T / °C | $k_2 / \mathrm{M}^{-1} \mathrm{s}^{-1}$ |
|----------|------------------------|---------------------------------|------------------|--------|-----------------------------------------|
| 120701-G | $9.005 \times 10^{-6}$ | $5.041 \times 10^{-5}$          | 6                | 20.0   | $1.128 \times 10^{6}$                   |
| 120701-F | $9.005\times 10^{-6}$  | $1.008\times10^{-4}$            | 11               | 20.0   | $1.075\times 10^6$                      |
| 120701-Н | $9.005\times 10^{-6}$  | $2.016\times10^{-4}$            | 22               | 20.0   | $9.943 \times 10^5$                     |

 $< k_2 > (20 \ ^{\circ}\text{C}) = (1.066 \pm 0.055) \times 10^6 \text{ M}^{-1} \text{ s}^{-1}$ 

 $k_2 / \mathrm{M}^{-1} \mathrm{s}^{-1}$ No.  $T / ^{\circ}C$  $[El]_0 / M$  $[Nuc]_0 / M$  $[Nuc]_0/[El]_0$  $3.995 \times 10^{6}$  $6.823 \times 10^{-6}$  $5.041 \times 10^{-5}$ 120701-M 7 20.0  $6.823\times10^{-6}$  $7.057\times10^{-5}$  $3.675\times 10^6$ 120701-N 10 20.0  $6.823 \times 10^{-6}$  $1.008 \times 10^{-4}$  $3.481\times10^{6}$ 120701-L 15 20.0

**Table S28.** (*E*)- -(*N*-Morpholino)styrene (**1k**) and (pfa)<sub>2</sub>CH<sup>+</sup> BF<sub>4</sub><sup>-</sup> in CH<sub>2</sub>Cl<sub>2</sub> at  $\lambda = 601$  nm (Stopped flow).

 $< k_2 > (20 \ ^{\circ}\text{C}) = (3.717 \pm 0.212) \times 10^6 \text{ M}^{-1} \text{ s}^{-1}$ 

**Table S29.** -(*N*-Morpholino)styrene (11) and  $(thq)_2CH^+$  BF<sub>4</sub><sup>-</sup> in CH<sub>2</sub>Cl<sub>2</sub> at  $\lambda = 640$  nm (Schölly).

| No.        | [ <i>El</i> ] <sub>0</sub> / M | $[Nuc]_0 / M$          | $[Nuc]_0/[El]_0$ | Conv. / % | <i>T</i> / °C | $k_2 / \mathrm{M}^{-1} \mathrm{s}^{-1}$ |
|------------|--------------------------------|------------------------|------------------|-----------|---------------|-----------------------------------------|
| 010601.PA2 | $2.987 \times 10^{-5}$         | $4.332 \times 10^{-4}$ | 15               | 78        | 20.0          | $2.347 \times 10^{1}$                   |
| 010601.PA0 | $3.442\times 10^{-5}$          | $9.982\times10^{-4}$   | 29               | 79        | 20.0          | $2.330\times10^1$                       |
| 010601.PA1 | $2.929\times10^{-5}$           | $2.124\times10^{-3}$   | 73               | 70        | 20.0          | $2.356\times10^1$                       |
|            |                                |                        |                  |           |               |                                         |

 $< k_2 > (20 \ ^{\circ}\text{C}) = (2.344 \pm 0.011) \times 10^1 \text{ M}^{-1} \text{ s}^{-1}$ 

**Table S30.** -(*N*-Morpholino)styrene (11) and  $(dma)_2CH^+$  BF<sub>4</sub><sup>-</sup> in CH<sub>2</sub>Cl<sub>2</sub> at  $\lambda = 600$  nm (Schölly).

| No.        | [ <i>El</i> ] <sub>0</sub> / M | [ <i>Nuc</i> ] <sub>0</sub> / M | $[Nuc]_0/[El]_0$ | Conv. / % | T/°C  | $k_2 / \mathrm{M}^{-1} \mathrm{s}^{-1}$ |
|------------|--------------------------------|---------------------------------|------------------|-----------|-------|-----------------------------------------|
| 310501.PA1 | $3.767 \times 10^{-5}$         | $1.023 \times 10^{-3}$          | 27               | 68        | -50.0 | 1.692                                   |
| 310501.PA2 | $4.421\times10^{-5}$           | $1.200 \times 10^{-3}$          | 27               | 79        | -41.2 | 3.809                                   |
| 310501.PA3 | $3.919\times10^{-5}$           | $8.513\times10^{-4}$            | 22               | 80        | -29.9 | 8.979                                   |
| 310501.PA4 | $3.160\times10^{-5}$           | $5.148\times10^{-4}$            | 16               | 76        | -20.6 | $1.818\times10^1$                       |
| 310501.PA5 | $3.088\times10^{-5}$           | $3.354\times10^{-4}$            | 11               | 81        | -10.3 | $3.519\times10^{1}$                     |



| Eyring parameters:                                                          | Arrhenius parameters:                              |
|-----------------------------------------------------------------------------|----------------------------------------------------|
| $\Delta H^{\ddagger} = 35.203 \pm 0.413 \text{ kJ mol}^{-1}$                | $E_{\rm a} = 37.213 \pm 0.396 \text{ kJ mol}^{-1}$ |
| $\Delta S^{\ddagger} = -80.197 \pm 1.709 \text{ J mol}^{-1} \text{ K}^{-1}$ | $\ln A = 20.604 \pm 0.197$                         |
| $r^2 = 0.9996$                                                              | $r^2 = 0.9997$                                     |

$$k_2(20 \text{ °C}) = (2.111 \pm 0.076) \times 10^2 \text{ M}^{-1} \text{ s}^{-1}$$

**Table S31.** -(*N*-Morpholino)styrene (11) and  $(mpa)_2CH^+$  BF<sub>4</sub><sup>-</sup> in CH<sub>2</sub>Cl<sub>2</sub> at  $\lambda = 622$  nm (Stopped flow).

| No.      | [ <i>El</i> ] <sub>0</sub> / M | [ <i>Nuc</i> ] <sub>0</sub> / M | $[Nuc]_0/[El]_0$ | T / °C | $k_2 / \mathrm{M}^{-1} \mathrm{s}^{-1}$ |
|----------|--------------------------------|---------------------------------|------------------|--------|-----------------------------------------|
| 300501-Е | $1.347 \times 10^{-5}$         | $2.220 	imes 10^{-4}$           | 17               | 20.0   | $1.540 \times 10^{3}$                   |
| 300501-D | $1.347\times10^{-5}$           | $4.440\times10^{-4}$            | 33               | 20.0   | $1.552\times10^3$                       |
| 300501-F | $1.347\times10^{-5}$           | $6.661\times10^{-4}$            | 49               | 20.0   | $1.793\times10^3$                       |
| 300501-C | $1.347\times10^{-5}$           | $8.881\times10^{-4}$            | 66               | 20.0   | $1.731\times10^3$                       |
| 300501-В | $1.347\times10^{-5}$           | $1.110\times10^{-3}$            | 82               | 20.0   | $1.776 \times 10^3$                     |

 $< k_2 > (20 \text{ °C}) = (1.678 \pm 0.110) \times 10^3 \text{ M}^{-1} \text{ s}^{-1}$ 

**Table S32.** -(*N*-Morpholino)styrene (11) and  $(dpa)_2CH^+BF_4^-$  in  $CH_2Cl_2$  at  $\lambda = 672$  nm (Stopped flow).

| No.      | [ <i>El</i> ] <sub>0</sub> / M | [ <i>Nuc</i> ] <sub>0</sub> / M | $[Nuc]_0/[El]_0$ | T / °C | $k_2 / \mathrm{M}^{-1} \mathrm{s}^{-1}$ |
|----------|--------------------------------|---------------------------------|------------------|--------|-----------------------------------------|
| 290501-Е | $1.380 \times 10^{-5}$         | $1.073 \times 10^{-4}$          | 8                | 20.0   | $1.327 \times 10^4$                     |
| 290501-В | $1.380\times10^{-5}$           | $2.145\times10^{-4}$            | 16               | 20.0   | $1.345\times10^4$                       |
| 290501-С | $1.380\times10^{-5}$           | $3.218\times10^{-4}$            | 23               | 20.0   | $1.353\times10^4$                       |
| 290501-D | $1.380\times10^{-5}$           | $4.290\times10^{-4}$            | 31               | 20.0   | $1.377 	imes 10^4$                      |
| 290501-A | $1.380\times10^{-5}$           | $5.363\times10^{-4}$            | 39               | 20.0   | $1.375 	imes 10^4$                      |

 $<k_2>(20 \text{ °C}) = (1.355 \pm 0.019) \times 10^4 \text{ M}^{-1} \text{ s}^{-1}$ 

| No.      | [ <i>El</i> ] <sub>0</sub> / M | [ <i>Nuc</i> ] <sub>0</sub> / M | $[Nuc]_0/[El]_0$ | T / °C | $k_2 / \mathrm{M}^{-1} \mathrm{s}^{-1}$ |
|----------|--------------------------------|---------------------------------|------------------|--------|-----------------------------------------|
| 290501-J | $7.292 \times 10^{-6}$         | $1.073 \times 10^{-4}$          | 15               | 20.0   | $6.428 \times 10^{4}$                   |
| 290501-F | $7.292\times 10^{-6}$          | $2.145 	imes 10^{-4}$           | 29               | 20.0   | $6.512 	imes 10^4$                      |
| 290501-I | $7.292\times10^{-6}$           | $3.218\times10^{-4}$            | 44               | 20.0   | $6.737 	imes 10^4$                      |
| 290501-Н | $7.292\times10^{-6}$           | $4.290\times10^{-4}$            | 59               | 20.0   | $6.763 	imes 10^4$                      |
| 290501-G | $7.292\times 10^{-6}$          | $5.363\times10^{-4}$            | 74               | 20.0   | $6.940 	imes 10^4$                      |

**Table S33.** -(*N*-Morpholino)styrene (11) and  $(mfa)_2CH^+BF_4^-$  in  $CH_2Cl_2$  at  $\lambda = 593$  nm (Stopped flow).

 $< k_2 > (20 \ ^{\circ}\text{C}) = (6.676 \pm 0.184) \times 10^4 \text{ M}^{-1} \text{ s}^{-1}$ 

**Table S34.** -(*N*-Morpholino)styrene (11) and  $(pfa)_2CH^+$  BF<sub>4</sub><sup>-</sup> in CH<sub>2</sub>Cl<sub>2</sub> at  $\lambda = 601$  nm (Stopped flow).

| No.      | [ <i>El</i> ] <sub>0</sub> / M | [ <i>Nuc</i> ] <sub>0</sub> / M | $[Nuc]_0/[El]_0$ | T / °C | $k_2 / \mathrm{M}^{-1} \mathrm{s}^{-1}$ |
|----------|--------------------------------|---------------------------------|------------------|--------|-----------------------------------------|
| 290501-O | $5.251 \times 10^{-6}$         | $1.073 \times 10^{-4}$          | 20               | 20.0   | $2.403 \times 10^{5}$                   |
| 290501-К | $5.251\times10^{-6}$           | $2.145\times10^{-4}$            | 41               | 20.0   | $2.352\times 10^5$                      |
| 290501-N | $5.251\times10^{-6}$           | $3.218\times10^{-4}$            | 61               | 20.0   | $2.515\times 10^5$                      |
| 290501-M | $5.251\times10^{-6}$           | $4.290\times10^{-4}$            | 82               | 20.0   | $2.573\times10^5$                       |
| 290501-L | $5.251\times10^{-6}$           | $5.363\times10^{-4}$            | 102              | 20.0   | $2.611\times 10^5$                      |

 $<k_2>(20 \text{ °C}) = (2.491 \pm 0.099) \times 10^5 \text{ M}^{-1} \text{ s}^{-1}$ 

**Table S35.** Ethyl (*E*)-3-(*N*-morpholino)acrylate (**1m**) and (pfa)<sub>2</sub>CH<sup>+</sup> BF<sub>4</sub><sup>-</sup> in CH<sub>2</sub>Cl<sub>2</sub> at  $\lambda = 601$  nm (Stopped flow).

| No.      | [ <i>El</i> ] <sub>0</sub> / M | [ <i>Nuc</i> ] <sub>0</sub> / M | $[Nuc]_0/[El]_0$ | <i>T</i> / °C | $k_{\rm eff}$ / s <sup>-1</sup> |
|----------|--------------------------------|---------------------------------|------------------|---------------|---------------------------------|
| 240701-Е | $6.397 \times 10^{-6}$         | $2.234\times10^{-4}$            | 35               | 20.0          | 6.459                           |
| 240701-D | $6.397\times 10^{-6}$          | $4.468\times10^{-4}$            | 70               | 20.0          | $1.109\times10^1$               |
| 240701-A | $6.397\times 10^{-6}$          | $6.702\times10^{-4}$            | 105              | 20.0          | $1.490\times10^1$               |
| 240701-В | $6.397\times 10^{-6}$          | $8.936\times 10^{-4}$           | 140              | 20.0          | $2.008\times10^1$               |
| 240701-C | $6.397\times 10^{-6}$          | $1.117\times10^{-3}$            | 175              | 20.0          | $2.452\times 10^1$              |



**Table S36.** Ethyl (*E*)-3-(dimethylamino)acrylate (**1n**) and (pfa)<sub>2</sub>CH<sup>+</sup> BF<sub>4</sub><sup>-</sup> in CH<sub>2</sub>Cl<sub>2</sub> at  $\lambda = 601$  nm (Stopped flow).

| No.      | [ <i>El</i> ] <sub>0</sub> / M | [ <i>Nuc</i> ] <sub>0</sub> / M | $[Nuc]_0/[El]_0$ | T / °C | $k_2 / \mathrm{M}^{-1} \mathrm{s}^{-1}$ |
|----------|--------------------------------|---------------------------------|------------------|--------|-----------------------------------------|
| 240801-В | $5.397 \times 10^{-6}$         | $1.589 \times 10^{-4}$          | 30               | 20.0   | $1.128 \times 10^5$                     |
| 240801-С | $5.397\times10^{-6}$           | $2.384\times10^{-4}$            | 44               | 20.0   | $1.027\times 10^5$                      |
| 240801-D | $5.397\times10^{-6}$           | $3.179\times10^{-4}$            | 59               | 20.0   | $1.039\times10^5$                       |
| 240801-Е | $5.397\times10^{-6}$           | $3.974\times10^{-4}$            | 74               | 20.0   | $1.064\times10^5$                       |
| 240801-G | $5.397\times10^{-6}$           | $5.563\times10^{-4}$            | 103              | 20.0   | $1.112\times10^{5}$                     |

 $< k_2 > (20 \ ^{\circ}\text{C}) = (1.074 \pm 0.040) \times 10^5 \text{ M}^{-1} \text{ s}^{-1}$ 

**Table S37.** 1-(Methylphenylamino)cyclopentene (**10**) and (lil)<sub>2</sub>CH<sup>+</sup> BF<sub>4</sub><sup>-</sup> in CH<sub>2</sub>Cl<sub>2</sub> at  $\lambda = 640$  nm (Schölly).

| No.        | $[El]_0 / M$           | $[Nuc]_0 / M$          | $[Nuc]_0/[El]_0$ | Conv. / % | T / °C | $k_2 / \mathrm{M}^{-1} \mathrm{s}^{-1}$ |
|------------|------------------------|------------------------|------------------|-----------|--------|-----------------------------------------|
| 210601.PA0 | $3.690 \times 10^{-5}$ | $1.106 \times 10^{-3}$ | 30               | 76        | -47.8  | 2.182                                   |
| 210601.PA1 | $3.383 \times 10^{-5}$ | $1.268\times10^{-3}$   | 38               | 74        | -40.5  | 4.464                                   |
| 210601.PA2 | $2.473\times10^{-5}$   | $8.473\times10^{-4}$   | 34               | 70        | -30.9  | 8.740                                   |
| 210601.PA3 | $3.068\times10^{-5}$   | $6.898\times10^{-4}$   | 23               | 65        | -20.4  | $1.820\times10^1$                       |
| 210601.PA4 | $2.584\times10^{-5}$   | $6.640\times10^{-4}$   | 26               | 59        | -11.2  | $3.392\times 10^1$                      |
|            |                        |                        |                  |           |        |                                         |



 $k_2(20 \text{ °C}) = (2.017 \pm 0.137) \times 10^2 \text{ M}^{-1} \text{ s}^{-1}$ 

**Table S38.** 1-(Methylphenylamino)cyclopentene (10) and  $(jul)_2CH^+ BF_4^-$  in  $CH_2Cl_2$  at  $\lambda = 642$  nm (Stopped flow).

| No.      | $[El]_0 / M$           | $[Nuc]_0 / M$          | $[Nuc]_0/[El]_0$ | T / °C | $k_2 / \mathrm{M}^{-1} \mathrm{s}^{-1}$ |
|----------|------------------------|------------------------|------------------|--------|-----------------------------------------|
| 180601-L | $5.131 \times 10^{-6}$ | $2.036 \times 10^{-4}$ | 40               | 20.0   | $4.175 \times 10^{2}$                   |
| 180601-K | $5.131\times10^{-6}$   | $3.394\times10^{-4}$   | 66               | 20.0   | $4.330\times10^2$                       |
| 180601-M | $5.131\times10^{-6}$   | $6.787\times10^{-4}$   | 132              | 20.0   | $4.435\times10^2$                       |

 $< k_2 > (20 \ ^{\circ}\text{C}) = (4.313 \pm 0.107) \times 10^2 \text{ M}^{-1} \text{ s}^{-1}$ 

**Table S39.** 1-(Methylphenylamino)cyclopentene (**10**) and  $(thq)_2CH^+$  BF<sub>4</sub><sup>-</sup> in CH<sub>2</sub>Cl<sub>2</sub> at  $\lambda = 628$  nm (Stopped flow).

| _ |          |                        |                        |                  |        |                                         |
|---|----------|------------------------|------------------------|------------------|--------|-----------------------------------------|
|   | No.      | $[El]_0 / \mathbf{M}$  | $[Nuc]_0 / M$          | $[Nuc]_0/[El]_0$ | T / °C | $k_2 / \mathrm{M}^{-1} \mathrm{s}^{-1}$ |
|   | 180601-J | $6.037 \times 10^{-6}$ | $1.357 \times 10^{-4}$ | 23               | 20.0   | $4.835 \times 10^{3}$                   |
|   | 180601-G | $6.037\times10^{-6}$   | $2.036\times10^{-4}$   | 34               | 20.0   | $5.101\times10^3$                       |
|   | 180601-H | $6.037\times10^{-6}$   | $2.715\times10^{-4}$   | 45               | 20.0   | $5.065\times10^3$                       |
|   | 180601-I | $6.037\times 10^{-6}$  | $3.394\times10^{-4}$   | 56               | 20.0   | $5.044\times 10^3$                      |
|   |          |                        |                        |                  |        |                                         |

 $< k_2 > (20 \ ^{\circ}\text{C}) = (5.011 \pm 0.104) \times 10^3 \text{ M}^{-1} \text{ s}^{-1}$ 

| No.      | $[El]_0 / \mathbf{M}$  | [ <i>Nuc</i> ] <sub>0</sub> / M | $[Nuc]_0/[El]_0$ | T / °C | $k_2 / \mathrm{M}^{-1} \mathrm{s}^{-1}$ |
|----------|------------------------|---------------------------------|------------------|--------|-----------------------------------------|
| 180601-F | $7.149 \times 10^{-6}$ | $6.014 \times 10^{-5}$          | 8                | 20.0   | $4.664 \times 10^{4}$                   |
| 180601-D | $7.149\times10^{-6}$   | $1.203\times10^{-4}$            | 17               | 20.0   | $4.808 	imes 10^4$                      |
| 180601-A | $7.149\times10^{-6}$   | $1.804\times10^{-4}$            | 25               | 20.0   | $5.082\times 10^4$                      |
| 180601-B | $7.149\times10^{-6}$   | $2.406\times10^{-4}$            | 34               | 20.0   | $5.152\times 10^4$                      |
| 180601-C | $7.149\times10^{-6}$   | $3.007 \times 10^{-4}$          | 42               | 20.0   | $5.097\times 10^4$                      |
|          |                        |                                 |                  |        |                                         |

**Table S40.** 1-(Methylphenylamino)cyclopentene (**1o**) and  $(dma)_2CH^+BF_4^-$  in  $CH_2Cl_2$  at  $\lambda = 613$  nm (Stopped flow).

 $< k_2 > (20 \ ^{\circ}C) = (4.961 \pm 0.190) \times 10^4 \text{ M}^{-1} \text{ s}^{-1}$ 

**Table S41.** 1-(Methylphenylamino)cyclopentene (**1o**) and (mpa)<sub>2</sub>CH<sup>+</sup> BF<sub>4</sub><sup>-</sup> in CH<sub>2</sub>Cl<sub>2</sub> at  $\lambda = 622$  nm (Stopped flow).

| No.      | [ <i>El</i> ] <sub>0</sub> / M | [ <i>Nuc</i> ] <sub>0</sub> / M | $[Nuc]_0/[El]_0$ | <i>T</i> / °C | $k_2 / \mathrm{M}^{-1} \mathrm{s}^{-1}$ |
|----------|--------------------------------|---------------------------------|------------------|---------------|-----------------------------------------|
| 130601-K | $4.997 \times 10^{-6}$         | $6.464 \times 10^{-5}$          | 13               | 20.0          | $3.334 \times 10^5$                     |
| 130601-G | $4.997\times10^{-6}$           | $1.293\times10^{-4}$            | 26               | 20.0          | $3.265\times10^5$                       |
| 130601-Н | $4.997\times10^{-6}$           | $1.939\times10^{-4}$            | 39               | 20.0          | $3.179\times 10^5$                      |
| 130601-I | $4.997\times10^{-6}$           | $2.586\times10^{-4}$            | 52               | 20.0          | $3.141\times 10^5$                      |
| 130601-J | $4.997\times10^{-6}$           | $3.232\times10^{-4}$            | 65               | 20.0          | $3.125\times10^{5}$                     |

 $<k_2>(20 \text{ °C}) = (3.209 \pm 0.079) \times 10^5 \text{ M}^{-1} \text{ s}^{-1}$ 

**Table S42.** 1-(Methylphenylamino)cyclopentene (**10**) and  $(dpa)_2CH^+$  BF<sub>4</sub><sup>-</sup> in CH<sub>2</sub>Cl<sub>2</sub> at  $\lambda = 672$  nm (Stopped flow).

| No.      | [ <i>El</i> ] <sub>0</sub> / M | [ <i>Nuc</i> ] <sub>0</sub> / M | $[Nuc]_0/[El]_0$ | T / °C | $k_2 / \mathrm{M}^{-1} \mathrm{s}^{-1}$ |
|----------|--------------------------------|---------------------------------|------------------|--------|-----------------------------------------|
| 130601-C | $5.791 	imes 10^{-6}$          | $3.232 \times 10^{-5}$          | 6                | 20.0   | $2.815 \times 10^6$                     |
| 130601-F | $5.791\times10^{-6}$           | $5.818\times10^{-5}$            | 10               | 20.0   | $2.738\times 10^6$                      |
| 130601-B | $5.791\times10^{-6}$           | $6.464\times10^{-5}$            | 11               | 20.0   | $2.853\times 10^6$                      |
| 130601-Е | $5.791\times10^{-6}$           | $1.293\times10^{-4}$            | 22               | 20.0   | $2.646\times 10^6$                      |

 $< k_2 > (20 \ ^{\circ}\text{C}) = (2.763 \pm 0.079) \times 10^6 \text{ M}^{-1} \text{ s}^{-1}$ 

| No.       | $[El]_0 / M$           | $[Nuc]_0 / M$          | $[Nuc]_0/[El]_0$ | Conv. / % | <i>T</i> / °C | $k_2 / \mathrm{M}^{-1} \mathrm{s}^{-1}$ |
|-----------|------------------------|------------------------|------------------|-----------|---------------|-----------------------------------------|
| 070501-02 | $1.351 \times 10^{-5}$ | $3.104 \times 10^{-4}$ | 23               | 86        | 20.0          | $1.136 \times 10^{2}$                   |
| 070501-03 | $1.907\times10^{-5}$   | $8.214\times10^{-4}$   | 43               | 95        | 20.0          | $1.031\times10^2$                       |
| 070501-01 | $1.736\times10^{-5}$   | $7.974\times10^{-4}$   | 46               | 95        | 20.0          | $1.034\times10^2$                       |
| 070501-04 | $2.750\times10^{-5}$   | $1.579\times10^{-3}$   | 57               | 93        | 20.0          | $9.521\times 10^1$                      |
|           |                        |                        |                  |           |               |                                         |

**Table S43.** 1-(Methylphenylamino)cyclohexene (1p) and  $(thq)_2CH^+$  BF<sub>4</sub><sup>-</sup> in CH<sub>2</sub>Cl<sub>2</sub> at  $\lambda = 628$  nm (J&M).

 $< k_2 > (20 \ ^{\circ}\text{C}) = (1.038 \pm 0.065) \times 10^2 \text{ M}^{-1} \text{ s}^{-1}$ 

**Table S44.** 1-(Methylphenylamino)cyclohexene (**1p**) and (dma)<sub>2</sub>CH<sup>+</sup> BF<sub>4</sub><sup>-</sup> in CH<sub>2</sub>Cl<sub>2</sub> at  $\lambda = 613$  nm (Stopped flow).

| No.      | [ <i>El</i> ] <sub>0</sub> / M | [ <i>Nuc</i> ] <sub>0</sub> / M | $[Nuc]_0/[El]_0$ | T / °C | $k_{\rm eff}$ / s <sup>-1</sup> |
|----------|--------------------------------|---------------------------------|------------------|--------|---------------------------------|
| 020501-Е | $8.890 \times 10^{-6}$         | $2.141 \times 10^{-4}$          | 24               | 20.0   | $2.023 	imes 10^{-1}$           |
| 020501-B | $8.890\times10^{-6}$           | $4.282\times10^{-4}$            | 48               | 20.0   | $4.127\times10^{-1}$            |
| 020501-C | $8.890\times10^{-6}$           | $6.424\times10^{-4}$            | 72               | 20.0   | $6.359\times10^{-1}$            |
| 020501-D | $8.890\times 10^{-6}$          | $8.565\times 10^{-4}$           | 96               | 20.0   | $8.813\times10^{-1}$            |
| 020501-A | $8.890\times 10^{-6}$          | $1.071\times10^{-3}$            | 120              | 20.0   | 1.090                           |



 $< k_2 > (20 \ ^{\circ}\text{C}) = 1.048 \times 10^3 \text{ M}^{-1} \text{ s}^{-1}$  $< k_{-2} > (20 \ ^{\circ}\text{C}) = 2.860 \times 10^{-2} \text{ s}^{-1}$  $K(20 \ ^{\circ}\text{C}) = 3.664 \times 10^4 \text{ M}^{-1}$ 

| No.      | $[El]_0 / M$           | $[Nuc]_0 / M$          | $[Nuc]_0/[El]_0$ | <i>T</i> / °C | $k_2 / \mathrm{M}^{-1} \mathrm{s}^{-1}$ |
|----------|------------------------|------------------------|------------------|---------------|-----------------------------------------|
| 300401-L | $4.256 \times 10^{-6}$ | $2.976 \times 10^{-4}$ | 70               | 20.0          | $8.368 \times 10^{3}$                   |
| 300401-O | $4.256\times 10^{-6}$  | $3.968\times10^{-4}$   | 93               | 20.0          | $8.503\times10^3$                       |
| 300401-K | $4.256\times10^{-6}$   | $4.960\times10^{-4}$   | 117              | 20.0          | $8.367\times 10^3$                      |
| 300401-N | $4.256\times10^{-6}$   | $6.945\times10^{-4}$   | 163              | 20.0          | $8.407\times 10^3$                      |
| 300401-M | $4.256\times10^{-6}$   | $9.921\times10^{-4}$   | 233              | 20.0          | $8.492\times 10^3$                      |

**Table S45.** 1-(Methylphenylamino)cyclohexene (**1p**) and (mpa)<sub>2</sub>CH<sup>+</sup> BF<sub>4</sub><sup>-</sup> in CH<sub>2</sub>Cl<sub>2</sub> at  $\lambda = 622$  nm (Stopped flow).

 $< k_2 > (20 \ ^{\circ}\text{C}) = (8.427 \pm 0.059) \times 10^3 \text{ M}^{-1} \text{ s}^{-1}$ 

**Table S46.** 1-(Methylphenylamino)cyclohexene (**1p**) and (dpa)<sub>2</sub>CH<sup>+</sup> BF<sub>4</sub><sup>-</sup> in CH<sub>2</sub>Cl<sub>2</sub> at  $\lambda = 672$  nm (Stopped flow).

| No.      | [ <i>El</i> ] <sub>0</sub> / M | [ <i>Nuc</i> ] <sub>0</sub> / M | $[Nuc]_0/[El]_0$ | T / °C | $k_2 / \mathrm{M}^{-1} \mathrm{s}^{-1}$ |
|----------|--------------------------------|---------------------------------|------------------|--------|-----------------------------------------|
| 300401-J | $5.975 	imes 10^{-6}$          | $9.921 \times 10^{-5}$          | 17               | 20.0   | $8.602 \times 10^{4}$                   |
| 300401-I | $5.975\times10^{-6}$           | $1.984\times10^{-4}$            | 33               | 20.0   | $8.720\times 10^4$                      |
| 300401-Н | $5.975\times10^{-6}$           | $2.976\times10^{-4}$            | 50               | 20.0   | $8.705\times 10^4$                      |
| 300401-G | $5.975\times10^{-6}$           | $3.968\times10^{-4}$            | 66               | 20.0   | $8.633\times 10^4$                      |
| 300401-F | $5.975\times10^{-6}$           | $4.960\times10^{-4}$            | 83               | 20.0   | $8.519\times 10^4$                      |

 $<k_2>(20 \text{ °C}) = (8.636 \pm 0.073) \times 10^4 \text{ M}^{-1} \text{ s}^{-1}$ 

**Table S47.** 1-(Methylphenylamino)cyclohexene (**1p**) and (mfa)<sub>2</sub>CH<sup>+</sup> BF<sub>4</sub><sup>-</sup> in CH<sub>2</sub>Cl<sub>2</sub> at  $\lambda = 593$  nm (Stopped flow).

| No.      | [ <i>El</i> ] <sub>0</sub> / M | [ <i>Nuc</i> ] <sub>0</sub> / M | $[Nuc]_0/[El]_0$ | T / °C | $k_2 / \mathrm{M}^{-1} \mathrm{s}^{-1}$ |
|----------|--------------------------------|---------------------------------|------------------|--------|-----------------------------------------|
| 300401-B | $5.410 \times 10^{-6}$         | $9.921 \times 10^{-5}$          | 18               | 20.0   | $3.382 \times 10^{5}$                   |
| 300401-A | $5.410\times10^{-6}$           | $1.984\times10^{-4}$            | 37               | 20.0   | $3.357\times 10^5$                      |
| 300401-C | $5.410\times10^{-6}$           | $2.976\times10^{-4}$            | 55               | 20.0   | $3.376\times 10^5$                      |
| 300401-D | $5.410\times10^{-6}$           | $3.968\times10^{-4}$            | 73               | 20.0   | $3.404\times 10^5$                      |
| 300401-Е | $5.410\times10^{-6}$           | $4.960\times10^{-4}$            | 92               | 20.0   | $3.497\times 10^5$                      |

 $< k_2 > (20 \ ^{\circ}\text{C}) = (3.403 \pm 0.049) \times 10^5 \text{ M}^{-1} \text{ s}^{-1}$ 

| No       | $[E_{1}]_{0}/M$       | $[Nuc]_{\circ} / M$   | $[Nuc]_{\circ}/[El]_{\circ}$ | Conv / %    | T / °C | $k_{2} / M^{-1} s^{-1}$ |
|----------|-----------------------|-----------------------|------------------------------|-------------|--------|-------------------------|
|          |                       |                       |                              | COIIV. / /0 | 1 / C  | K2 / IVI - S            |
| AO-142.1 | $3.94 \times 10^{-5}$ | $3.76 \times 10^{-4}$ | 9.5                          | 73          | -73.8  | $5.366 \times 10^2$     |
| AO-139.1 | $7.90 	imes 10^{-5}$  | $9.66\times10^{-4}$   | 12                           | 70          | -70.0  | $6.190 \times 10^{2}$   |
| AO-142.2 | $3.86\times10^{-5}$   | $2.77 	imes 10^{-4}$  | 7.2                          | 58          | -60.9  | $1.075\times10^3$       |
| AO-142.3 | $2.33\times10^{-5}$   | $1.86\times10^{-4}$   | 8.0                          | 65          | -50.6  | $1.830 \times 10^3$     |
| AO-142.4 | $2.07 	imes 10^{-5}$  | $8.26\times 10^{-5}$  | 4.0                          | 83          | -41.2  | $2.747 \times 10^3$     |

**Table S48.** 1-(1-Cyclohexenyl)-4-methylpiperazine (**1q**) and  $(dma)_2CH^+BF_4^-$  in  $CH_2Cl_2$  at  $\lambda = 640$  nm (Schölly).



 $k_2(20 \text{ °C}) = (2.454 \pm 0.188) \times 10^4 \text{ M}^{-1} \text{ s}^{-1}$ 

**Table S49.** Pyrrole (4a) and  $(pfa)_2CH^+BF_4^-$  in  $CH_2Cl_2$  at  $\lambda = 600$  nm (Schölly).

| No.        | [ <i>El</i> ] <sub>0</sub> / M | $[Nuc]_0 / M$          | $[Nuc]_0/[El]_0$ | Conv. / % | <i>T</i> / °C | $k_2 / \mathrm{M}^{-1} \mathrm{s}^{-1}$ |
|------------|--------------------------------|------------------------|------------------|-----------|---------------|-----------------------------------------|
| 210801.PA1 | $2.616 \times 10^{-5}$         | $9.176 \times 10^{-4}$ | 35               | 55        | 20.0          | $3.083 \times 10^1$                     |
| 210801.PA2 | $3.242\times10^{-5}$           | $1.624\times10^{-3}$   | 50               | 40        | 20.0          | $3.313\times10^1$                       |
| 210801.PA3 | $2.839\times10^{-5}$           | $3.319\times10^{-3}$   | 117              | 36        | 20.0          | $2.973\times10^1$                       |

 $< k_2 > (20 \ ^{\circ}\text{C}) = (3.123 \pm 0.142) \times 10^1 \text{ M}^{-1} \text{ s}^{-1}$ 

**Table S50.** *N*-(Triisopropylsilyl)pyrrole (4c) and  $(dpa)_2CH^+$  BF<sub>4</sub><sup>-</sup> in CH<sub>2</sub>Cl<sub>2</sub> at  $\lambda = 674$  nm (J&M).

| No.       | [ <i>El</i> ] <sub>0</sub> / M | [ <i>Nuc</i> ] <sub>0</sub> / M | $[Nuc]_0/[El]_0$ | Conv. / % | <i>T</i> / °C | $k_2 / \mathrm{M}^{-1} \mathrm{s}^{-1}$ |
|-----------|--------------------------------|---------------------------------|------------------|-----------|---------------|-----------------------------------------|
| 290801-01 | $2.596 \times 10^{-5}$         | $1.745 \times 10^{-3}$          | 67               | 37        | 20.0          | $4.367 \times 10^{-2}$                  |
| 290801-02 | $2.736\times 10^{-5}$          | $3.218\times10^{-3}$            | 118              | 71        | 20.0          | $4.186\times10^{-2}$                    |
| 290801-03 | $2.437\times10^{-5}$           | $6.514\times10^{-3}$            | 267              | 93        | 20.0          | $4.221\times10^{-2}$                    |

 $< k_2 > (20 \ ^{\circ}\text{C}) = (4.258 \pm 0.078) \times 10^{-2} \text{ M}^{-1} \text{ s}^{-1}$ 

**Table S51.** *N*-(Triisopropylsilyl)pyrrole (**4c**) and  $(mfa)_2CH^+BF_4^-$  in  $CH_2Cl_2$  at  $\lambda = 593$  nm (J&M).

| No.       | [ <i>El</i> ] <sub>0</sub> / M | [ <i>Nuc</i> ] <sub>0</sub> / M | $[Nuc]_0/[El]_0$ | Conv. / % | T∕°C | $k_2 / \mathrm{M}^{-1} \mathrm{s}^{-1}$ |
|-----------|--------------------------------|---------------------------------|------------------|-----------|------|-----------------------------------------|
| 300801-04 | $1.545 \times 10^{-5}$         | $2.022 \times 10^{-3}$          | 131              | 70        | 20.0 | $1.170 \times 10^{-1}$                  |
| 300801-03 | $2.035\times10^{-5}$           | $3.873\times10^{-3}$            | 190              | 90        | 20.0 | $1.271\times10^{-1}$                    |
| 300801-05 | $1.594\times10^{-5}$           | $4.172 \times 10^{-3}$          | 262              | 87        | 20.0 | $1.126\times10^{-1}$                    |

 $< k_2 > (20 \text{ °C}) = (1.189 \pm 0.061) \times 10^{-1} \text{ M}^{-1} \text{ s}^{-1}$ 

**Table S52.** *N*-(Triisopropylsilyl)pyrrole (**4c**) and (pfa)<sub>2</sub>CH<sup>+</sup> BF<sub>4</sub><sup>-</sup> in CH<sub>2</sub>Cl<sub>2</sub> at  $\lambda = 601$  nm (J&M).

| No.       | [ <i>El</i> ] <sub>0</sub> / M | [ <i>Nuc</i> ] <sub>0</sub> / M | $[Nuc]_0/[El]_0$ | Conv. / % | <i>T</i> / °C | $k_2 / \mathrm{M}^{-1} \mathrm{s}^{-1}$ |
|-----------|--------------------------------|---------------------------------|------------------|-----------|---------------|-----------------------------------------|
| 300801-02 | $1.550 \times 10^{-5}$         | $7.682 \times 10^{-4}$          | 50               | 39        | 20.0          | 1.114                                   |
| 300801-01 | $1.369\times10^{-5}$           | $1.695\times10^{-3}$            | 124              | 70        | 20.0          | 1.448                                   |
| 300801-03 | $1.449\times10^{-5}$           | $2.872\times10^{-3}$            | 198              | 72        | 20.0          | 1.416                                   |

 $< k_2 > (20 \text{ °C}) = 1.326 \pm 0.151 \text{ M}^{-1} \text{ s}^{-1}$ 

**Table S53.** Indole (6a) and  $(pfa)_2CH^+BF_4^-$  in  $CH_2Cl_2$  at  $\lambda = 601$  nm (Stopped flow).

| _ |              |                        |                       |                  |        |                                         |
|---|--------------|------------------------|-----------------------|------------------|--------|-----------------------------------------|
|   | No.          | $[El]_0 / M$           | $[Nuc]_0 / M$         | $[Nuc]_0/[El]_0$ | T / °C | $k_2 / \mathrm{M}^{-1} \mathrm{s}^{-1}$ |
|   | 230501-D     | $4.997 \times 10^{-6}$ | $5.250 	imes 10^{-4}$ | 105              | 20.0   | $1.298 \times 10^2$                     |
|   | 230501-В     | $4.997\times10^{-6}$   | $1.050\times10^{-3}$  | 210              | 20.0   | $1.367\times 10^2$                      |
|   | 230501-C     | $4.997 \times 10^{-6}$ | $1.575\times10^{-3}$  | 315              | 20.0   | $1.352\times10^2$                       |
| 1 | (1 > (20.90) | $(1.220 \pm 0.02)$     | $0 + 10^2 N^{-1}$     | -1               |        |                                         |

 $< k_2 > (20 \text{ °C}) = (1.339 \pm 0.030) \times 10^2 \text{ M}^{-1} \text{ s}^{-1}$ 

|          |                        |                        |                  |        | 1 1                   |
|----------|------------------------|------------------------|------------------|--------|-----------------------|
| No.      | $[El]_0 / M$           | $[Nuc]_0 / M$          | $[Nuc]_0/[El]_0$ | T / °C | $k_2 / M^{-1} s^{-1}$ |
| 170501-A | $5.297 \times 10^{-6}$ | $9.529 \times 10^{-5}$ | 18               | 20.0   | $1.089 \times 10^{3}$ |
| 170501-Е | $5.297\times10^{-6}$   | $2.382\times10^{-4}$   | 45               | 20.0   | $1.074\times10^3$     |
| 170501-F | $5.297\times10^{-6}$   | $4.764\times10^{-4}$   | 90               | 20.0   | $1.083\times10^3$     |
| 170501-D | $5.297\times 10^{-6}$  | $7.147\times10^{-4}$   | 135              | 20.0   | $1.068\times10^3$     |
| 170501-C | $5.297\times10^{-6}$   | $9.529\times10^{-4}$   | 180              | 20.0   | $1.110 \times 10^3$   |

**Table S54.** *N*-Methylindole (**6b**) and  $(pfa)_2CH^+$  BF<sub>4</sub><sup>-</sup> in CH<sub>2</sub>Cl<sub>2</sub> at  $\lambda = 601$  nm (Stopped flow).

 $< k_2 > (20 \ ^{\circ}C) = (1.085 \pm 0.015) \times 10^3 \ \text{M}^{-1} \ \text{s}^{-1}$ 

**Table S55.** 1,2-Dimethylindole (**6c**) and  $(pfa)_2CH^+$  BF<sub>4</sub><sup>-</sup> in CH<sub>2</sub>Cl<sub>2</sub> at  $\lambda = 601$  nm (Stopped flow).

| No.      | $[El]_0 / M$           | [ <i>Nuc</i> ] <sub>0</sub> / M | $[Nuc]_0/[El]_0$ | T / °C | $k_2 / \mathrm{M}^{-1} \mathrm{s}^{-1}$ |
|----------|------------------------|---------------------------------|------------------|--------|-----------------------------------------|
| 050601-I | $4.731 \times 10^{-6}$ | $9.352 \times 10^{-5}$          | 20               | 20.0   | $5.666 \times 10^{3}$                   |
| 050601-C | $4.731\times10^{-6}$   | $1.434\times10^{-4}$            | 30               | 20.0   | $5.650\times 10^3$                      |
| 050601-B | $4.731\times10^{-6}$   | $2.868\times10^{-4}$            | 61               | 20.0   | $5.219\times 10^3$                      |
| 050601-A | $4.731\times10^{-6}$   | $4.301\times10^{-4}$            | 91               | 20.0   | $5.335\times10^3$                       |

 $<k_2>(20 \ ^{\circ}C) = (5.468 \pm 0.195) \times 10^3 \text{ M}^{-1} \text{ s}^{-1}$