

Supporting Information

© Copyright Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2006

Shape and Spin State in Four Coordinate Transition-Metal Complexes: The Case of the d⁶ Configuration

Jordi Cirera^[a], Eliseo Ruiz^[a], and Santiago Alvarez^[a]*

[a] Departament de Química Inorgànica and Centre de Recerca en Química Teòrica Universitat de Barcelona, Diagonal 647, 08028 Barcelona (Spain) Fax +34-93-4907725, e-mail: santiago@qi.ub.es

Supporting Information

	S	Total Energy (a.u.)	Rel. Energy (kcal·mol ⁻¹)	S(T _d)	S(D4h)
[FeMe ₄] ²⁻					
2	2	- 1423.268815	0.0	0.07	31.86
1	1	- 1423.254410	9.0	33.34	0.01
(C	- 1423.196027	45.7	12.02	8.42
[FeCl ₄] ²⁻					
2	2	- 3104.931412	0.0	0.10	31.88
1	1	- 3104.882727	30.6	0.16	29.72
(C	- 3104.797517	84.0	1.52	28.44
[NiBr(norb	ornyl) ₃](experimental structu	ure)		
2	2	- 4902.462120	80.4	2.40	31.16
1	1	- 4902.533628	35.6	2.40	31.16
(C	- 4902.590298	0.0	2.40	31.16
[NiBrMe ₃]					
2	2	- 4202.062634	59.0	0.34	33.06
1	1	- 4202.119737	23.1	2.81	25.10
(C	- 4202.156586	0.0	4.96	32.54
[Fe(2,6-xyl	lyl) ₂ (PH	[₃) ₂]			
2	2	- 2570.724332	0.0	26.62	3.19
]	1	- 2570.722589	1.1	33.11	0.40

Table S1. B3LYP-calculated energies for the different spin states of the compounds studied in their optimized geometries.

Table S2. Atomic coordinates for the optimized geometries of the dtudied compounds.

[FeN	$[e_4]^{2-}(S=2)$		
Fe	0.00000	0.00000	0.00000
С	-1.815587	0.787037	1.074661
С	1.709307	-0.282608	1.438032
С	-0.405716	-2.015740	-0.917848
С	0.506112	1.508930	-1.592471
Н	-1.654865	1.762681	1.567532
Н	-2.702268	0.911185	0.427403
Н	-2.111947	0.083244	1.872537
Н	1.946352	0.676272	1.932081
Н	1.494425	-1.002540	2.248045
Н	2.645843	-0.624690	0.962198
Н	-0.694036	-2.791118	-0.185608
Н	-1.244256	-1.938817	-1.632468
Н	0.446718	-2.430012	-1.485683
Н	0.746865	2.513315	-1.200368
Н	1.396205	1.175414	-2.154838
Н	-0.295061	1.653438	-2.339359

 $[FeMe_4]^{2-}(S = 1)$

Fe	0.00000	0.00000	0.00000
С	-0.989196	0.471405	1.806791
С	1.227375	-1.412694	0.981621
С	0.989253	-0.471301	-1.806784
С	-1.227400	1.412688	-0.981617
Н	-0.444032	1.360146	2.181143
Н	-2.043861	0.780647	1.697019
Н	-0.942049	-0.290011	2.604296
Н	2.138734	-0.837607	1.238464
Н	0.833854	-1.823898	1.926854
Н	1.562779	-2.260101	0.357558
Н	2.043884	-0.780653	-1.697000
Н	0.444017	-1.359950	-2.181253
Н	0.942210	0.290200	-2.604211
Н	-1.562849	2.260056	-0.357525
Н	-0.833865	1.823952	-1.926818
н	-2.138735	0.837590	-1.238521

 $[\text{FeMe}_4]^{2-}(S=0)$

Fe	0.000329	0.019483	0.336260
С	-2.112530	0.033168	0.562314
С	2.113571	0.032995	0.558812
С	-0.000490	-1.841850	-0.442959
С	-0.000527	1.776355	-0.657315
Н	-2.519834	0.948760	1.041869
Н	-2.588185	-0.027930	-0.436922
Н	-2.521583	-0.815853	1.150557
Н	2.521731	0.948691	1.037441
Н	2.523533	-0.815887	1.146631
Н	2.587622	-0.028422	-0.441169
Н	0.000406	-2.454075	0.490362
Н	-0.895669	-2.150487	-1.011447
Н	0.893548	-2.150564	-1.013205
Н	0.000203	2.494376	0.197304
Н	0.893579	2.015751	-1.259954
Н	-0.895703	2.015689	-1.258380

$[\text{FeC}_{1}]^{2} (S - 2)$	
$[FeCI_4]^- (S = 2)$	

Fe	0.00000	0.00000	0.00000
Cl	-1.929798	0.448225	1.385206
Cl	1.930216	0.426069	1.391498
Cl	-0.008282	-2.281769	-0.801393
C1	0.007552	1.396733	-1.973105

 $[\text{FeCl}_4]^{2-}(S = 1)$

Fe	0.000000	0.00000	0.00000
Cl	-1.286713	0.900018	1.797120
Cl	2.290159	-0.070717	0.730383
Cl	-0.596792	-2.204948	-0.692959
Cl	-0.307724	1.445048	-1.897605

 $[\text{FeCl}_4]^{2-}(S = 0)$

Fe	0.000000	0.00000	0.000000
Cl	-1.728038	0.000095	1.575540
Cl	1.728249	-0.000105	1.575256
Cl	0.000063	-1.728202	-1.575332
Cl	-0.000283	1.728210	-1.575356

$[Fe(2,6-xylyl)_2(PH_3)_2] (S = 1)$

Fe	0.006962	-0.037181	-0.004852
С	-1.532377	1.327233	0.091739
С	1.559602	-1.363082	-0.095790
С	-2.879929	0.906704	0.109157
С	2.901530	-0.928370	-0.106120
С	-3.921472	1.832517	0.212048
С	3.953206	-1.844579	-0.194012
С	-3.656482	3.193302	0.289655
С	3.703085	-3.208537	-0.266229
С	-2.338322	3.628771	0.262981
С	2.389023	-3.656860	-0.249394
С	-1.285509	2.715741	0.161473
С	1.326801	-2.753081	-0.162568
С	-3.223923	-0.561912	-0.010975
С	3.226837	0.545419	-0.002017
С	-0.086267	-3.292128	-0.123818
С	0.130261	3.246400	0.104124
H	-4.949240	1.483698	0.234107
Н	4.977659	-1.485614	-0.207452
Н	-2.123027	4.690904	0.325120
H	2.184787	-4.721530	-0.306048
H	-3.160203	-0.910033	-1.046939
H	3.031991	0.933492	1.003282
H	-4.238950	-0.770283	0.330778
H	4.276282	0.746269	-0.222400
H	-2.547659	-1.190534	0.574487
Н	2.628960	1.145281	-0.694411
Н	-0.122271	-4.355744	-0.364184
Н	0.189714	4.278651	0.452445
H	-0.739890	-2.777303	-0.834511
Н	0.815682	2.656105	0.717558
H	-0.539645	-3.174283	0.866124
H	0.528692	3.232596	-0.915303
Р	-0.111258	0.122417	-2.304997
Р	-0.015328	-0.080441	2.306027
H	-4.468006	3.906071	0.375774
Н	4.522625	-3.913596	-0.338931

H	-1.373651	-0.142477	-2.927944
H	0.124575	1.408178	-2.890530
Η	-1.251325	-0.395419	2.957997
H	0.846774	-0.931732	3.072970
Η	0.717759	-0.654890	-3.179627
Η	0.252727	1.150360	2.988103

$[Fe(2,6-xylyl)_2(PH_3)_2] (S = 2)$

Fe	-0.093671	-0.133343	-0.011768
С	-1.535792	1.375898	0.094027
С	1.609634	-1.334018	-0.098065
С	-2.898846	1.007852	0.113884
С	2.930245	-0.834819	-0.102478
С	-3.907381	1.971700	0.202283
С	4.024784	-1.699804	-0.178604
С	-3.587005	3.320613	0.262535
С	3.837476	-3.074391	-0.246169
С	-2.252855	3.708351	0.236838
С	2.548253	-3.589636	-0.237362
С	-1.235623	2.755341	0.151980
С	1.445220	-2.735606	-0.160530
С	-3.300296	-0.447840	0.009477
С	3.187578	0.652309	-0.008283
С	0.060381	-3.345155	-0.120630
С	0.199497	3.229214	0.108563
Н	-4.948210	1.665063	0.226008
Н	5.031958	-1.296223	-0.189120
Н	-2.001840	4.762810	0.287558
Н	2.398985	-4.663173	-0.292683
Н	-3.323838	-0.785399	-1.031317
Н	2.965875	1.034587	0.992542
Н	-4.292717	-0.629344	0.425235
Н	4.228421	0.898675	-0.222600
Н	-2.602874	-1.101093	0.543515
Н	2.565814	1.214976	-0.708844
Н	0.059032	-4.378197	-0.471745
Н	0.284853	4.288755	0.354351
Н	-0.644831	-2.790802	-0.747443
Н	0.828237	2.677481	0.810857
Н	-0.347793	-3.352292	0.894766
Н	0.637472	3.094024	-0.884856
Р	-0.366551	-0.155791	-2.843182
Р	-0.257008	-0.416577	2.827468
Н	-4.370327	4.065784	0.335742
Н	4.690734	-3.739217	-0.311372
Н	-1.604621	0.060678	-3.542548
Н	0.332622	0.964164	-3.409528
Н	-1.478477	-0.255503	3.569667
Н	0.286295	-1.486534	3.621718
Н	0.165824	-1.146865	-3.739129
Н	0.462167	0.643847	3.476143

Metal	$\varphi_Q(T_d \rightarrow$	D_{4h}) μ_{eff}	S	Refcode	Ref.
 Fe	9.1	5.10	2	IMSPFE10	[1]
Fe	9.9	4.50	2	GIJGIP	[2]
Fe	14.8	5.10	2	PTHPFE10	[3]
Fe	16.0	4.60	2	TATWAM	[4]
Fe	18.0	4.60	2	TATWEQ	[4]
Fe	19.0	5.00	2	YEWSOI	[5]
Fe	22.2	4.70	2	FIHRET	[6]
Fe	28.7	5.30	2	SOQLUF	[7]
Fe	31.2	4.40	2		[8]
Fe	48.7	5.19	2	CIWQUU	[9]
Со	72.9	3.60	1	NINBUH	[10]
Fe	96.5	2.90	1		[8]
Fe	97.6	4.40	1	TPORFE	[11]
Со	98.5	3.10	1	NINBOB	[10]
Fe	99.8	3.60	1	QATQUX	[12]
Fe	100.3	2.70	1		[8]
Fe	100.0	3.50	1	BUYKUB10	[13]
Fe	100.0	4.60	1	DEDWUE	[13]
Fe	100.4	2.80	1	OAZNFE	[14]

Table S3. Structurally characterized four-coordinate d^6 complexes that fall along the tetrahedron-square interconversion path (within a 15%) for which structural magnetic data have been reported.

References

- [1] M. R. Churchill, J. Wormald, *Inorg. Chem.* **1971**, *10*, 1778.
- [2] B. S. Snyder, R. H. Holm, *Inorg. Chem.* **1988**, 27, 2339.
- [3] D. Coucouvanis, D. Swenson, N. C. Baenziger, C. Murphy, D. G. Holah, N. Sfarnas, A. Simopoulos, A. Kostikas, J. Am. Chem. Soc. 1981, 103, 3350.
- [4] C. E. Forde, A. J. Lough, R. H. Morris, R. Ramachandran, *Inorg. Chem.* 1996, 35, 2747.
- [5] C. E. Forde, R. H. Morris, R. Ramachandran, *Inorg. Chem.* **1994**, *33*, 5647.
- [6] A. R. Hermes, G. S. Girolami, *Organometallics* **1987**, *6*, 763.
- [7] M. D. Fryzuk, D. B. Leznoff, E. S. F. Ma, S. J. Rettig, V. G. Young Jr, Organometallics 1998, 17, 2313.
- [8] E. J. Hawrelak, W. H. Bernskoetter, E. Lbokovsky, G. T. Yee, E. Bill, P. J. Chirik, *Inorg. Chem.* 2005, 44, 3103.
- [9] K. J. Franz, S. J. Lippard, J. Am. Chem. Soc. 1999, 121, 10504.
- [10] L. H. Doerrer, M. T. Bautista, S. J. Lippard, Inorg. Chem. 1997, 36, 3578.
- [11] J. P. Collman, J. L. Hoard, N. Kim, G. Lang, C. Reed, J. Am. Chem. Soc. 1975, 97, 2676.
- [12] C. Da Silva, L. Bonomo, E. Solari, R. Scopelliti, C. Floriani, N. Re, *Chem. Eur. J.* 2000, *6*, 4518.
- [13] S. H. Strauss, M. E. Silver, K. M. Long, R. G. Thompson, R. A. Hudgens, K. Spartalian, J. A. Ibers, J. Am. Chem. Soc. 1985, 107, 4207.
- [14] R. G. Little, J. A. Ibers, J. E. Baldwin, J. Am. Chem. Soc. 1975, 97, 7049.