Copyright Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2003 Chem. Eur. J. 2003

Supporting Information

for

How Nucleophilic are Diazo Compounds?

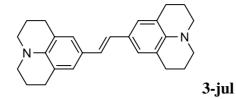
Thorsten Bug, Manfred Hartnagel, Clemens Schlierf, Herbert Mayr^{*[a]}

Department Chemie der Ludwig-Maximilians-Universität München

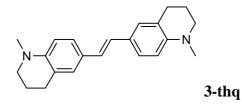
Butenandtstr. 5–13 (Haus F), D-81377 München, Germany

Fax: (+49) 89-2180-77717, E-mail: Herbert.Mayr@cup.uni-muenchen.de

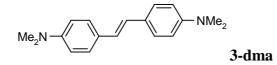
Conte	ents:	Page
1.	General	S 2
2.	Reactions of diazo compounds with benzhydryl salts	S 3
3.	Concentrations and rate constants of the individual kinetic runs	S 11


1. General

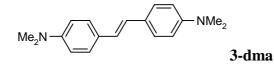
The reactions of diazo compounds **1** with benzhydryl salts $Ar_2CH^+X^-$ were performed under exclusion of moisture in an atmosphere of dry nitrogen in carefully dried Schlenk glassware. Dichloromethane was freshly distilled from CaH₂ before use.


¹H NMR and ¹³C NMR spectra were recorded with a Bruker ARX 300 (300 MHz, 75.5 MHz) or Bruker AMX 400 (400 MHz, 100.1 MHz). Chemical shifts are reported on the δ scale relative to tetramethylsilane ($\delta_{\rm H} = 0.00$), CDCl₃ ($\delta_{\rm C} = 77.00$), or C₆D₆ ($\delta_{\rm C} = 128.00$) as internal standards. Abbreviations used are s (singlet), d (dublet), t (triplet), q (quartet) and m (multiplet). Infrared spectra were recorded with a Perkin-Elmer FT-IR 1000 spectrophotometer. Mass spectra were measured with a Finnigan MAT 95 Q. Microanalyses were carried out by the Mikroanalytisches Labor des Departments Chemie der LMU München. Melting points were determined on a Büchi B-540 and are uncorrected.

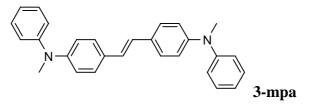
2. Reactions of diazo compounds with benzhydryl salts


E-1,2-Bis(julolidin-9-yl)ethene (3-jul) was obtained from (jul)₂CH⁺PF₆⁻ (502 mg, 1.00 mmol) and benzyltriethylammonium chloride (1.13 g, 5.00 mmol) in 25 mL dichloromethane at room temperature by treating this solution with gaseous diazomethane (1a) until the color was faded. After adding 2 M NH₃ (20 mL), the layers were separated and the aqueous layer was extracted with dichloromethane (2 × 15 mL). The organic layers were combined, dried over Na₂SO₄, and the solvent evaporated in vacuo. The crude product was dissolved in n-pentane (50 mL). Crystallization from the filtrate gave 3-jul (95 mg, 26 %) as a pale green powder. M.p. 233–235 °C (Ref.^[S1]: M.p. 238 °C, Ref.^[S2]: M.p. 221–223 °C); ¹H NMR (C₆D₆, 300 MHz): $\delta = 1.68-1.76$ (m, 8 H), 2.62 (t, J = 6.5 Hz, 8 H), 2.80 (t, J = 5.7 Hz, 8 H), 7.08 (s, 2 H), 7.09 (s, 4 H); ¹³C NMR (C₆D₆, 75.5 MHz): $\delta = 22.62$ (t), 28.10 (t), 50.22 (t), 121.58 (s), 125.08 (d), 125.61 (d), 127.14 (s), 142.26 (s); IR (KBr): $\hat{v} = 2938$, 2835, 1607, 1500, 1308, 1161, 952 cm⁻¹; MS (EI, 70 eV): m/z (%): 372 (4), 371 (27), 370 (100) [M⁺], 185 (11).

E-1,2-Bis(1-methyl-1,2,3,4-tetrahydroquinolin-6-yl)ethene (3-thq) was obtained from (thq)₂CH⁺BF₄⁻ (390 mg, 1.00 mmol) and benzyltriethylammonium chloride (1.10 g, 5.00 mmol) in 1,2-dichloroethane (60 mL) at 0 °C by treating this solution with gaseous diazomethane (1a) until the color was faded. After adding 2 M NH₃ (30 mL), the layers were separated and the organic layer was extracted with water (2 × 35 mL). The organic layer was dried over Na₂SO₄, and the solvent evaporated in vacuo. The crude product was stirred with Et₂O (50 mL) for 30 min. Filtration and crystallization from the remaining solution gave **3**-thq (180 mg, 57 %) as yellow crystals. M.p. 154–156 °C (Ref.^[S2]: 151–152.5 °C); ¹H NMR (C₆D₆, 300 MHz): δ = 1.74–1.82 (m, 4 H), 2.66 (s, 6 H), 2.70 (d, *J* = 6.6 Hz, 4 H), 2.92 (d, *J* = 5.7 Hz, 4 H), 6.66 (d, *J* = 8.4 Hz, 2 H), 7.26 (s, 2 H), 7.36 (br. s, 2 H), 7.50 (dd, *J* = 8.4 Hz, 1.9 Hz, 2 H); ¹³C NMR (CDCl₃, 75.5 MHz): δ = 22.49 (t), 27.86 (t), 39.12 (q), 51.33 (t), 111.01 (d), 122.83 (s), 124.44 (d), 125.22 (d), 126.37 (d), 126.61 (s), 145.77 (s); IR (KBr): \tilde{v} = 3016, 2946, 2812, 1612, 1517, 1316, 1210, 802 cm⁻¹; MS (EI, 70 eV): *m/z* (%): 320 (2), 319 (21), 318 (100) [M⁺], 159 (8).

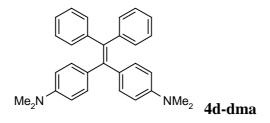


E-1,2-Bis(4-dimethylaminophenyl)ethene (3-dma) was obtained from (dma)₂CH⁺BF₄⁻ (340 mg, 1.00 mmol) and benzyltriethylammonium chloride (1.10 g, 5.00 mmol) in 1,2dichloroethane (80 mL) at room temperature by treating this solution with gaseous diazomethane (1a) until the color was faded. After adding 2 M NH₃ (20 mL), the layers were separated and the aqueous layer was extracted with dichloromethane (2 × 15 mL). The organic layers were combined, dried over Na₂SO₄, and the solvent evaporated in vacuo. The crude product was stirred 30 min. with acetone (50 mL) and filtrated. The remaining solid gave (85 mg, 32 %) 3-dma as a yellow powder. M.p. 258–260 °C (Ref.^[S2]: M.p. 253–254 °C, Ref.^[S3]: M.p. 260 °C); ¹H NMR (300 MHz, CDCl₃): δ = 2.97 (s, 12 H), 6.73 (AA'BB' system with *J*_{AB} = 8.4 Hz, 4 H), 6.86 (s, 2 H), 7.38 (AA'BB' system with *J*_{AB} = 8.8 Hz, 4 H); ¹³C NMR (75.5 MHz, CDCl₃): δ = 40.69 (q), 112.77 (d), 124.82 (d), 127.00 (d), 149.47 (s), missing peak 126.85 (s) not observable (see below in the McMurry reaction); IR (KBr): \tilde{V} = 3015, 2905, 2806, 1611, 1523, 1359, 1185, 817 cm⁻¹; MS (EI, 70 eV): *m/z* (%): 268 (2), 267 (19), 266 (100) [M⁺], 251 (24), 236 (17), 132 (12).

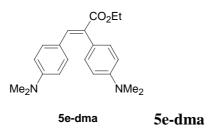


3-dma was also obtained from $(dma)_2CH^+OTf^-$ (201 mg, 0.50 mmol) and benzyltriethylammonium chloride (560 mg, 2.50 mmol) dissolved in dichloromethane (50 mL) by adding a 2 M solution of (trimethylsilyl)diazomethane in n-hexane (290 µL, 0.5 mmol) at 0 °C. Isolation of the product was carried out as described above and gave **3-dma** (80 mg, 60 %) as a yellow powder. (Spectral data analogous to that described above).

3-dma by McMurry reaction:^[S1] To a suspension of Zn (10.0 g, 153 mmol) and 4-(dimethylamino)benzaldehyde (3.50 g, 23.5 mmol) in THF (50 mL) TiCl₄ (4.15 mL, 38.2 mmol) was added dropwise during 30 min. After refluxing for 2h the suspension was carefully added to a solution of K_2CO_3 (15.0 g) in icewater (150 mL). The layers were separated, and the aqueous layer was extracted with Et₂O (2 × 30 mL). The combined organic layers were dried over Na₂SO₄, filtrated, and the solvent was removed in vacuo. Recrystallization from acetonitril gave **3-dma** (450 mg, 7 %) as yellow crystals. M.p. 258–260 °C (Ref.^[S2]: M.p. 253–254 °C, Ref.^[S3]: M.p. 260 °C); ¹H NMR (300 MHz, CDCl₃): $\delta = 2.97$ (s, 12 H), 6.74 (AA'BB' system with $J_{AB} = 8.1$ Hz, 4 H), 6.86 (s, 2 H), 7.38 (AA'BB' system with $J_{AB} = 8.7$ Hz, 4 H); ¹³C NMR (75.5 MHz, CDCl₃): $\delta = 40.59$ (q), 112.67 (d), 124.75 (d), 126.85 (s), 126.97 (d), 149.61 (s); IR (KBr): $\tilde{v} = 2920$, 2801, 1611, 1522, 1360, 1186, 817 cm⁻¹; MS (EI, 70 eV): m/z (%): 268 (2), 267 (19), 266 (100) [M⁺], 251 (23), 236 (16), 132 (11).

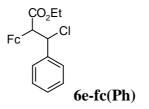


E-1,2-Bis(4-(methylphenylamino)phenyl)ethene (3-mpa): At 0 °C (mpa)₂CH⁺BF₄⁻ (400 mg, 0.86 mmol) and benzyltriethylammonium chloride (1.00 g, 4.31 mmol) were dissolved in a mixture of dichloromethane (40 mL) and acetonitrile (2 mL). Then a 2 M solution of (trimethylsilyl)diazomethane in n-hexane (380 µL, 0.78 mmol) was added and stirred for 5 min. After adding water (10 mL) and 2 M NH₃ (20 mL), the layers were separated, and the aqueous layer was extracted with dichloromethane (2 × 15 mL). The organic layers were combined, dried over Na₂SO₄, and the solvent evaporated in vacuo. The crude product was stirred with n-pentane (50 mL) for 30 min. Filtration and crystallization of the remaining solution gave **3-mpa** (120 mg, 36 %) as a pale yellow powder. ¹H NMR (C₆D₆, 300 MHz): δ = 3.13 (s, 6 H), 6.95–7.08 (m, 12 H), 7.22–7.25 (m, 4 H), 7.39–7.42 (m, 4 H); ¹³C NMR (C₆D₆, 75.5 MHz): δ = 40.08 (q), 119.97 (d), 121.63 (d), 122.10 (d), 126.44 (d), 127.46 (d), 129.50 (d), 130.94 (s), 148.51 (s), 149.22 (s); MS (EI, 70 eV): *m/z* (%): 392 (7), 391 (49), 390 (100) [M⁺], 195 (23).

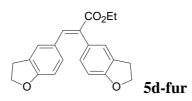


1,1-Bis(4-dimethylaminophenyl)-2,2-diphenylethene (**4d-dma**) was obtained from $(dma)_2CH^+OTf^-$ (201 mg, 0.50 mmol) dissolved in dichloromethane (25 mL) and diphenyldiazomethane (**1d**) (116 mg, 0.59 mmol) after stirring for 18 h. After adding 2 M NH₃

(20 mL), the layers were separated and the aqueous layer was extracted with dichloromethane (2 × 15 mL). The organic layers were combined, dried over Na₂SO₄, and the solvent evaporated in vacuo. The crude product was dissolved in refluxing Et₂O (15 mL) for 20 min, filtrated, and the solvent was evaporated in vacuo. The resulting solid was stirred with n-pentane (15 mL) for 20 min at room temperature and separated by filtration to give **4d-dma** (90 mg, 43 %) as a yellow solid. M.p. 208–211 °C (Ref.^[S4]: 212 °C); ¹H NMR (CDCl₃, 300 MHz): δ = 2.89 (s, 12 H), 6.47 (d, AA'BB' system with J_{AB} = 8.8 Hz, 4 H), 6.90 (d, AA'BB' system with J_{AB} = 8.8 Hz, 4 H), 6.90 (d, AA'BB' system with J_{AB} = 8.8 Hz, 4 H), 7.03–7.12 (m, 10 H); ¹³C NMR (CDCl₃, 75.5 MHz): δ = 40.57 (q), 111.56, 111.82 (2 d), 125.53, 125.76 (2 d), 127.55, 131.52 (2 d), 132.38, 132.54 (2 d), 137.10, 139.15, 141.05 (3 s), 145.17 (s), 148.53 (s); MS (EI, 70 eV): *m/z* (%): 420 (5), 419 (33), 418 (100) [M⁺], 209 (6).

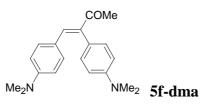


Ethyl *E*-2,3-bis(4-dimethylaminophenyl)acrylate (5e-dma): At room temperature (dma)₂CH⁺OTf⁻ (1.01 g, 2.50 mmol) was dissolved in dichloromethane (20 mL). Then a solution of ethyl diazoacetate (1e) (571 mg, 5.00 mmol) in dichlormethane (5 mL) was added. After stirring for 24 h water (20 mL) was added, the layers were separated and the aqueous layer was extracted with dichloromethane (2 × 20 mL). The organic layers were combined, dried over MgSO₄, and the solvent evaporated in vacuo. Column chromatography (silica gel, n-hexane:Et₂O (3:1)) gave 310 mg (37 %) of a 9:1 mixture of isomers as yellow crystals (product ratio determined by ¹H NMR). According to NMR analysis the signals of the major product were assigned to **5e-dma**. ¹H NMR (CDCl₃, 300 MHz): $\delta = 1.28$ (t, J = 7.1 Hz, 3 H), 2.91 (s, 6 H), 2.98 (s, 6 H), 4.23 (q, J = 7.1 Hz, 2 H), 6.47, 6.74, 7.02, 7.11 (2 AA'BB' systems with $J_{AB} = 8.8$ and 9.0 Hz, 8 H), 7.70 (s, 1 H, C=CH); ¹H{¹H} NOE: irradiation at $\delta = 7.70$ (C=CH) caused a signal enhancement at $\delta = 7.02$; ¹³C NMR (CDCl₃, 75.5 MHz): $\delta = 14.59$ (q), 40.17 (q), 40.69 (q), 60.75 (t), 111.46, 112.74 (2 d), 123.15, 124.89 (2 s), 127.84 (s), 130.87, 132.41 (2 d), 140.05 (d), 149.82, 150.57 (2 s), 169.18 (s); elemental analysis calcd (%) for C₂₁H₂₆N₂O₂ (338.45): C 74.53, H 7.74, N 8.28, found C 74.59, H 7.82, N 8.18.

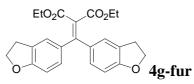


The minor isomer could not be isolated and showed the following resonances: ¹H NMR (CDCl₃, 300 MHz): $\delta = 1.18$ (t, J = 7.1 Hz, 3 H), 2.97 (s, 6 H), 2.98 (s, 6 H), 4.08 (q, J = 7.1 Hz, 2 H), 6.11 (s, 1 H), 6.61, 6.69 (2 AA' from a AA'BB' system with $J_{AB} = 8.9, 4$ H), 7.22 (BB' from a AA'BB' system with $J_{AB} = 8.9, 4$ H), second BB' not observable because of the main product.

6e-fc(Ph): At -78 °C 1-Ferrocenyl-1-phenylmethylacetate (334 mg, 1.00 mmol) was dissolved in dichloromethane (20 mL) and a solution of 3.9 M ZnCl₂·OEt₂ in Et₂O (1.00 mL, 3.9 mmol) was added. Then a solution of ethyl diazoacetate (1d) (228 mg, 2.00 mmol) in dichloromethane (5 mL) was dropwise added. After 3 h and warming up to room temperature conc. NH₃ (20 mL) was added, the layers were separated and the aqueous layer was extracted with dichloromethane $(2 \times 20 \text{ mL})$. The organic layers were combined, dried over MgSO₄, and the solvent evaporated in vacuo. Column chromatography (silica gel, n-hexane:ethyl acetate (3:1)) gave **6e-fc(Ph)** (300 mg, 76 %) as two diastereomers (1:1) as orange crystals. ¹H NMR (CDCl₃, 300 MHz): $\delta = 0.99$, 1.47 (2 t, J = 7.1, 7.2 Hz, 2 × 3 H), 3.20–3.21 (m, 1 H), 3.78-4.04 (m, 7 H), 4.06, 4.10 (2 s, 2 × 5 H), 4.21 (t, *J* = 1.8 Hz, 2 H), 4.32–4.50 (m, 4 H), 4.86 (d, J = 10.6 Hz, 1 H), 4.92 (d, J = 10.6 Hz, 1 H), 7.07–7.12 (m, 2 H), 7.18–7.21 (m, 3 H), 7.30–7.39 (m, 5 H); ¹³C NMR (CDCl₃, 75.5 MHz): δ = 13.81, 14.32 (2 q), 55.80, 56.40 (2 d), 60.42, 61.01 (2 t), 63.89, 66.31 (2 d), 66.43, 66.66, 67.59, 68.24, 68.57, 68.68, 68.73, 69.70, 71.16 (9 d), 80.90, 82.01 (2 s), 127.55, 127.80, 128.07, 128.31, 128.38, 128.65 (6 d), 138.61, 139.44 (2 s), 169.77, 170.93 (2 s); MS (EI, 70 eV): *m/z* (%): 399 (6), 398 (25), 397 (18), 396 (63) [M⁺], 360 (6), 331 (16), 288 (10), 272 (18), 271 (100), 223 (21), 167 (49), 166 (24), 165 (46), 152 (24), 121 (15), 105 (12), 77 (12), 56 (19); elemental analysis calcd (%) for C₂₁H₂₁ClFeO₂ (396.72): C 63.58, H 5.34; found: C 63.81, H 5.32.



Ethyl E-2,3-bis(2,3-dihydrobenzofuran-5-yl)acrylate (5d-fur) was obtained from bis(2,3dihydro-5-benzofuranyl)(trimethylsiloxy)methane (500 mg, 1.47 mmol) dissolved in dichloromethane (30 mL), trimethylsilyltriflate (290 µL, 1.62 mmol), and dropwise addition of diethyl diazoacetate (1d) (180 µL, 1.62 mmol) dissolved in dichloromethane (10 mL) at – 40 °C. After 5 min. 2 M NH₃ (20 mL) was added, the layers were separated and the aqueous layer was extracted with dichloromethane $(1 \times 10 \text{ mL})$. The organic layers were combined, dried over Na₂SO₄, and the solvent evaporated in vacuo. Column chromatography (silica gel, n-hexane:Et₂O (1:1)) gave **5d-fur** (150 mg, 31 %) as a colorless powder. M.p. 119–121 °C; ¹H NMR (CDCl₃, 300 MHz): $\delta = 1.29$ (t, J = 7.1 Hz, 3 H, CO₂CH₂CH₃), 3.06, 3.21 (2 t, J =8.7 Hz, 2×2 H, OCH₂CH₂), 4.25 (q, J = 7.1 Hz, 2 H, CO₂CH₂CH₃), 4.53, 4.60 (2 t, J = 8.7Hz, 2×2 H, OCH₂CH₂), 6.59 (d, J = 8.2 Hz, 1 H), 6.78 (d, J = 8.2 Hz, 1 H), 6.85–6.98 (m, 3 H), 7.00–7.08 (m, 1 H), 7.72 (s, 1 H, C=CH); ¹³C NMR (CDCl₃, 75.5 MHz): δ = 14.36 (q, CO₂CH₂CH₃), 29.35, 29.70 (2 t, OCH₂CH₂), 60.91 (t, CO₂CH₂), 71.33, 71.60 (2 t, OCH₂CH₂), 109.11, 109.49 (2 d), 126.38 (d), 127.07 (s), 127.34 (s), 127.37 (d), 127.62 (s), 128.35 (s), 129.71 (d), 129.72 (s), 131.77 (d), 139.84 (d, C=CH), 159.62, 160.89 (2 s), 168.50 (s, C=O); signal assignments are based on NOESY, gHSQC and gHMBC experiments; IR (KBr): $\tilde{v} = 2978, 2900, 1697, 1604, 1493, 1236, 1099, 981, 818 \text{ cm}^{-1}$; MS (EI, 70 eV): m/z(%): 338 (3), 337 (20), 336 (100) [M⁺], 263 (14), 177 (33), 149 (13); elemental analysis calcd (%) for C₂₁H₂₀O₄ (336.38): C 74.98, H 5.99, found C 74.94, H 5.90.



E-3,4-Bis(4-dimethylaminophenyl)but-3-en-2-one (5f-dma) was obtained from diazoacetone (1f) (170 mg, 2.02 mmol) dissolved in dichloromethane (20 mL) and $(dma)_2CH^+OTf^-$ (404 mg, 1.00 mmol) dissolved in dichloromethane (20 mL) and stirring for 2 d. After adding 2 M NH₃ (20 mL), the layers were separated and the aqueous layer was extracted with dichloromethane (2 × 15 mL). The organic layers were combined, dried over Na₂SO₄, and the solvent evaporated in vacuo. The crude product was stirred with n-hexane (20 mL) at 40°C for 5 min. Filtration and crystallization from the remaining solution gave 5f-dma (80 mg, 26 %) as yellow crystals. M.p. 156–158 °C; ¹H NMR (CDCl₃, 300 MHz): δ = 2.25 (s, 3 H, COCH₃), 2.93 (s, 6 H, NMe₂), 3.00 (s, 6 H, NMe₂), 6.48 (d, AA'BB' system with *J*_{AB} = 9.1 Hz, 2 H), 6.79 (d, AA'BB' system with *J*_{AB} = 8.7 Hz, 2 H), 7.01 (d, AA'BB' system with *J*_{AB} = 9.0 Hz, 2 H), 7.05 (d, AA'BB' system with *J*_{AB} = 8.7 Hz, 2 H), 7.56 (s, 1)

H, C=CH); ¹³C NMR (CDCl₃, 75.5 MHz): $\delta = 27.86$ (q, COCH₃), 39.98 (q, NMe₂), 40.60 (q, NMe₂), 111.40, 113.11 (2 d), 122.80 (s), 126.07 (s, COC=CH), 130.49, 132.74 (2 d), 136.40 (s), 139.21 (d, C=CH), 149.68, 150.68 (2 s), 200.12 (s, C=O); Signal assignments are based on NOESY, gHSQC and gHMBC experiments; MS (EI, 70 eV): m/z (%): 310 (2), 309 (20), 308 (91) [M⁺], 266 (20), 265 (100), 221 (21), 132 (20).

Diethyl (bis-(2,3-dihydro-benzofuran-5-yl)methylene)malonate (4g-fur): At room temperature bis(2,3-dihydro-5-benzofuranyl)(trimethylsiloxy)methane (300 mg, 0.88 mmol) was dissolved in dichloromethane (20 mL) and trimethylsilyltriflat (175 µL, 0.97 mmol) was added. Then diethyl diazomalonate (1g) (200 mg, 1.06 mmol) was added and stirred for 2 d. After adding 2 M NH₃ (20 mL), the layers were separated and the aqueous layer was extracted with dichloromethane (1 \times 10 mL). The organic layers were combined, dried over Na₂SO₄, and the solvent evaporated in vacuo. Column chromatography (neutral Al₂O₃, n-hexane:Et₂O (1:1)) gave 4g-fur (110 mg, 31 %) as a colorless powder. M.p. 92–93 °C; ¹H NMR (CDCl₃, 300 MHz): $\delta = 1.10$ (t, J = 7.1 Hz, 6 H), 3.16 (t, J = 8.7 Hz, 4 H), 4.10 (q, J = 7.0 Hz, 4 H), 4.59 (t, J = 8.7 Hz, 4 H), 6.71 (d, J = 8.0 Hz, 2 H), 6.93–7.03 (m, 4 H); ¹³C NMR (CDCl₃, 75.5 MHz): $\delta = 13.83$ (q), 29.35 (t), 60.95 (t), 71.64 (t), 108.85 (d), 123.55 (s, Ar₂C=C), 126.52 (d), 126.97 (s), 130.25 (d), 132.91 (s), 156.69 (s, Ar₂C=C), 161.41 (s), 166.76 (s, C=O); MS (EI, 70 eV): m/z (%): 410 (4), 409 (23), 408 (100) [M⁺], 363 (29), 264 (15), 262 (14), 249 (10), 147 (38); elemental analysis calcd (%) for $C_{24}H_{24}O_6$ (408.45): C 70.57, H 5.92; found: C 70.77, H 5.97.

Diethyl (bis(4-methoxyphenyl)methylene)malonate (4g-ani) was obtained form bis(4methoxyphenyl)methylchloride (263 mg, 1.00 mmol) in dichloromethane (20 mL), 3.9 M ZnCl₂·OEt₂ in Et₂O (0.20 mL, 0.78 mmol) and diethyl diazomalonate (**1g**) (392 mg, 2.00 mmol) after stirring for 6 h at -78 °C. After adding conc. NH₃ (20 mL), the layers were separated and the aqueous layer was extracted with dichloromethane (2 × 20 mL). The organic layers were combined, dried over MgSO₄, and the solvent evaporated in vacuo. Crystallization of the crude product from n-hexane gave **4g-ani** (110 mg, 29 %) as colorless needles. M.p. 80.5–81 °C; ¹H NMR (CDCl₃, 300 MHz): $\delta = 1.08$ (t, J = 7.1 Hz, 6 H), 3.81 (s, 6 H), 4.10 (q, J = 7.0 Hz, 4 H), 6.84, 7.12 (AA'BB' system with $J_{AB} = 8.8$ Hz, 2 × 4 H); ¹³C NMR (CDCl₃, 75.5 MHz): $\delta = 13.76$ (q), 55.23 (q), 61.01 (t), 113.42 (d), 123.89 (s, Ar₂C=*C*), 131.10 (d), 132.63 (s), 155.76 (s, Ar₂C=C), 160.58 (s), 166.58 (s, C=O); elemental analysis calcd (%) for C₂₂H₂₄O₆ (384.4): C 68.74, H 6.29; found: C 68.38, H 6.21.

EtO₂C CO₂Et OMe **4g-ani** MeC

3. Concentrations and rate constants of the individual kinetic runs (Tables S1-S31)

Remarks:

- The reactions of diazo compounds **1** with benzhydryl salts Ar₂CH⁺X⁻ were performed under exclusion of moisture in an atmosphere of dry nitrogen in carefully dried Schlenk glassware. Dichloromethane was freshly distilled from CaH₂ before use.
- For the evaluation of the stopped flow kinetics (Stopped-flow spectrophotometer system Hi-Tech SF-61DX2 controlled by Hi-Tech KinetAsyst2 software), rate constants k_{obs} were obtained by fitting the single exponential $A_t = A_0 \exp(-k_{obs}t) + C$ to the observed time-dependent curve of the carbocation absorbance (averaged from at least 4 kinetic runs at each nucleophile concentration). Second-order rate constants k_2 (L mol⁻¹ s⁻¹) were then calculated from $k_{obs} = k_2$ [Nuc]₀.
- For the evaluation of conventional UV-Vis kinetics determined at *J&M* instruments, ln (*A*₀-*A*_{end}/*A*_t-*A*_{end}) was plotted against *t*, and the linear part (indicated in the column % conversion) was used to determine *k*₂. The kinetics at Schölly instruments were also followed photometrically as described in ref. [23]
- Rate constants k₂ that have only been measured at one temperature (20 ± 0.2 °C) were averaged (<k₂>) and given with standard deviations.
- When measurements were made at variable temperatures, k_2 values at 20 ± 0.2 °C were extrapolated from the Eyring parameters.

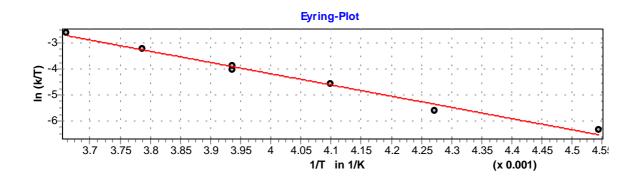
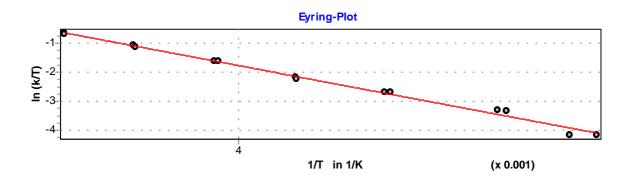

No.	T / °C	$[E]_0 / mol \ L^{-1}$	$[Nu]_0 / mol L^{-1}$	Conv. / %	k_2 / L mol ⁻¹ s ⁻¹
BUT-K-101-2	20.1	1.36×10^{-5}	7.58×10^{-4}	31	6.42
BUT-K-103-2	20.0	1.16×10^{-5}	9.83×10^{-4}	84	6.71
BUT-K-103-4	20.0	3.66×10^{-5}	1.30×10^{-3}	48	6.59
BUT-K-104-4	20.0	3.02×10^{-5}	1.53×10^{-3}	50	6.60
BUT-K-104-3	20.0	3.41×10^{-5}	1.72×10^{-3}	50	6.77
BUT-K-104-1	20.0	3.70×10^{-5}	$1.87 imes 10^{-3}$	59	6.76

Table S1. Diazomethane (1a) and $(jul)_2CH^+BF_4^-$ in CH_2Cl_2 at $\lambda = 640$ nm (Schölly).

 $< k_2 > (20 \ ^{\circ}\text{C}) = (6.64 \pm 0.12) \text{ L mol}^{-1} \text{ s}^{-1}$

Table S2. Diazomethane (1a) and $(thq)_2CH^+BF_4^-$ in CH_2Cl_2 at $\lambda = 630$ nm (Schölly).

No.	T / °C	$[E]_0 / mol \ L^{-1}$	$[Nu]_0 / mol L^{-1}$	Conv. / %	k_2 / L mol ⁻¹ s ⁻¹
BUT-K-102-1	-53.1	1.41×10^{-5}	$7.07 imes 10^{-4}$	68	$3.80 imes 10^{-1}$
BUT-K-102-2	-39.1	3.62×10^{-5}	$1.81 imes 10^{-3}$	80	8.31×10^{-1}
BUT-K-102-3	-29.2	3.67×10^{-5}	1.84×10^{-3}	68	2.48
BUT-K-102-5	-19.1	3.38×10^{-5}	$2.70 imes 10^{-3}$	64	4.37
BUT-K-102-6	-19.1	2.79×10^{-5}	8.36×10^{-4}	82	5.05
BUT-K-102-7	-9.1	3.94×10^{-5}	1.97×10^{-3}	80	1.03×10^1
BUT-K-102-8	0.0	3.82×10^{-5}	1.91×10^{-3}	71	$1.97 imes 10^1$



Eyring parameters:	Arrhenius parameters:
$\Delta H^{\ddagger} = 35.898 \pm 1.883 \text{ kJ mol}^{-1}$	$E_{\rm a} = 37.929 \pm 1.904 \text{ kJ mol}^{-1}$
$\Delta S^{\ddagger} = -88.908 \pm 7.614 \text{ J mol}^{-1} \text{ K}^{-1}$	$\ln A = 19.568 \pm 0.926$
$r^2 = 0.9864$	$r^2 = 0.9876$

 $k_2(20 \text{ °C}) = (5.57 \pm 0.79) \times 10^1 \text{ L mol}^{-1} \text{ s}^{-1}$

Table S3. Diazomethane (1a) and $(dma)_2CH^+OTf^-$ in CH_2Cl_2 at $\lambda = 640$ nm (Schölly).

No.	T / °C	$[E]_0 / mol \ L^{-1}$	$[Nu]_0 / mol L^{-1}$	Conv. / %	k_2 / L mol ⁻¹ s ⁻¹
MH-V-111	-60.0	7.60×10^{-5}	1.49×10^{-3}	75	3.29
MH-V-112	-57.6	7.42×10^{-5}	1.46×10^{-3}	65	3.27
MH-V-114	-51.8	8.26×10^{-5}	9.74×10^{-4}	61	7.64
MH-V-113	-50.9	6.30×10^{-5}	6.19×10^{-4}	84	7.99
MH-V-116	-40.2	7.49×10^{-5}	9.11×10^{-4}	66	$1.55 imes 10^1$
MH-V-115	-39.6	7.69×10^{-5}	5.98×10^{-4}	60	$1.56 imes 10^1$
MH-V-117	-29.9	6.75×10^{-5}	6.57×10^{-4}	68	$2.60 imes 10^1$
MH-V-118	-29.8	6.06×10^{-5}	7.37×10^{-4}	62	$2.73 imes 10^1$
MH-V-120	-20.7	7.15×10^{-5}	4.96×10^{-4}	47	4.99×10^1
MH-V-119	-20.2	5.93×10^{-5}	$7.21 imes 10^{-4}$	49	5.02×10^1
MH-V-124	-10.1	6.31×10^{-5}	5.55×10^{-4}	50	8.26×10^1
MH-V-121	-9.8	8.58×10^{-5}	3.17×10^{-4}	37	9.14×10^{1}
MH-V-122	-0.2	6.31×10^{-5}	5.55×10^{-4}	62	1.40×10^2
MH-V-123	-0.2	7.74×10^{-5}	4.08×10^{-4}	51	1.38×10^2

Eyring parameters:	Arrhenius parameters:
$\Delta H^{\ddagger} = 28.080 \pm 0.679 \text{ kJ mol}^{-1}$	$E_{\rm a} = 30.083 \pm 0.673 \text{ kJ mol}^{-1}$
$\Delta S^{\ddagger} = -100.079 \pm 2.820 \text{ J mol}^{-1} \text{ K}^{-1}$	$\ln A = 18.211 \pm 0.336$
$r^2 = 0.9930$	$r^2 = 0.9940$

 $k_2(20 \text{ °C}) = (3.59 \pm 0.21) \times 10^2 \text{ L mol}^{-1} \text{ s}^{-1}$

Table S4. Diazomethane (1a) and $(mpa)_2CH^+BF_4^-$ in CH_2Cl_2 at $\lambda = 620$ nm at 20.0 °C (Stopped flow).

No.	$[E]_0 / mol \ L^{-1}$	$[Nu]_0 / mol L^{-1}$	$k_{\rm obs}$ / s ⁻¹	k_2 / L mol ⁻¹ s ⁻¹
BUT-K-105-3	1.25×10^{-5}	$5.01 imes 10^{-4}$	2.99	$5.97 imes 10^3$
BUT-K-105-2	1.25×10^{-5}	7.49×10^{-4}	4.36	5.82×10^3
BUT-K-105-1	1.25×10^{-5}	$1.00 imes 10^{-3}$	5.84	5.84×10^3
BUT-K-105-5	1.25×10^{-5}	1.25×10^{-3}	7.34	$5.87 imes 10^3$

 $< k_2 > (20 \ ^{\circ}\text{C}) = (5.88 \pm 0.06) \times 10^3 \text{ L mol}^{-1} \text{ s}^{-1}$

Table S5. Diazomethane (1a) and $(dpa)_2CH^+BF_4^-$ in CH_2Cl_2 at $\lambda = 670$ nm at 20.0 °C (Stopped flow).

No.	$[E]_0 / mol \ L^{-1}$	$[Nu]_0 / mol L^{-1}$	$k_{\rm obs}$ / s ⁻¹	k_2 / L mol ⁻¹ s ⁻¹
BUT-K-106-3	1.25×10^{-5}	$5.01 imes 10^{-4}$	1.26×10^1	$2.51 imes 10^4$
BUT-K-106-2	1.25×10^{-5}	7.49×10^{-4}	1.82×10^{1}	$2.43 imes 10^4$
BUT-K-106-1	1.25×10^{-5}	$1.00 imes 10^{-3}$	2.36×10^1	$2.36 imes 10^4$

 $<k_2>(20 \ ^{\circ}\text{C}) = (2.43 \pm 0.06) \times 10^4 \text{ L mol}^{-1} \text{ s}^{-1}$

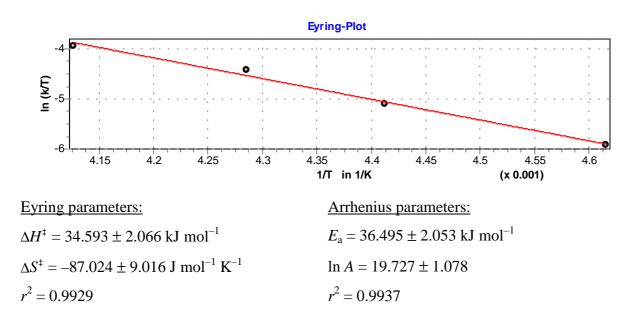

No.	T / °C	$[E]_0 / mol \ L^{-1}$	$[Nu]_0 / mol L^{-1}$	Conv. / %	k_2 / L mol ⁻¹ s ⁻¹
BUT-K-112-5	20.0	2.05×10^{-5}	1.02×10^{-3}	26	$7.09 imes 10^{-1}$
BUT-K-112-2	20.0	4.89×10^{-5}	1.48×10^{-3}	88	7.43×10^{-1}
BUT-K-112-1	20.0	5.42×10^{-5}	2.70×10^{-3}	88	7.61×10^{-1}
BUT-K-112-3	20.0	$5.47 imes 10^{-5}$	2.72×10^{-3}	74	7.90×10^{-1}
BUT-K-112-4	20.0	4.89×10^{-5}	3.91×10^{-3}	63	$7.78 imes 10^{-1}$

Table S6. Phenyldiazomethane (1b) and (jul)₂CH⁺BF₄⁻ in CH₂Cl₂ at $\lambda = 640$ nm (Schölly).

 $<k_2>(20 \ ^{\circ}\text{C}) = (7.56 \pm 0.28) \times 10^{-1} \text{ L mol}^{-1} \text{ s}^{-1}$

Table S7. Phenyldiazomethane (**1b**) and $(dma)_2CH^+OTf^-$ in CH_2Cl_2 at $\lambda = 630$ nm (Schölly).

No.	T / °C	$[E]_0 / mol \ L^{-1}$	$[Nu]_0 / mol L^{-1}$	Conv. / %	k_2 / L mol ⁻¹ s ⁻¹
MH-V-105	-56.5	3.55×10^{-5}	4.02×10^{-3}	93	$5.78 imes10^{-1}$
MH-V-106	-46.5	3.26×10^{-5}	2.77×10^{-3}	94	1.39
MH-V-107	-39.8	3.65×10^{-5}	2.06×10^{-4}	95	2.78
MH-V-108	-30.8	3.07×10^{-5}	8.70×10^{-4}	85	4.75

 $k_2(20 \text{ °C}) = (1.19 \pm 0.28) \times 10^2 \text{ L mol}^{-1} \text{ s}^{-1}$

No.	$[E]_0 / mol \ L^{-1}$	$[Nu]_0 / mol L^{-1}$	$k_{ m obs}$ / ${ m s}^{-1}$	k_2 / L mol ⁻¹ s ⁻¹
BUT-K-110-3	1.25×10^{-5}	5.03×10^{-4}	2.93×10^{1}	$5.83 imes 10^2$
BUT-K-110-2	1.25×10^{-5}	7.33×10^{-4}	$4.18 imes 10^{-1}$	$5.70 imes 10^2$
BUT-K-110-1	1.25×10^{-5}	9.95×10^{-4}	$5.83 imes 10^{-1}$	5.86×10^2

Table S8. Phenyldiazomethane (**1b**) and $(mpa)_2CH^+BF_4^-$ in CH_2Cl_2 at $\lambda = 620$ nm 20.0 °C (Stopped flow).

 $< k_2 > (20 \ ^{\circ}\text{C}) = (5.80 \pm 0.07) \times 10^2 \text{ L mol}^{-1} \text{ s}^{-1}$

Table S9. Phenyldiazomethane (**1b**) and $(dpa)_2CH^+BF_4^-$ in CH_2Cl_2 at $\lambda = 670$ nm 20.0 °C (Stopped flow).

No.	$[E]_0 / mol \ L^{-1}$	$[Nu]_0 / mol L^{-1}$	$k_{\rm obs}$ / s ⁻¹	k_2 / L mol ⁻¹ s ⁻¹
BUT-K-109-3	1.25×10^{-5}	5.03×10^{-4}	3.32	6.60×10^3
BUT-K-109-2	1.25×10^{-5}	7.33×10^{-4}	5.03	$6.86 imes 10^3$
BUT-K-109-1	1.25×10^{-5}	9.95×10^{-4}	6.90	$6.93 imes 10^3$
BUT-K-109-4	$1.25 imes 10^{-5}$	1.26×10^{-3}	8.85	7.02×10^3

 $< k_2 > (20 \text{ °C}) = (6.85 \pm 0.16) \times 10^3 \text{ L mol}^{-1} \text{ s}^{-1}$

Table S10. Phenyldiazomethane (**1b**) and $(pfa)_2CH^+BF_4^-$ in CH_2Cl_2 at $\lambda = 603$ nm 20.0 °C (Stopped flow).

No.	$[E]_0 / mol \ L^{-1}$	$[Nu]_0 / mol L^{-1}$	$k_{ m obs}$ / ${ m s}^{-1}$	k_2 / L mol ⁻¹ s ⁻¹
BUT-K-111-1	1.25×10^{-5}	4.85×10^{-4}	$7.11 imes 10^1$	$1.47 imes 10^5$
BUT-K-111-2	1.25×10^{-5}	7.52×10^{-4}	$1.07 imes 10^2$	1.42×10^5
BUT-K-111-3	1.25×10^{-5}	9.22×10^{-4}	1.33×10^2	1.44×10^5
BUT-K-111-4	1.25×10^{-5}	1.26×10^{-3}	1.86×10^2	1.48×10^5

 $<k_2>(20 \text{ °C}) = (1.45 \pm 0.02) \times 10^5 \text{ L mol}^{-1} \text{ s}^{-1}$

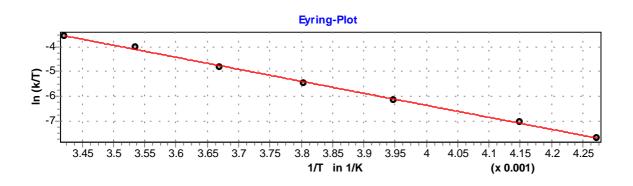
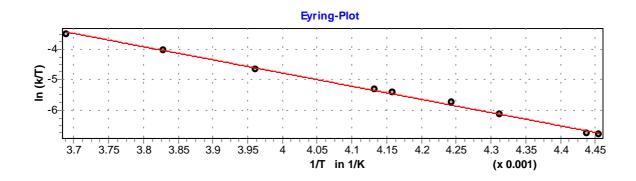

No.	T∕°C	$[E]_0 / mol \ L^{-1}$	$[Nu]_0 / mol L^{-1}$	Conv. / %	k_2 / L mol ⁻¹ s ⁻¹
BUT-K-121-2	19.9	1.82×10^{-5}	$8.48 imes 10^{-4}$	72	$4.55 imes 10^{-1}$
WER-K-13-2	20.0	$6.73 imes 10^{-5}$	2.02×10^{-3}	90	4.75×10^{-1}
WER-K-13-1	20.0	$5.07 imes 10^{-5}$	2.53×10^{-3}	94	4.46×10^{-1}
WER-K-12-3	20.0	5.48×10^{-5}	$2.74 imes 10^{-3}$	68	4.64×10^{-1}
WER-K-12-1	20.0	5.94×10^{-5}	2.96×10^{-3}	88	4.33×10^{-1}
WER-K-12-2	20.0	5.62×10^{-5}	4.49×10^{-3}	62	$4.27 imes 10^{-1}$

Table S11. (Trimethylsilyl)diazomethane (1c) and $(jul)_2CH^+BF_4^-$ in CH_2Cl_2 at $\lambda = 640$ nm (Schölly).

 $<k_2>(20 \text{ °C}) = (4.50 \pm 0.17) \times 10^{-1} \text{ L mol}^{-1} \text{ s}^{-1}$

Table S12. (Trimethylsilyl)diazomethane (**1c**) and $(pyr)_2CH^+BF_4^-$ in CH_2Cl_2 at $\lambda = 600-630$ nm (Schölly).

No.	T / °C	$[E]_0 / mol \ L^{-1}$	$[Nu]_0 / mol L^{-1}$	Conv. / %	k_2 / L mol ⁻¹ s ⁻¹
MH-V-125	-39.1	5.89×10^{-5}	6.74×10^{-3}	74	$1.08 imes 10^{-1}$
MH-V-126	-32.2	5.51×10^{-5}	$5.04 imes 10^{-3}$	88	2.06×10^{-1}
MH-V-127	-19.9	5.60×10^{-5}	3.84×10^{-3}	72	5.34×10^{-1}
MH-V-128	-10.3	5.68×10^{-5}	2.60×10^{-3}	80	1.12
MH-V-129	-0.7	5.86×10^{-5}	1.34×10^{-3}	66	2.21
MH-V-130	9.7	5.45×10^{-5}	6.23×10^{-4}	64	5.04
MH-V-131	19.1	5.49×10^{-5}	$1.88 imes 10^{-3}$	63	8.11



Eyring parameters:	Arrhenius parameters:
$\Delta H^{\ddagger} = 40.322 \pm 0.582 \text{ kJ mol}^{-1}$	$E_{\rm a} = 42.489 \pm 0.594 \text{ kJ mol}^{-1}$
$\Delta S^{\ddagger} = -89.233 \pm 2.234 \text{ J mol}^{-1} \text{ K}^{-1}$	$\ln A = 19.594 \pm 0.275$
$r^2 = 0.9990$	$r^2 = 0.9990$

 $k_2(20 \ ^{\circ}\text{C}) = 8.72 \pm 0.25 \text{ L mol}^{-1} \text{ s}^{-1}$

Table S13. (Trimethylsilyl)diazomethane (1c) and (dma)₂CH⁺OTf⁻ in CH₂Cl₂ at $\lambda = 640$ nm (Schölly).

No.	T / °C	$[E]_0 / mol \ L^{-1}$	$[Nu]_0 / mol L^{-1}$	Conv. / %	k_2 / L mol ⁻¹ s ⁻¹
MH-V-95	-48.7	8.71×10^{-5}	$2.45 imes 10^{-3}$	78	$2.57 imes 10^{-1}$
MH-V-96	-47.8	6.62×10^{-5}	2.79×10^{-3}	78	2.63×10^{-1}
MH-V-41	-41.3	1.53×10^{-4}	$2.11 imes 10^{-3}$	70	5.15×10^{-1}
MH-V-97	-37.5	6.43×10^{-5}	3.38×10^{-3}	84	7.69×10^{-1}
MH-V-98	-32.7	7.56×10^{-5}	2.39×10^{-3}	79	1.07
MH-V-42	-31.2	1.18×10^{-4}	1.54×10^{-3}	81	1.20
MH-V-99	-24.7	6.09×10^{-5}	1.28×10^{-3}	81	1.97
MH-V-43	-20.7	1.30×10^{-4}	$1.41 imes 10^{-3}$	75	2.43
MH-V-44	-12.0	$1.17 imes10^{-4}$	2.02×10^{-3}	87	4.65
MH-V-45	-2.1	$1.14 imes 10^{-4}$	1.48×10^{-3}	70	8.06

Eyring parameters:	Arrhenius parameters:
$\Delta H^{\ddagger} = 35.708 \pm 0.710 \text{ kJ mol}^{-1}$	$E_{\rm a} = 37.745 \pm 0.693 \text{ kJ mol}^{-1}$
$\Delta S^{\ddagger} = -94.426 \pm 2.932 \text{ J mol}^{-1} \text{ K}^{-1}$	$\ln A = 18.906 \pm 0.345$
$r^2 = 0.9969$	$r^2 = 0.9973$

 $k_2(20 \text{ °C}) = (3.10 \pm 0.19) \times 10^1 \text{ L mol}^{-1} \text{ s}^{-1}$

Table S14. (Trimethylsilyl)diazomethane (1c) and $(dpa)_2CH^+BF_4^-$ in CH_2Cl_2 at $\lambda = 670$ nm at 20.0 °C (Stopped flow).

No.	$[E]_0 / mol \ L^{-1}$	$[Nu]_0 / mol L^{-1}$	$k_{\rm obs}$ / s ⁻¹	k_2 / L mol ⁻¹ s ⁻¹
WER-K-14-1	1.25×10^{-5}	$7.50 imes10^{-4}$	1.24	1.65×10^3
WER-K-14-2	1.25×10^{-5}	$1.00 imes 10^{-3}$	1.61	$1.61 imes 10^3$
WER-K-14-3	1.25×10^{-5}	$1.25 imes 10^{-3}$	2.02	1.62×10^3
WER-K-14-4	1.25×10^{-5}	$1.50 imes 10^{-3}$	2.39	$1.59 imes 10^3$

 $< k_2 > (20 \text{ °C}) = (1.62 \pm 0.02) \times 10^3 \text{ L mol}^{-1} \text{ s}^{-1}$

Table S15. Diphenyldiazomethane (1d) and $(dma)_2CH^+OTf^-$ in CH_2Cl_2 at $\lambda = 600-630$ nm (Schölly).

No.	T / °C	$[E]_0 / mol \ L^{-1}$	$[Nu]_0 / mol L^{-1}$	Conv. / %	k_2 / L mol ⁻¹ s ⁻¹
MH-V-176	20.2	2.55×10^{-5}	$6.46 imes 10^{-4}$	54	$2.67 imes 10^{-2}$
MH-V-177	20.0	2.82×10^{-5}	8.90×10^{-4}	72	2.56×10^{-2}
MH-V-178	20.0	2.96×10^{-5}	$1.87 imes 10^{-3}$	36	2.90×10^{-2}

 $< k_2 > (20 \ ^{\circ}\text{C}) = (2.71 \pm 0.17) \times 10^{-2} \text{ L mol}^{-1} \text{ s}^{-1}$

No.	T∕°C	$[E]_0 / mol \ L^{-1}$	$[Nu]_0 / mol L^{-1}$	Conv. / %	k_2 / L mol ⁻¹ s ⁻¹
BUT-K-119-2	20.0	1.31×10^{-5}	$5.37 imes 10^{-4}$	22	$2.69 imes 10^{-1}$
WER-K-2-2	20.0	2.76×10^{-5}	8.36×10^{-4}	51	$3.11 imes 10^{-1}$
WER-K-3-1	20.0	3.56×10^{-5}	1.79×10^{-3}	85	$2.77 imes 10^{-1}$
WER-K-1-1	20.0	3.87×10^{-5}	1.93×10^{-3}	48	$2.82 imes 10^{-1}$
WER-K-3-2	20.0	3.54×10^{-5}	2.84×10^{-3}	64	$2.74 imes 10^{-1}$
BUT-K-119-1	20.0	$7.44 imes 10^{-5}$	5.73×10^{-3}	58	3.15×10^{-1}

Table S16. Diphenyldiazomethane (1d) and $(mpa)_2CH^+BF_4^-$ in CH_2Cl_2 at $\lambda = 630-640$ nm (Schölly).

 $<k_2>(20 \ ^{\circ}\text{C}) = (2.88 \pm 0.18) \times 10^{-1} \text{ L mol}^{-1} \text{ s}^{-1}$

Table S17. Diphenyldiazomethane (**1d**) and $(mpa)_2CH^+OTf^-$ in CH_2Cl_2 at $\lambda = 640$ nm (Schölly).

No.	T / °C	$[E]_0 / mol \ L^{-1}$	$[\mathrm{Nu}]_0 / \mathrm{mol}\; L^{-1}$	Conv. / %	$k_2 / L \text{ mol}^{-1} \text{ s}^{-1}$
WER-K-10-1	20.0	3.69×10^{-5}	$1.77 imes 10^{-3}$	41	$3.27 imes 10^{-1}$
WER-K-10-2	20.0	4.46×10^{-5}	2.22×10^{-3}	36	3.07×10^{-1}
WER-K-10-3	20.0	3.26×10^{-5}	2.61×10^{-3}	29	$3.13 imes 10^{-1}$

 $< k_2 > (20 \ ^{\circ}\text{C}) = (3.16 \pm 0.08) \times 10^{-1} \text{ L mol}^{-1} \text{ s}^{-1}$

Table S18. Diphenyldiazomethane (1d) and $(dpa)_2CH^+BF_4^-$ in CH_2Cl_2 at $\lambda = 630-640$ nm (Schölly).

No.	T / °C	$[E]_0 / mol \ L^{-1}$	$[Nu]_0 / mol L^{-1}$	Conv. / %	k_2 / L mol ⁻¹ s ⁻¹
BUT-K-120-2	19.9	1.48×10^{-5}	$7.54 imes10^{-4}$	32	2.65
BUT-K-120-6	19.9	3.44×10^{-5}	1.03×10^{-3}	60	2.97
BUT-K-120-9	19.9	2.54×10^{-5}	1.29×10^{-3}	55	2.93
BUT-K-120-8	19.9	2.85×10^{-5}	$1.44 imes 10^{-3}$	54	3.04
WER-K-8-4	20.0	3.33×10^{-5}	$1.66 imes 10^{-3}$	35	3.03
WER-K-8-3	20.0	4.21×10^{-5}	$2.10 imes 10^{-3}$	24	2.99
BUT-K-120-7	19.9	3.09×10^{-5}	$2.51 imes 10^{-3}$	42	2.93

 $< k_2 > (20 \ ^{\circ}\text{C}) = (2.93 \pm 0.12) \text{ L mol}^{-1} \text{ s}^{-1}$

Table S19. Diphenyldiazomethane	(1d)	and	$(mfa)_2 CH^+ BF_4^-$	in	CH_2Cl_2	at $\lambda =$	600	nm
(Schölly, J&M).								

No.	T / °C	$[E]_0 / mol \ L^{-1}$	$[Nu]_0 / mol L^{-1}$	Conv. / %	k_2 / L mol ⁻¹ s ⁻¹
BUT-K-123-3	20.0	4.90×10^{-6}	2.48×10^{-4}	33	$2.41 imes 10^1$
WER-K-11-4	20.0	1.24×10^{-5}	9.93×10^{-4}	40	2.25×10^1
BUT-K-122-6	20.0	2.42×10^{-5}	1.20×10^{-3}	72	2.22×10^1
BUT-K-122-3	20.0	1.55×10^{-5}	1.24×10^{-3}	35	2.39×10^1
BUT-K-123-2	20.0	3.24×10^{-5}	1.64×10^{-3}	48	$2.23 imes 10^1$

 $< k_2 > (20 \ ^{\circ}\text{C}) = (2.30 \pm 0.08) \times 10^1 \text{ L mol}^{-1} \text{ s}^{-1}$

Table S20. Ethyl diazoacetate (1e) and $(dma)_2CH^+BF_4^-$ in CH_2Cl_2 at $\lambda = 640$ nm (Schölly).

No.	T (^o C)	$[E]_0 / mol \ L^{-1}$	$[Nu]_0 / mol L^{-1}$	Conv. / (%)	k_2 / L mol ⁻¹ s ⁻¹
MH-V-182	20.0	7.63×10^{-5}	1.76×10^{-3}	66	$1.37 imes 10^{-2}$
MH-V-183	20.0	6.33×10^{-5}	2.92×10^{-3}	69	1.42×10^{-2}

 $< k_2 > (20 \ ^{\circ}\text{C}) = (1.40 \pm 0.03) \times 10^{-2} \text{ L mol}^{-1} \text{ s}^{-1}$

Table S21. Ethyl diazoacetate (1e) and $(dpa)_2CH^+BF_4^-$ in CH_2Cl_2 at $\lambda = 640$ nm (Schölly).

No.	T∕°C	$[E]_0 / mol \ L^{-1}$	$[Nu]_0 / mol \ L^{-1}$	Conv. / %	k_2 / L mol ⁻¹ s ⁻¹
BUT-K-107-7	20.0	3.54×10^{-5}	$1.07 imes 10^{-3}$	18	$8.06 imes 10^{-1}$
BUT-K-107-5	20.0	3.67×10^{-5}	1.83×10^{-3}	69	8.63×10^{-1}
BUT-K-107-1	20.0	3.96×10^{-5}	1.96×10^{-3}	28	8.54×10^{-1}
BUT-K-107-4	20.0	3.95×10^{-5}	1.97×10^{-3}	66	8.50×10^{-1}
BUT-K-107-2	20.0	4.04×10^{-5}	2.00×10^{-3}	71	8.46×10^{-1}
BUT-K-107-3	20.0	$4.40 imes 10^{-5}$	$2.20 imes 10^{-3}$	53	$8.54 imes 10^{-1}$

 $< k_2 > (20 \ ^{\circ}\text{C}) = (8.46 \pm 0.18) \times 10^{-1} \text{ L mol}^{-1} \text{ s}^{-1}$

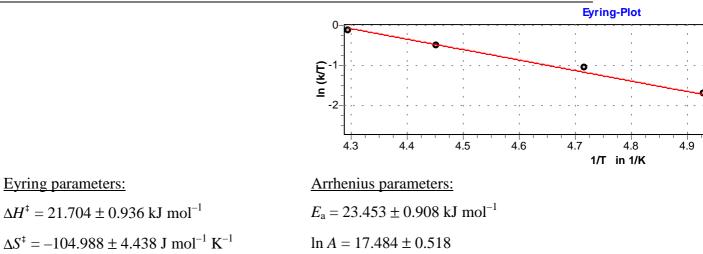
No.	T/°C	$[E]_0 / mol \ L^{-1}$	$[Nu]_0 / mol L^{-1}$	Conv. / %	k_2 / L mol ⁻¹ s ⁻¹
BUT-K-108-7	20.0	4.07×10^{-5}	$1.21 imes 10^{-3}$	39	7.87
BUT-K-108-1	20.0	4.94×10^{-5}	2.46×10^{-3}	50	8.60
BUT-K-108-4	20.0	5.08×10^{-5}	2.53×10^{-3}	66	8.80
BUT-K-108-2	20.0	5.19×10^{-5}	2.58×10^{-3}	66	8.65
BUT-K-108-3	20.0	5.20×10^{-5}	2.59×10^{-3}	61	8.81
BUT-K-108-6	20.0	4.76×10^{-5}	3.82×10^{-3}	73	8.63

Table S22. Ethyl diazoacetate (1e) and $(mfa)_2CH^+BF_4^-$ in CH_2Cl_2 at $\lambda = 600$ nm (Schölly).

 $< k_2 > (20 \ ^{\circ}\text{C}) = (8.56 \pm 0.32) \text{ L mol}^{-1} \text{ s}^{-1}$

Table S23. Ethyl diazoacetate (1e) and fc(Ph)CHOAc in CH_2Cl_2 at $\lambda = 490$ nm (Schölly).

No.	Τ/	[E] ₀ /	[Nu] ₀ /	[TMSOTf] ₀ /	Conv. /	k_2 /
	°C	mol L^{-1}	mol L^{-1}	$mol \ L^{-1}$	%	$L \text{ mol}^{-1} \text{ s}^{-1}$
MH-V-35	-66.7	1.15×10^{-3}	$2.74 imes 10^{-3}$	$7.85 imes 10^{-3}$	99	5.06×10^{-1}
MH-V-36	-59.9	$1.03 imes 10^{-3}$	3.98×10^{-3}	$7.05 imes 10^{-3}$	71	7.51×10^{-1}
MH-V-31	-50.5	$7.97 imes 10^{-4}$	$5.47 imes 10^{-3}$	$7.23 imes 10^{-3}$	62	1.55
MH-V-32	-40.9	9.59×10^{-4}	4.94×10^{-3}	6.56×10^{-3}	45	4.00
MH-V-33	-32.4	$1.07 imes 10^{-3}$	4.12×10^{-3}	$7.30 imes 10^{-3}$	28	7.57
MH-V-34	-21.9	9.16×10^{-4}	2.36×10^{-3}	6.26×10^{-3}	53	1.79×10^{1}



Eyring parameters:	Arrhenius parameters:
$\Delta H^{\ddagger} = 33.089 \pm 1.634 \text{ kJ mol}^{-1}$	$E_{\rm a} = 34.978 \pm 1.657 \text{ kJ mol}^{-1}$
$\Delta S^{\ddagger} = -88.733 \pm 7.221 \text{ J mol}^{-1} \text{ K}^{-1}$	$\ln A = 19.515 \pm 0.881$
$r^2 = 0.9903$	$r^2 = 0.9911$

 $k_2(20 \text{ °C}) = (1.80 \pm 0.36) \times 10^2 \text{ L mol}^{-1} \text{ s}^{-1}$

Table S24. Ethyl diazoacetate (1e) and (fur)₂CHOMe in CH₂Cl₂ at $\lambda = 490$ nm (Schölly).

No.	Τ/	[E] ₀ /	[Nu] ₀ /	[TMSOTf] ₀ /	Conv. /	k ₂ /
	°C	mol L^{-1}	mol L^{-1}	mol L^{-1}	%	$L \text{ mol}^{-1} \text{ s}^{-1}$
HS220794.5	-82.5	9.47×10^{-5}	$7.06 imes 10^{-3}$	2.71×10^{-3}	35	1.38×10^{1}
HS140794.0	-70.3	$6.60 imes 10^{-4}$	$6.47 imes 10^{-3}$	$1.77 imes 10^{-3}$	20	3.68×10^1
HS210794.1	-61.1	$1.14 imes 10^{-4}$	2.38×10^{-3}	3.03×10^{-3}	31	7.30×10^1
HS210794.2	-48.5	$1.27 imes 10^{-4}$	1.32×10^{-3}	9.41×10^{-4}	25	$1.37 imes 10^2$
HS210794.3	-40.3	9.66×10^{-5}	$1.45 imes 10^{-3}$	1.75×10^{-3}	18	$2.02 imes 10^2$

$$r^2 = 0.9944$$

$$r^2 = 0.9955$$

$$k_2(20 \text{ °C}) = (2.72 \pm 0.40) \times 10^3 \text{ L mol}^{-1} \text{ s}^{-1}$$

Table S25. Diazoacetone (**1f**) and (mpa)₂CH⁺BF₄⁻ in CH₂Cl₂ at $\lambda = 640$ nm (Schölly).

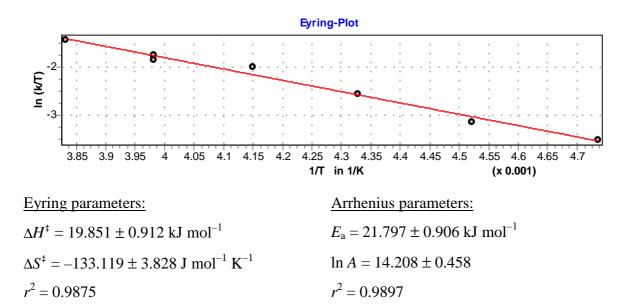
No.	T / °C	$[E]_0 / mol \ L^{-1}$	$[Nu]_0 / mol L^{-1}$	Conv. / %	k_2 / L mol ⁻¹ s ⁻¹
BUT-K-127-1	20.0	1.99×10^{-5}	1.60×10^{-3}	32	$1.25 imes 10^{-2}$
BUT-K-127-3	20.0	$2.20 imes 10^{-5}$	$1.12 imes 10^{-3}$	26	$1.17 imes 10^{-2}$

 $< k_2 > (20 \text{ }^{\text{o}}\text{C}) = (1.21 \pm 0.04) \times 10^{-2} \text{ L mol}^{-1} \text{ s}^{-1}$

Table S26. Diazoacetone (**1f**) and $(dpa)_2CH^+BF_4^-$ in CH_2Cl_2 at $\lambda = 640$ nm (Schölly).

Nr.	T / °C	$[E]_0 / mol \ L^{-1}$	$[Nu]_0 / mol L^{-1}$	Conv. / %	k_2 / L mol ⁻¹ s ⁻¹
BUT-K-124-5	20.0	2.40×10^{-5}	7.32×10^{-4}	24	$3.15 imes 10^{-1}$
BUT-K-124-6	20.0	2.92×10^{-5}	1.49×10^{-3}	24	3.15×10^{-1}
BUT-K-124-3	20.0	3.25×10^{-5}	$1.65 imes 10^{-3}$	18	3.26×10^{-1}
BUT-K-124-7	20.0	$5.00 imes 10^{-5}$	2.54×10^{-3}	68	3.15×10^{-1}
BUT-K-124-9	20.0	5.16×10^{-5}	2.62×10^{-3}	67	3.38×10^{-1}
BUT-K-124-8	20.0	5.52×10^{-5}	2.81×10^{-3}	70	3.21×10^{-1}
BUT-K-124-4	20.0	6.39×10^{-5}	$5.15 imes 10^{-3}$	85	3.48×10^{-1}

 $<k_2>(20 \ ^{\circ}\text{C}) = (3.25 \pm 0.12) \times 10^{-1} \text{ L mol}^{-1} \text{ s}^{-1}$


Table S27. Diazoacetone (**1f**) and $(mfa)_2CH^+BF_4^-$ in CH_2Cl_2 at $\lambda = 600$ nm (Schölly).

No.	T∕°C	$[E]_0 / mol \ L^{-1}$	$[Nu]_0 / mol \ L^{-1}$	Conv. / %	k_2 / L mol ⁻¹ s ⁻¹
BUT-K-125-3	20.0	1.63×10^{-5}	4.94×10^{-4}	48	1.27
BUT-K-125-2	19.9	1.88×10^{-5}	9.36×10^{-4}	40	1.28
BUT-K-125-5	19.9	2.84×10^{-5}	$1.41 imes 10^{-3}$	61	1.34
BUT-K-125-7	19.9	3.33×10^{-5}	$1.66 imes 10^{-3}$	86	1.27
BUT-K-125-6	19.9	3.43×10^{-5}	$1.71 imes 10^{-3}$	80	1.29
BUT-K-125-4	19.9	5.34×10^{-5}	4.29×10^{-3}	62	1.32

 $< k_2 > (20 \ ^{\circ}\text{C}) = (1.30 \pm 0.03) \text{ L mol}^{-1} \text{ s}^{-1}$

Nr.	Τ/	[E] ₀ /	[Nu] ₀ /	[TMSOTf] ₀ /	Conv. /	k ₂ /
	°C	mol L^{-1}	mol L^{-1}	mol L^{-1}	%	$L \text{ mol}^{-1} \text{ s}^{-1}$
BUT-K-126-4	-62.0	$1.70 imes 10^{-5}$	$8.50 imes10^{-4}$	8.36×10^{-5}	51	6.17
BUT-K-126-5	-52.0	1.80×10^{-5}	8.98×10^{-4}	$1.61 imes 10^{-4}$	42	9.43
BUT-K-126-6	-42.1	1.60×10^{-5}	7.98×10^{-4}	$1.78 imes 10^{-4}$	60	1.79×10^1
BUT-K-126-8	-32.2	1.64×10^{-5}	8.19×10^{-4}	1.83×10^{-4}	50	$3.27 imes 10^1$
BUT-K-126-1	-22.0	1.84×10^{-5}	9.00×10^{-4}	$2.28 imes 10^{-4}$	54	4.31×10^1
BUT-K-126-2	-22.0	8.73×10^{-6}	3.21×10^{-4}	$6.13 imes 10^{-5}$	45	3.94×10^1
BUT-K-126-3	-22.0	1.93×10^{-5}	1.51×10^{-3}	1.45×10^{-4}	80	4.43×10^1
BUT-K-126-9	-12.2	1.59×10^{-5}	7.93×10^{-4}	$1.77 imes 10^{-4}$	50	$6.28 imes 10^1$

Table S28. Diazoacetone (**1f**) and $(fur)_2CH^+OTf^-$ in CH_2Cl_2 at $\lambda = 530$ nm (*J&M*).

 $k_2(20 \ ^{\circ}\text{C}) = (1.98 \pm 0.17) \times 10^2 \text{ L mol}^{-1} \text{ s}^{-1}$

No.	[E] ₀ /	[Nu] ₀ /	[TMSOTf] ₀ /	k _{obs} /	k ₂ /
	mol L^{-1}	mol L^{-1}	$mol \ L^{-1}$	s^{-1}	$L \text{ mol}^{-1} \text{ s}^{-1}$
BUT-K-128-1	$1.24 imes 10^{-5}$	$5.00 imes 10^{-4}$	$6.49 imes 10^{-5}$	2.13	4.27×10^3
BUT-K-128-2	1.24×10^{-5}	7.49×10^{-4}	6.49×10^{-5}	3.03	$4.05 imes 10^3$
BUT-K-128-3	1.24×10^{-5}	9.99×10^{-4}	6.49×10^{-5}	3.96	3.96×10^3
BUT-K-128-4	$1.24 imes 10^{-5}$	$1.25 imes 10^{-3}$	6.49×10^{-5}	4.93	3.94×10^3

Table S29. Diazoacetone (**1f**) and $(ani)_2$ CHCl in CH₂Cl₂ at $\lambda = 510$ nm at 20.0 °C (Stopped flow).

 $< k_2 > (20 \text{ }^{\text{o}}\text{C}) = (4.06 \pm 0.13) \times 10^3 \text{ L mol}^{-1} \text{ s}^{-1}$

Table S30. Diethyl diazomalonate (**1g**) and $(fur)_2CH^+OTf^-$ in CH_2Cl_2 at $\lambda = 540$ nm (Schölly).

Nr.	Τ/	[E] ₀ /	[Nu] ₀ /	[TMSOTf] ₀ /	Conv. /	k_2 /
	°C	mol L^{-1}	mol L^{-1}	$mol \ L^{-1}$	%	$L \text{ mol}^{-1} \text{ s}^{-1}$
BUT-K-133-4	19.9	1.25×10^{-5}	7.36×10^{-4}	7.52×10^{-5}	37	$2.78 imes 10^{-2}$
BUT-K-133-1	19.9	1.62×10^{-5}	8.37×10^{-4}	$1.08 imes 10^{-4}$	43	$2.72 imes 10^{-2}$
BUT-K-133-2	19.9	1.97×10^{-5}	1.86×10^{-3}	$1.11 imes 10^{-4}$	30	2.48×10^{-2}
BUT-K-133-3	19.9	1.96×10^{-5}	$2.11 imes 10^{-3}$	1.06×10^{-4}	83	$2.65 imes 10^{-2}$
BUT-K-133-5	19.9	2.73×10^{-5}	3.48×10^{-3}	$1.64 imes 10^{-4}$	87	$2.50 imes 10^{-2}$

 $< k_2 > (20 \text{ °C}) = (2.63 \pm 0.12) \times 10^{-2} \text{ L mol}^{-1} \text{ s}^{-1}$

No.	Τ/	[E] ₀ /	[Nu] ₀ /	[TMSOTf] ₀ /	Conv. /	k ₂ /
	°C	$mol \ L^{-1}$	mol L^{-1}	$mol \ L^{-1}$	%	$L \text{ mol}^{-1} \text{ s}^{-1}$
BUT-K-130-9	19.9	1.29×10^{-5}	8.91×10^{-4}	8.60×10^{-5}	21	4.86×10^{-1}
BUT-K-130-8	19.9	1.65×10^{-5}	9.11×10^{-4}	8.24×10^{-5}	61	5.21×10^{-1}
BUT-K-130-6	19.9	1.88×10^{-5}	$1.12 imes 10^{-3}$	7.80×10^{-5}	75	4.56×10^{-1}
BUT-K-132-2	19.9	2.65×10^{-5}	$1.16 imes 10^{-3}$	1.59×10^{-4}	93	4.97×10^{-1}
BUT-K-130-2	19.9	2.06×10^{-5}	$1.64 imes 10^{-3}$	$1.18 imes 10^{-4}$	79	4.50×10^{-1}
BUT-K-132-1	19.9	4.75×10^{-5}	$3.76 imes 10^{-3}$	2.86×10^{-4}	79	4.49×10^{-1}

Table S31. Diethyl diazomalonate (**1g**) and $(ani)_2CH^+OTf^-$ in CH_2Cl_2 at $\lambda = 510$ nm (Schölly, *J&M*).

 $< k_2 > (20 \ ^{\circ}\text{C}) = (4.77 \pm 0.27) \times 10^{-1} \text{ L mol}^{-1} \text{ s}^{-1}$

- [S1] J.-F. Létard, R. Lapouyade, W. Rettig, Chem. Phys. Lett. 1994, 222, 209–216.
- [S2] F. H. C. Stewart, J. Org. Chem. 1961, 26, 3604–3605.
- [S3] W. Tadros, L. Ekladius, A. B. Sakla, J. Chem. Soc. 1954, 2351–2353.
- [S4] W. Madelung, M. E. Oberwegner, Chem. Ber. 1932, 65, 931–941.