CHEMISTRY A EUROPEAN JOURNAL

Supporting Information

© Copyright Wiley-VCH Verlag GmbH \& Co. KGaA, 69451 Weinheim, 2007

Enantioselective C-C Bond Formation to Sulfonylimines Using 2-Pyridylsuofonyl Group as a Novel Stereocontroller

Shuichi Nakamura*, Hiroki Nakashima, Hideki Sugimoto, Hideaki Sano, Masataka Hattori, Norio Shibata and Takeshi Toru* ${ }^{[a]}$

[a] Department of Applied Chemistry, Graduate School of Engineering Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan

E-mail: toru@nitech.ac.jp, snakamur@nitech.ac.jp; Tel \& Fax: 81-52-735-5217

General Methods

Toluene was distilled from calcium hydride under nitrogen prior to use. All of the reactions were monitored by thin-layer chromatography (TLC) carried out on 0.25 mm Merck silica-gel plate (60f-254). The TLC plates were visualized with UV light and 7% phosphomolybdic acid or p-anisaldehyde in ethanol/heat. Column chromatography was carried out on a column packed with KANTO KAGAKU silica gel 60N 37571. Optical rotations were measured on a HORIBA SEPA-300 operating at $\lambda=589 \mathrm{~nm}$ corresponding to the sodium D line. Melting points were recorded on a YANAGIMOTO micro melting point apparatus and are uncorrected. ${ }^{1} \mathrm{H}$ NMR $(200 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}$ NMR (50.3 MHz) spectra for solution in CDCl_{3} were recorded on a Varian Mercury-200. Chemical shifts are expressed in ppm downfield from internal tetramethylsilane. Infrared spectra were record on a JASCO FT/IR-200 spectrometer. Mass spectra were recorded on a SHIMADZU QCMS-QP5050-A spectrometer (EI) and SHIMADZU LCMS-2010EV (ESI). Microanalyses were performed with a Perkin Elmer-240. HPLC analyses were performed on a JASCO PU-2080 Plus or SHIMADZU LC-2010A HT using $4.6 \times 250 \mathrm{~mm}$ CHIRALPAK AD-H or CHIRALCEL OJ-H or CHIRALCEL OD-H or CHIRALPAK AS-H column.

Experimental Procedure

N-Benzylidene-2,4,6-triisopropylphenylsulfonamide (1e).

The reaction was carried out as described in the typical procedure except for using 2,4,6-triisopropylsulfonamide ($500 \mathrm{mg}, 1.76 \mathrm{mmol}$), benzaldehyde ($187 \mathrm{mg}, 1.76 \mathrm{mmol}$), triethylamine ($0.74 \mathrm{~mL}, 5.28 \mathrm{mmol}$), and titanium(IV) chloride ($1.00 \mathrm{~mol} \mathrm{~L}^{-1}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 1.76$ $\mathrm{mL}, 1.76 \mathrm{mmol}$). Usual work-up gave the crude product which was recrystallized with hexane/ethyl acetate to afford $\mathbf{1 e}(459 \mathrm{mg}, 70 \%) ; \mathrm{mp} 128.0-130.0^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.50$ (hexane/ethyl
acetate $=80 / 20) ;{ }^{1} \mathrm{H}$ NMR $\delta 1.26(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 12 \mathrm{H}), 1.29(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 6 \mathrm{H}), 2.91(\mathrm{sep}, J$ $=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.36(\mathrm{sep}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.20(\mathrm{~s}, 2 \mathrm{H}), 7.45-7.95(\mathrm{~m}, 5 \mathrm{H}), 9.02(\mathrm{~s}, 1 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\delta 23.8,25.0,30.0,34.4,123.7,129.0,130.7,130.8,132.5,134.4,150.9,153.4,168.4$; IR (KBr) $1607,1311,1149,787,770,674,532 \mathrm{~cm}^{-1}$; EIMS m/z (rel. intensity) $371\left(\mathrm{M}^{+}, 22\right)$, 292 (100), 229 (30), 186 (49), 160 (35), 90 (23); Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{29} \mathrm{NO}_{2} \mathrm{~S}: \mathrm{C}, 71.12$; H, 7.87; N, 3.77. Found: C, 71.22; H, 7.75; N, 3.79.

N-Benzylidene-8-quinolinesulfonamide (1f).

The reaction was carried out as described in the typical procedure except for using 8-quinolinesulfonamide ($500 \mathrm{mg}, 2.40 \mathrm{mmol}$), benzaldehyde ($0.25 \mathrm{~mL}, 2.40 \mathrm{mmol}$), triethylamine $(1.00 \mathrm{~mL}, 7.20 \mathrm{mmol})$, and titanium(IV) chloride $\left(1.00 \mathrm{~mol} \mathrm{~L}^{-1}\right.$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 2.40$ $\mathrm{mL}, 2.40 \mathrm{mmol}$). Usual work-up gave the crude product which was recrystallized from hexane/ethyl acetate to afford $\mathbf{1 f}(285 \mathrm{mg}, 40 \%)$; mp 190.0-192.0 ${ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.37$ (hexane/ethyl acetate $=60 / 40) ;{ }^{1} \mathrm{H}$ NMR $\delta 7.41-7.76(\mathrm{~m}, 5 \mathrm{H}), 7.96-8.23(\mathrm{~m}, 4 \mathrm{H}) 8.72-8.76(\mathrm{~m}, 1 \mathrm{H})$, 8.91-8.94(m, 1H), $9.59(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 121.8,125.4,128.6,128.9,131.2,132.5,133.9$, $134.5,134.6,136.3,143.3,151.1,175.0$; IR (KBr) 1599, 1572, 1314, 1171, 1114, $816 \mathrm{~cm}^{-1}$; EIMS m/z (rel. intensity) $298\left(\mathrm{M}^{+}+1,100\right), 209$ (10), 129 (18), 102 (40); Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}: \mathrm{C}, 64.85 ; \mathrm{H}, 4.08 ; \mathrm{N}, 9.45$. Found: C, 64.70; H, 4.14; N, 9.54.

N-Benzylidene-2-thiophenesulfonamide (1g).

The reaction was carried out as described in the typical procedure except for using 2-thiophenesulfonamide ($500 \mathrm{mg}, 3.06 \mathrm{mmol}$), benzaldehyde ($0.32 \mathrm{~mL}, 3.06 \mathrm{mmol}$), triethylamine ($1.28 \mathrm{~mL}, 9.18 \mathrm{mmol}$), and titanium(IV) chloride ($1.00 \mathrm{~mol} \mathrm{~L}^{-1}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 3.06$ $\mathrm{mL}, 3.06 \mathrm{mmol}$). Usual work-up gave the crude product which was recrystallized from
hexane/ethyl acetate to afford $\mathbf{1 g}(292 \mathrm{mg}, 38 \%) ; \mathrm{R}_{\mathrm{f}}=0.54$ (hexane/ethyl acetate $\left.=60 / 40\right) ;{ }^{1} \mathrm{H}$ NMR $\delta 7.14(\mathrm{dd}, J=3.3,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}) 7.63(\mathrm{t}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.71$ (dd, $J=1.3,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.80(\mathrm{dd}, J=1.3,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.95(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 9.02(\mathrm{~s}$, 1H); ${ }^{13} \mathrm{C}$ NMR δ 127.7, 129.0, 131.4, 132.1, 133.8, 134.5, 135.1, 138.1, 170.2; IR (KBr) 1596, 1564, 1322, 1151, 795, $587 \mathrm{~cm}^{-1}$; EIMS m/z (rel. intensity) $251\left(\mathrm{M}^{+}, 35\right), 187$ (30), 147 (100); Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{NO}_{2} \mathrm{~S}_{2}$: C, 52.57 ; H, 3.61; N, 5.57. Found: C, 52.57 ; H, 3.79; N, 5.60.

N-Benzylidene-2-furylsulfonamide (1h).

The reaction was carried out as described in the typical procedure except for using 2-furylsulfonamide ($500 \mathrm{mg}, 3.40 \mathrm{mmol}$), benzaldehyde ($0.35 \mathrm{~mL}, 3.40 \mathrm{mmol}$), triethylamine ($1.42 \mathrm{~mL}, 10.2 \mathrm{mmol}$), and titanium(IV) chloride $\left(1.00 \mathrm{~mol} \mathrm{~L}^{-1}\right.$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 3.40 \mathrm{~mL}, 3.40$ mmol). Usual work-up gave the crude product which was recrystallized from hexane/ethyl acetate to afford $\mathbf{1 h}(511 \mathrm{mg}, 64 \%) ; \mathrm{mp} 127.3-128.1^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.60$ (hexane/ethyl acetate $=$ 50/50); ${ }^{1} \mathrm{H}$ NMR $\delta 6.58(\mathrm{~s}, 1 \mathrm{H}), 7.28(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.49-7.56(\mathrm{~m}, 2 \mathrm{H}), 7.64-7.71(\mathrm{~m}$, 2H), 7.64-7.71 (m, 2H), $7.98(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 9.07(\mathrm{~s}, 1 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\delta 111.6,118.5$, 129.0, 131.3, 131.8, 135.2, 146.4, 147.3, 171.9; IR (KBr) 1567, 1452, 1318, 1153, 1119, 811 cm^{-1}; EIMS m/z (rel. intensity) $235\left(\mathrm{M}^{+}, 60\right), 171$ (100), 155 (85), 143 (80), 131 (63).

N-[(4-Methylphenyl)methylidene]-2-pyridinesulfonamide (1i).

The reaction was carried out as described in the typical procedure except for using 2-pyridylsulfonamide ($703 \mathrm{mg}, 4.44 \mathrm{mmol}$), 4-methylbenzaldehyde ($1.05 \mathrm{~mL}, 8.89 \mathrm{mmol}$), triethylamine ($1.86 \mathrm{~mL}, 13.3 \mathrm{mmol}$), and titanium(IV) chloride ($1.00 \mathrm{~mol} \mathrm{~L}^{-1}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 4.44$ $\mathrm{mL}, 4.44 \mathrm{mmol}$). Usual work-up gave the crude product which was recrystallized from
hexane/ethyl acetate to afford $\mathbf{1 i}(736 \mathrm{mg}, 60 \%) ; \mathrm{R}_{\mathrm{f}}=0.35$ (hexane/ethyl acetate $=60 / 40$); ${ }^{1} \mathrm{H}$ NMR $\delta 2.44(\mathrm{~s}, 3 \mathrm{H}), 7.20-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.50-7.60(\mathrm{~m}, 1 \mathrm{H}), 7.80-8.10(\mathrm{~m}, 3 \mathrm{H}), 8.20-8.30(\mathrm{~m}$, $1 \mathrm{H}), 8.90-9.00(\mathrm{~m}, 1 \mathrm{H}), 9.20(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 22.2,123.1,127.0,129.6,129.7,131.6$, 137.8, 146.7, 150.1, 155.7, 173.7; IR (KBr) 1594, 1305, 1169, $810 \mathrm{~cm}^{-1}$; EIMS m/z (rel. intensity) $261\left(\mathrm{M}^{+}+1,16\right), 247$ (25), 195 (100), 168 (90), 154 (95); Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}: \mathrm{C}, 59.98 ; \mathrm{H}, 4.65 ; \mathrm{N}, 10.76$. Found: C, $60.01 ; \mathrm{H}, 4.81 ; \mathrm{N}, 10.56$.

N-[(4-Methoxyphenyl)methylidene]-2-pyridinesulfonamide (1j).

The reaction was carried out as described in the typical procedure except for using 2-pyridylsulfonamide ($500 \mathrm{mg}, 3.16 \mathrm{mmol}$), p-anisaldehyde ($0.424 \mathrm{~mL}, 3.48 \mathrm{mmol}$), triethylamine ($1.32 \mathrm{~mL}, 9.48 \mathrm{mmol}$), and titanium(IV) chloride ($1.00 \mathrm{~mol} \mathrm{~L}^{-1}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 3.16$ $\mathrm{mL}, 3.16 \mathrm{mmol}$). Usual work-up gave the crude product which was recrystallized from hexane/ethyl to afford $\mathbf{1 j}(451 \mathrm{mg}, 52 \%) ; \mathrm{R}_{\mathrm{f}}=0.35$ (hexane/ethyl acetate $=60 / 40$); ${ }^{1} \mathrm{H}$ NMR δ $3.91(\mathrm{~s}, 3 \mathrm{H}), 7.05(\mathrm{~d}=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.49-7.56(\mathrm{~m}, 1 \mathrm{H}), 7.93-8.01(\mathrm{~m}, 3 \mathrm{H}), 8.25(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 8.72-8.74(\mathrm{~m}, 1 \mathrm{H}), 9.17(\mathrm{~s}, 1 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\delta 55.6,113.9,122.6,124.6,126.7,131.4$, 133.6, 137.6, 149.7, 155.6, 172.5; IR (KBr) 1590, 1304, 1169, $814 \mathrm{~cm}^{-1}$; EIMS m/z (rel. intensity) $276\left(\mathrm{M}^{+}, 60\right), 212$ (100), 199 (65); Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}: \mathrm{C}, 56.51 ; \mathrm{H}$, 4.38; N, 10.14. Found: C, 56.90; H, 4.24; N, 9.89.

N-[(3-Methoxyphenyl)methylidene]-2-pyridinesulfonamide (1k).

The reaction was carried out as described in the typical procedure except for using 2-pyridylsulfonamide ($500 \mathrm{mg}, 3.16 \mathrm{mmol}$), m-anisaldehyde ($0.424 \mathrm{~mL}, 3.48 \mathrm{mmol}$), triethylamine ($1.32 \mathrm{~mL}, 9.48 \mathrm{mmol}$), and titanium(IV) chloride $\left(1.00 \mathrm{~mol} \mathrm{~L}^{-1}\right.$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 3.16$ $\mathrm{mL}, 3.16 \mathrm{mmol}$). Usual work-up gave the crude product which was recrystallized from
hexane/ethyl acetate to afford $\mathbf{1 k}(451 \mathrm{mg}, 52 \%)$; mp $148.0-150.0^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.35$ (hexane/ethyl acetate $=60 / 40) ;{ }^{1} \mathrm{H}$ NMR $\delta 3.83(\mathrm{~s}, 3 \mathrm{H}), 7.15-7.56(\mathrm{~m}, 5 \mathrm{H}), 7.93-8.26(\mathrm{~m}, 1 \mathrm{H}), 8.24(\mathrm{~d}, J=$ $6.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.71-8.73(\mathrm{~m}, 1 \mathrm{H}), 9.20(\mathrm{~s}, 1 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\delta 56.0,113.7,123.0,123.5,126.0$, $127.4,130.3,133.7,138.2,150.5,155.5,160.1,174.3$; IR (KBr) 1572, 1324, 1174, $828 \mathrm{~cm}^{-1}$; EIMS m/z (rel. intensity) 276 (${ }^{+}$, 56), 242 (90), 211 (100), 199 (60); Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}: \mathrm{C}, 56.51 ; \mathrm{H}, 4.38 ; \mathrm{N}, 10.14$. Found: C, $56.24 ; \mathrm{H}, 4.37 ; \mathrm{N}, 9.97$.

N-[(4-Chlorophenyl)methylidene]-2-pyridinesulfonamide (11).

The reaction was carried out as described in the typical procedure except for using 2-pyridylsulfonamide ($403 \mathrm{mg}, 2.55 \mathrm{mmol}$), 4-chlorolbenzaldehyde ($716 \mathrm{mg}, 5.10 \mathrm{mmol}$), triethylamine ($1.07 \mathrm{~mL}, 7.65 \mathrm{mmol}$), and titanium(IV) chloride ($1.00 \mathrm{~mol} \mathrm{~L}^{-1}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 2.55$ $\mathrm{mL}, 2.55 \mathrm{mmol}$). Usual work-up gave the crude product which was recrystallized from hexane/ethyl acetate to afford $\mathbf{1 1}(407 \mathrm{mg}, 57 \%) ; \mathrm{R}_{\mathrm{f}}=0.35$ (hexane/ethyl acetate $\left.=60 / 40\right),{ }^{1} \mathrm{H}$ NMR δ 7.40-7.60 (m, 3H), 7.80-8.10 (m, 3H), 8.20-8.30 (m, 1H), 8.80-8.90 (m, 1H), 9.21 (s, 1H), ${ }^{13} \mathrm{C}$ NMR $\delta 123.2,127.2,129.5,130.5,132.5,137.9,141.7,150.2,155.3,172.5$; IR (KBr) 1567, 1306, 1169, $809 \mathrm{~cm}^{-1}$; EIMS m/z (rel. intensity) $281\left(\mathrm{M}^{+}+1,25\right), 247$ (58), 215 (75), 154 (100), 138 (95); Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{9} \mathrm{ClN}_{2} \mathrm{O}_{2} \mathrm{~S}: \mathrm{C}, 51.34 ; \mathrm{H}, 3.23 ; \mathrm{N}, 9.98$. Found: C, 51.30; H, 2.98; N, 10.09.

N -(1-Naphthylmethylidene)-2-pyridinesulfonamide (1m).

The reaction was carried out as described in the typical procedure except for using 2-pyridylsulfonamide ($300 \mathrm{mg}, 1.90 \mathrm{mmol}$), 1-naphthaldehyde ($296 \mathrm{mg}, 1.90 \mathrm{mmol}$), triethylamine ($0.79 \mathrm{~mL}, 5.62 \mathrm{mmol}$), and titanium(IV) chloride ($1.00 \mathrm{~mol} \mathrm{~L}^{-1}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 1.9$ $\mathrm{mL}, 1.90 \mathrm{mmol}$). Usual work-up gave the crude product which was recrystallized from
hexane/ethyl acetate to afford $\mathbf{1 m}(291 \mathrm{mg}, 39 \%)$; mp $99.0-100.0^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.33$ (hexane/ethyl acetate $=60 / 40) ;{ }^{1} \mathrm{H}$ NMR $\delta 7.25-7.68(\mathrm{~m}, 4 \mathrm{H}), 7.90-8.02(\mathrm{~m}, 2 \mathrm{H}), 8.11-8.73(\mathrm{~m}, 3 \mathrm{H})$, 8.85-8.90(m, 1H), 8.99-8.90(m, 1H), $9.81(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 123.1,124.2,124.9,126.8$, 131.6, 133.5, 135.7, 136.4, 137.9 150.1, 155.7, 173.5; IR (KBr) 1559, 1318, 1171, 758, 641, $590 \mathrm{~cm}^{-1}$; EIMS m/z (rel. intensity) 296 ($\mathrm{M}^{+}, 13$), 231 (42), 203 (10), 153 (100), 126 (38), 78 (96); Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}: \mathrm{C}, 64.85$; H, 4.08; N, 9.45. Found: C, 64.80; H, 4.05; N, 9.53.

N-(2-Naphthylmethylidene)-2-pyridinesulfonamide (1n)

The reaction was carried out as described in the typical procedure except for using 2-pyridylsulfonamide ($500 \mathrm{mg}, 3.16 \mathrm{mmol}$), 2-naphthaldehyde ($0.43 \mathrm{mg}, 3.16 \mathrm{mmol}$), triethylamine ($1.32 \mathrm{~mL}, 9.48 \mathrm{mmol}$), and titanium(IV) chloride ($1.00 \mathrm{~mol} \mathrm{~L}^{-1}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 3.16$ $\mathrm{mL}, 3.16 \mathrm{mmol}$). Usual work-up gave the crude product which was recrystallized from hexane/ethyl acetate to afford $\mathbf{1 n}(291 \mathrm{mg}, 31 \%) ; \mathrm{mp} 149.0-150.0{ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.33$ (hexane/ethyl acetate $=60 / 40) ;{ }^{1} \mathrm{H}$ NMR $\delta 7.25-7.68(\mathrm{~m}, 3 \mathrm{H}), 7.86-8.06(\mathrm{~m}, 5 \mathrm{H}), 8.25-8.29(\mathrm{~m}, 1 \mathrm{H}), 8.40$ $(\mathrm{s}, 1 \mathrm{H}), 8.70-8.73(\mathrm{~m}, 1 \mathrm{H}), 9.39(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 123.4,124.3,126.8,127.2,127.3,128.0$, 129.2, 129.6, 129.7, 130.3, 132.6, 136.8, 138.1, 150.4, 160.6, 174.2; IR (KBr): 1584, 1317, 1169, 1114, 784, $605 \mathrm{~cm}^{-1}$; EIMS m/z (rel. intensity): 296 ($\mathrm{M}^{+}, 5$), 232 (10), 203 (5), 153 (8), 127 (24), 78 (100). Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}: \mathrm{C}, 64.85$; H, 4.08; N, 9.45. Found: C, 64.80; H, 4.05; N, 9.53.

N -(2-Furfurylidene)-2-pyridinesulfonamide (10).

The reaction was carried out as described in the typical procedure except for using 2-pyridylsulfonamide ($800 \mathrm{mg}, 5.06 \mathrm{mmol}$), furfural ($0.42 \mathrm{~mL}, 5.06 \mathrm{mmol}$), triethylamine
($2.1 \mathrm{~mL}, 15.1 \mathrm{mmol}$), and titanium(IV) chloride ($1.00 \mathrm{~mol} \mathrm{~L}^{-1}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 5.1 \mathrm{~mL}, 5.1 \mathrm{mmol}$). Usual work-up gave the crude product which was recrystallized from hexane/ethyl acetate to afford 1 o ($604 \mathrm{mg}, 50 \%$); mp 144.5-147.8 ${ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.22$ (hexane/ethyl acetate $=60 / 40$); ${ }^{1} \mathrm{H}-\mathrm{NMR} \delta 6.68(\mathrm{dd}, J=2.0,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.25-7.63(\mathrm{~m}, 2 \mathrm{H}), 7.91-8.00(\mathrm{~m}, 1 \mathrm{H}), 8.19-8.23(\mathrm{~m}$, $2 \mathrm{H}), 8.72-8.75(\mathrm{~m}, 1 \mathrm{H}), 9.00(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 113.8,123.2,125.9,127.0,137.9,148.8$, $150.1,150.1,155.4,158.8$; IR (KBr) 1604, 1289, 1170, 1112, 829, $553 \mathrm{~cm}^{-1} ;$ FABMS m/z (rel. intensity) $237\left(\mathrm{M}^{+}+1,100\right), 185$ (22), 154 (8), 93 (45); Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}$: C, 50.84; H, 3.41; N, 11.86. Found: C, 50.95; H, 3.26; N, 11.89.

N -(3-Phenylpropenylidene)-2-pyridinesulfonamide (1p).

The reaction was carried out as described in the typical procedure except for using 2-pyridylsulfonamide ($802 \mathrm{mg}, 5.07 \mathrm{mmol}$), trans-cinnamaldehyde ($0.64 \mathrm{~mL}, 5.07 \mathrm{mmol}$), triethylamine ($2.1 \mathrm{~mL}, 15.1 \mathrm{mmol}$), and titanium(IV) chloride ($1.00 \mathrm{~mol} \mathrm{~L}^{-1}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 5.1$ $\mathrm{mL}, 5.1 \mathrm{mmol}$). Usual work-up gave the crude product which was recrystallized from hexane/ethyl acetate to afford $\mathbf{1 p}$ ($624 \mathrm{mg}, 45 \%$); mp 107.5-108.2 ${ }^{\circ} \mathrm{C}$; $\mathrm{R}_{\mathrm{f}}=0.26$ (hexane/ethyl acetate $=60 / 40) ;{ }^{1} \mathrm{H}-\mathrm{NMR} \delta 7.03(\mathrm{dd}, J=9.5,16 \mathrm{~Hz}, 1 \mathrm{H}), 7.25-7.63(\mathrm{~m}, 7 \mathrm{H}), 7.91-8.00(\mathrm{~m}$, $1 \mathrm{H}), 8.19-8.23(\mathrm{~m}, 1 \mathrm{H}), 8.72-8.75(\mathrm{~m}, 1 \mathrm{H}), 9.27(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 123.0,124.5$, 127.0, 128.6, 129.0, 131.7, 133.8, 137.8, 150.1, 155.0, 156.1, 174.5; IR (KBr) 1579, 1558, 1302, 1166, 1115, $785 \mathrm{~cm}^{-1}$; EIMS m/z (rel. intensity) $272\left(\mathrm{M}^{+}, 13\right), 207$ (18), 129 (68), 102 (10) 78 (100); Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}: \mathrm{C}, 61.75 ; \mathrm{H}, 4.44 ; \mathrm{N}, 10.29$. Found: C, $61.72 ; \mathrm{H}$, 4.37; N, 10.25.

N-(1-Phenylethyl)-2,4,6-triisopropylbenzenesulfonamide (2e).

To a solution of bis(oxazoline) $-\mathrm{Ph}(30.1 \mathrm{mg}, 0.09 \mathrm{mmol})$ and imine $\mathbf{1 e}(22.3 \mathrm{mg}, 0.06 \mathrm{mmol})$
in toluene (3 mL) was added $\mathrm{MeMgI}\left(0.66 \mathrm{~mol} \mathrm{~L}^{-1}\right.$ in $\left.\mathrm{Et}_{2} \mathrm{O}, 0.18 \mathrm{~mL}, 0.12 \mathrm{mmol}\right)$ at $-78{ }^{\circ} \mathrm{C}$ and the reaction mixture was stirred for 1 h . Usual workup gave the crude product which was purified by column chromatography $\left(\mathrm{SiO}_{2} 10 \mathrm{~g}\right.$, benzene/ethyl acetate $\left.=90 / 10\right)$ to afford $2 \mathbf{e}$ (16.1 mg, $69 \%, 20 \%$ ee); mp. 108.0-110.0 ${ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.48$ (hexane/ethyl acetate $=80 / 20$); ${ }^{1} \mathrm{H}$ NMR $\delta 1.17(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 12 \mathrm{H}), 1.25(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 6 \mathrm{H}), 1.45(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 2.91$ (sep, $J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.36(\mathrm{sep}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.53-4.70(\mathrm{~m}, 2 \mathrm{H}), 7.20-7.30(\mathrm{~m}, 7 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 23.8,24.8,25.1,29.8,34.3,53.5,123.4,125.9,127.4,128.3,142.0,132.4,149.6$, 152.3; IR (KBr) 3312, 1459, 1318, 1158, 660, $552 \mathrm{~cm}^{-1}$; FABMS m/z (rel. intensity) 388 $\left(\mathrm{M}^{+}+1,46\right), 284$ (66), 267 (28), 105 (100); Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{33} \mathrm{NO}_{2} \mathrm{~S}: \mathrm{C}, 71.27 ; \mathrm{H}, 8.58 ; \mathrm{N}$, 3.61. Found: C, 71.29; H, 8.56; N, 3.60. HPLC (CHIRALPAK AD-H, hexane i i-PrOH $=98: 2$, $0.5 \mathrm{~mL} \mathrm{~min}^{-1}$), $t_{\mathrm{R}} 21$ (minor), 23 (major) min.

N-(1-Phenylethyl)quinoline-8-sulfonamide (2f).

To a solution of bis(oxazoline)- $\mathrm{Ph}(30.1 \mathrm{mg}, 0.09 \mathrm{mmol})$ and imine $\mathbf{1 f}(17.9 \mathrm{mg}, 0.06 \mathrm{mmol})$ in toluene (3 mL) was added $\mathrm{MeMgI}\left(0.66 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{in}_{\mathrm{Et}}^{2} \mathrm{O}, 0.18 \mathrm{~mL}, 0.12 \mathrm{mmol}\right)$ at $-78{ }^{\circ} \mathrm{C}$ and the reaction mixture was stirred for 1 h . Usual workup gave the crude product which was purified by column chromatography $\left(\mathrm{SiO}_{2} 10 \mathrm{~g}\right.$, benzene/ethyl acetate $\left.=90 / 10\right)$ to afford $\mathbf{2 f}$ ($9.7 \mathrm{mg}, 52 \%, 0 \%$ ee); mp. $190-192{ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.32$ (hexane/ethyl acetate $=60 / 40$); ${ }^{1} \mathrm{H}$ NMR δ $1.42(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 4.47(\mathrm{dq}, J=7.0,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.57(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{~m}$, $5 \mathrm{H}), 7.30-7.60(\mathrm{~m}, 2 \mathrm{H}), 7.80-7.90(\mathrm{~m}, 1 \mathrm{H}), 8.10-8.40(\mathrm{~m}, 2 \mathrm{H}), 8.85-8.95(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 23.3,54.6,121.7,125.3,125.7,126.9,127.4,128.3,130.4,132.6,136.5,140.9,142.7$, 143.4, 150.4; $\mathrm{IR}(\mathrm{KBr}) 3293,1321,1141,793,700,614 \mathrm{~cm}^{-1} ;$ FABMS m/z (rel.intensity) 313 $\left(\mathrm{M}^{+}+1,100\right), 209(40), 105$ (42); Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}: \mathrm{C}, 65.36$; H, 5.16; N, 8.97. Found: C, 65.43; H, 5.03; N, 9.03. HPLC (CHIRALCEL OD-H, hexane $/ i-\mathrm{PrOH}=80: 20,0.5$
$\left.\mathrm{mL} \mathrm{min}^{-1}\right), t_{\mathrm{R}} 51,56 \mathrm{~min}$.

N-[1-(4-Methylphenyl)ethyl]-2-pyridinesulfonamide (2i).

To a solution of bis(oxazoline)- $\mathrm{Ph}(38.5 \mathrm{mg}, 0.115 \mathrm{mmol})$ and imine $\mathbf{1 i}(20.0 \mathrm{mg}, 0.07 \mathrm{mmol})$ in toluene $(4 \mathrm{~mL})$ was added $\mathrm{MeMgBr}\left(1.44 \mathrm{~mol} \mathrm{~L}^{-1}\right.$ in $\left.\mathrm{Et}_{2} \mathrm{O}, 0.107 \mathrm{~mL}, 0.154 \mathrm{mmol}\right)$ at -95 ${ }^{\circ} \mathrm{C}$ and the reaction mixture was stirred for 1 h . Usual workup gave the crude product which was purified by column chromatography $\left(\mathrm{SiO}_{2} 10 \mathrm{~g}\right.$, benzene/ethyl acetate $\left.=90 / 10\right)$ to afford $2 \mathbf{i}(14.3 \mathrm{mg}, 67 \%, 83 \%$ ee $) ;[\alpha]_{\mathrm{D}}{ }^{25}-44.6\left(c 0.67, \mathrm{CHCl}_{3}, 83 \%\right.$ ee $) ; \mathrm{mp} .117 .5-120.3^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=$ 0.30 (hexane/ethyl acetate $=50 / 50) ;{ }^{1} \mathrm{H}$ NMR $\delta 1.46(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 3.25(\mathrm{~s}, 3 \mathrm{H}), 4.55$ $(\mathrm{dq}, J=7.0,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.28(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.80-7.10(\mathrm{~m}, 4 \mathrm{H}), 7.20-7.45(\mathrm{~m}, 1 \mathrm{H})$, 7.60-7.90(m, 2H), 8.50-8.65 (m, 1H); ${ }^{13} \mathrm{C}$ NMR δ 21.1, 23.3, 55.0, 121.9, 125.8, 126.0, 128.9, 136.7, 137.2, 138.6, 149.3, 157.5; IR (KBr) 3096, 2854, 1331, 1173, $607 \mathrm{~cm}^{-1}$; EIMS m / z (rel. intensity) $277\left(\mathrm{M}^{+}, 6\right) 261$ (100), 212 (53), 197 (73); Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$: C, 60.85; H, 5.84; N, 10.14. Found: C, 60.76; H, 5.78; N, 10.20. HPLC (CHIRALCEL OJ-H, hexane $/ i-\mathrm{PrOH}=70: 30$, flow rate $1.5 \mathrm{~mL} \mathrm{~min}^{-1}$), $t_{\mathrm{R}} 17$ (major), 27 (minor) min.

N-[1-(4-Methoxyphenyl)ethyl]-2-pyridinesulfonamide (2j).

To a solution of bis(oxazoline) $-\mathrm{Ph}(36.0 \mathrm{mg}, 0.108 \mathrm{mmol})$ and imine $\mathbf{1 j}(20.0 \mathrm{mg}, 0.07$ $\mathrm{mmol})$ in toluene $(4 \mathrm{~mL})$ was added $\mathrm{MeMgBr}\left(0.78 \mathrm{~mol} \mathrm{~L}^{-1}\right.$ in $\left.\mathrm{Et}_{2} \mathrm{O}, 0.18 \mathrm{~mL}, 0.144 \mathrm{mmol}\right)$ at $-95^{\circ} \mathrm{C}$ and the reaction mixture was stirred for 1 h . Usual workup gave the crude product which was purified by column chromatography $\left(\mathrm{SiO}_{2} 10 \mathrm{~g}\right.$, benzene/ethyl acetate $\left.=90 / 10\right)$ to afford $2 \mathbf{j}\left(20.7 \mathrm{mg}, 98 \%, 80 \%\right.$ ee); $[\alpha]_{\mathrm{D}}{ }^{25}-24.2$ (c $0.32, \mathrm{CHCl}_{3}, 80 \%$ ee); mp. 121.4-123.0 ${ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.30$ (hexane/ethyl acetate $\left.=40 / 60\right) ;{ }^{1} \mathrm{H}$ NMR $\delta 1.49(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H})$, 4.56 (dq, $J=7.0,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.47(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.62-6.71(\mathrm{~m}, 3 \mathrm{H}), 7.00-7.09(\mathrm{~m}, 1 \mathrm{H})$,
7.31-7.38(m, 1H), 7.70-7.78 (m, 2H), $8.55(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta .23 .7,54.1,55.7$, 113.9, 122.3, 126.3, 127.7, 134.0, 137.7, 149.8, 158.0, 158.8; IR (KBr) 3244, 1511, 1331, 1299, 1179, $742 \mathrm{~cm}^{-1}$; ESIMS: m/z $315\left[\mathrm{M}+\mathrm{Na}^{+}\right]$. HPLC (CHIRALCEL OJ-H, hexane $/ i-\mathrm{PrOH}=80: 20$, flow rate $1.5 \mathrm{~mL} \mathrm{~min}^{-1}$), $t_{\mathrm{R}} 11.7$ (major), 16.7 (minor) min.

N-[1-(3-Methoxyphenyl)ethyl]-2-pyridinesulfonamide (2k).

To a solution of bis(oxazoline)- $\mathrm{Ph}(36.0 \mathrm{mg}, 0.108 \mathrm{mmol}$) and imine $\mathbf{1 k}(20.0 \mathrm{mg}, 0.07$ $\mathrm{mmol})$ in toluene $(4 \mathrm{~mL})$ was added $\mathrm{MeMgBr}\left(0.78 \mathrm{~mol} \mathrm{~L}^{-1}\right.$ in $\left.\mathrm{Et}_{2} \mathrm{O}, 0.18 \mathrm{~mL}, 0.144 \mathrm{mmol}\right)$ at $-95^{\circ} \mathrm{C}$ and the reaction mixture was stirred for 1 h . Usual workup gave the crude product which was purified by column chromatography $\left(\mathrm{SiO}_{2} 10 \mathrm{~g}\right.$, benzene/ethyl acetate $\left.=90 / 10\right)$ to afford 2k (17.4 mg, 74\%, 88\% ee); $[\alpha]_{\mathrm{D}}{ }^{25}-38.7$ (c 0.67, CHCl_{3}, 88\% ee); mp. 126.2-127.1 ${ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.30$ (hexane/ethyl acetate $=40 / 60$); ${ }^{1} \mathrm{H}$ NMR $\delta 1.44(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H})$, $4.55(\mathrm{dq}, J=6.8,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.65(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.63(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.02(\mathrm{~d}, J=$ $8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.25-7.38(\mathrm{~m}, 1 \mathrm{H}), 7.66-7.74(\mathrm{~m}, 2 \mathrm{H}), 8.54(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 23.8$, 54.6, 55.6, 111.9, 113.3, 118.9, 122.3, 126.3, 129.5, 137.6, 143.4, 149.7, 157.9, 159.5; IR (KBr) 3086, 2856, 1337, 1179, $614 \mathrm{~cm}^{-1}$; ESIMS: m/z $315\left[\mathrm{M}+\mathrm{Na}^{+}\right]$; HPLC (CHIRALCEL OD-H, hexane $/ i-\mathrm{PrOH}=90: 10$, flow rate $1.0 \mathrm{~mL} \mathrm{~min}^{-1}$), $t_{\mathrm{R}} 14.0$ (minor), 15.5 (major) min.

N-[1-(4-Chlorophenyl)ethyl]-2-pyridinesulfonamide (21).

To a solution of bis(oxazoline) $-\mathrm{Ph}(35.7 \mathrm{mg}, 0.107 \mathrm{mmol})$ and imine $\mathbf{1 l}(20.0 \mathrm{mg}, 0.07 \mathrm{mmol})$ in toluene $(4 \mathrm{~mL})$ was added $\mathrm{MeMgBr}\left(1.44 \mathrm{~mol} \mathrm{~L}^{-1}\right.$ in $\left.\mathrm{Et}_{2} \mathrm{O}, 0.09 \mathrm{~mL}, 0.142 \mathrm{mmol}\right)$ at -95 ${ }^{\circ} \mathrm{C}$ and the reaction mixture was stirred for 1 h . Usual workup gave the crude product which was purified by column chromatography $\left(\mathrm{SiO}_{2} 10 \mathrm{~g}\right.$, benzene/ethyl acetate $\left.=90 / 10\right)$ to afford $21(16.2 \mathrm{mg}, 77 \%, 76 \%$ ee $) ;[\alpha]_{\mathrm{D}}{ }^{24}-39.4\left(c 0.54, \mathrm{CHCl}_{3}, 76 \%\right.$ ee $) ; \mathrm{mp} .146 .5-148.0^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=$
0.33 (hexane/ethyl acetate $=50 / 50) ;{ }^{1} \mathrm{H}$ NMR $\delta 1.45(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 4.58(\mathrm{dq}, J=6.8$, $8.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.40-5.60(\mathrm{br}, 1 \mathrm{H}), 6.90-7.10(\mathrm{~m}, 4 \mathrm{H}), 7.30-7.50(\mathrm{~m}, 1 \mathrm{H}), 7.70-7.80(\mathrm{~m}, 2 \mathrm{H})$, 8.50-8.70 (m, 1H); ${ }^{13} \mathrm{C}$ NMR δ 23.0, 53.2, 121.9, 126.0, 127.4, 127.9, 132.5, 137.5, 140.3, 149.1, 157.2; IR (KBr) 3122, 1336, 1177, $604 \mathrm{~cm}^{-1}$; EIMS m/z (rel. intensity) $297\left(\mathrm{M}^{+}, 2.5\right.$), 247 (25), 217 (30), 154 (100); Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}: \mathrm{C}, 52.61$; H, 4.42; N, 9.44. Found: C, 52.40; H, 4.03; N, 9.56. HPLC (CHIRALCEL OD-H, hexane/i-PrOH = 90:10, flow rate $1.0 \mathrm{~mL} \mathrm{~min}^{-1}$), $t_{\mathrm{R}} 19$ (minor), 23 (major) min.

N-[1-(1-Naphthyl)ethyl]-2-pyridinesulfonamide (2m).

To a solution of bis(oxazoline)- $\mathrm{Ph}(40.0 \mathrm{mg}, 0.120 \mathrm{mmol})$ and imine $\mathbf{1 m}(17.8 \mathrm{mg}, 0.06$ $\mathrm{mmol})$ in toluene $(4 \mathrm{~mL})$ was added $\mathrm{MeMgBr}\left(1.00 \mathrm{~mol} \mathrm{~L}^{-1}\right.$ in $\left.\mathrm{Et}_{2} \mathrm{O}, 0.12 \mathrm{~mL}, 0.120 \mathrm{mmol}\right)$ at $-95{ }^{\circ} \mathrm{C}$ and the reaction mixture was stirred for 1 h . Usual workup gave the crude product which was purified by column chromatography $\left(\mathrm{SiO}_{2} 10 \mathrm{~g}\right.$, benzene/ethyl acetate $\left.=90 / 10\right)$ to afford $\mathbf{2 m}$ ($13.9 \mathrm{mg}, 74 \%, 76 \%$ ee); Recrystallization from hexane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$ afforded $\mathbf{2 m}$ with 95% ee; $[\alpha]_{\mathrm{D}}{ }^{25}+49.0\left(c 0.55, \mathrm{CHCl}_{3}, 95 \%\right.$ ee); mp. 140.0-145.0 ${ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.27$ (hexane/ethyl acetate $=60 / 40) ;{ }^{1} \mathrm{H}$ NMR $\delta 1.60(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 5.30-5.60(\mathrm{br}, 2 \mathrm{H}), 7.19-7.78(\mathrm{~m}, 9 \mathrm{H})$, 7.97-8.02 (m, 1H), 8.41-8.43(m, 1H); ${ }^{13} \mathrm{C}$ NMR $\delta 23.3,50.1,121.7,122.6,123.5,124.9$, $125.4,125.9,126.0,127.8,128.5,129.9,133.4,137.0,137.2,149.2,157.2$; $\operatorname{RR}(\mathrm{KBr}) 3098$, 1333, 1172, 1112, 779, $593 \mathrm{~cm}^{-1}$; FABMS m/z (rel. intensity) $313\left(\mathrm{M}^{+}+1,50\right), 170(70), 155$ (100); Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}: \mathrm{C}, 65.36$; $\mathrm{H}, 5.16$; $\mathrm{N}, 8.97$. Found: C, 65.36 ; H, 5.43; N , 8.70. HPLC (CHIRALCEL OD-H, hexane $/ i-\operatorname{PrOH}=80: 20,1.0 \mathrm{~mL} \mathrm{~min}^{-1}$), $t_{\mathrm{R}} 12$ (minor), 15 (major) min.

N-[1-(2-Furyl)ethyl]-2-pyridinesulfonamide (20).

To a solution of bis(oxazoline) $-\mathrm{Ph}(226 \mathrm{mg}, 0.677 \mathrm{mmol})$ and imine $1 \mathrm{o}(80.0 \mathrm{mg}, 0.339$ $\mathrm{mmol})$ in toluene (12 mL) was added $\mathrm{MeMgBr}\left(1.44 \mathrm{~mol} \mathrm{~L}^{-1}\right.$ in $\left.\mathrm{Et}_{2} \mathrm{O}, 0.47 \mathrm{~mL}, 0.677 \mathrm{mmol}\right)$ at $-95^{\circ} \mathrm{C}$ and the reaction mixture was stirred for 1 h . Usual workup gave the crude product which was purified by column chromatography $\left(\mathrm{SiO}_{2} 10 \mathrm{~g}\right.$, benzene/ethyl acetate $\left.=90 / 10\right)$ to afford $2 \mathbf{2}$ ($32.3 \mathrm{mg}, 38 \%, 87 \%$ ee); $[\alpha]_{\mathrm{D}}{ }^{27}-60.8\left(c 0.70, \mathrm{CHCl}_{3}, 87 \%\right.$ ee); mp.110.0-111.0 ${ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.27$ (hexane/ethyl acetate $\left.=60 / 40\right) ;{ }^{1} \mathrm{H}$ NMR $\delta 1.50(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 4.68(\mathrm{dq}, J$ $=7.0,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.47(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.94-5.96(\mathrm{~m}, 1 \mathrm{H}), 6.06-6.09(\mathrm{~m}, 1 \mathrm{H}), 7.06-7.08$ $(\mathrm{m}, 1 \mathrm{H}), 7.26-7.43(\mathrm{~m}, 1 \mathrm{H}), 7.78-7.93(\mathrm{~m}, 2 \mathrm{H}), 8.55-8.59(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 20.9,47.9$, 106.0, 109.8, 121.7, 126.1, 137.5, 141.6, 149.6, 153.4, 157.4; IR (KBr) 3087, 2877, 1337, $1149,769,597 \mathrm{~cm}^{-1}$; FABMS m/z (rel. intensity) $253\left(\mathrm{M}^{+}+1,40\right), 110(22), 95(100), 93(20)$; Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}$: C, 52.37; H, 4.79; N, 11.10. Found: C, 52.32; H, 4.99; N, 10.95. HPLC (CHIRALCEL OJ-H, hexane $/ i-\operatorname{PrOH}=80: 20,1.5 \mathrm{~mL} \mathrm{~min}^{-1}$), $t_{\mathrm{R}} 18$ (major), 21 (minor) min.

N-[2-(4-Phenyl-3-butenyl)]-2-pyridinesulfonamide (2p).

To a solution of bis(oxazoline)- $\mathrm{Ph}(36.8 \mathrm{mg}, 0.588 \mathrm{mmol}$) and imine $\mathbf{1 p}(20.0 \mathrm{mg}, 0.07$ mmol) in toluene (12 mL) was added $\mathrm{MeMgBr}\left(1.44 \mathrm{~mol} \mathrm{~L}^{-1}\right.$ in $\mathrm{Et}_{2} \mathrm{O}, 0.102 \mathrm{~mL}, 0.147$ mmol) at $-95^{\circ} \mathrm{C}$ and the reaction mixture was stirred for 1 h . Usual workup gave the crude product which was purified by column chromatography $\left(\mathrm{SiO}_{2} 10 \mathrm{~g}\right.$, benzene/ethyl acetate $=$ $90 / 10$) to afford $2 \mathbf{2 p}(20.8 \mathrm{mg}, 98 \%, 82 \%$ ee $) ;[\alpha]_{\mathrm{D}}{ }^{25}-90.8\left(c 0.69, \mathrm{CHCl}_{3}, 82 \%\right.$ ee); mp. $102.0-104.5{ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.30$ (hexane/ethyl acetate $\left.=60 / 40\right) ;{ }^{1} \mathrm{H}$ NMR $\delta 1.33(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$, 4.15-4.25 (m, 1H), 5.50-5.70 (m, 1H), $5.82(\mathrm{dd}, J=7.0,15.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.30(\mathrm{~d}, J=15.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.07-7.35(\mathrm{~m}, 6 \mathrm{H}), 7.68-7.80(\mathrm{~m}, 1 \mathrm{H}), 7.90-8.10(\mathrm{~m}, 1 \mathrm{H}), 8.66-8.80(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 22.0,52.5,122.2,126.1,126.2,127.5,128.2,129.6,130.4,135.8,137.6,149.5,157.8 ;$ IR
(KBr) 3173, 1333, 1174, 1120, 701, $599 \mathrm{~cm}^{-1}$; FABMS m/z (rel. intensity) $289\left(\mathrm{M}^{+}+1,21\right)$, 159 (5), 131 (100); Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}: \mathrm{C}, 62.48$; H, 5.59; N, 9.71. Found: C, 62.32; H, 5.54; N, 9.66. HPLC (CHIRALCEL OJ-H, hexane $/ i-\mathrm{PrOH}=70: 30,1.2 \mathrm{~mL} \mathrm{~min}^{-1}$), $t_{\mathrm{R}} 14$ (minor), 17 (major) min.

N-(1-Phenylpropyl)-2-pyridinesulfonamide (2q).

To a solution of bis(oxazoline)-Ph ($30.1 \mathrm{mg}, 0.09 \mathrm{mmol}$) and imine $1 \mathbf{1 a}(14.8 \mathrm{mg}, 0.06 \mathrm{mmol})$ in toluene (3 mL) was added $\mathrm{EtMgBr}\left(1.83 \mathrm{~mol} \mathrm{~L}^{-1}\right.$ in $\left.\mathrm{Et}_{2} \mathrm{O}, 0.07 \mathrm{~mL}, 0.12 \mathrm{mmol}\right)$ at $-95{ }^{\circ} \mathrm{C}$ and the reaction mixture was stirred for 1 h . Usual workup gave the crude product which was purified by column chromatography $\left(\mathrm{SiO}_{2} 10 \mathrm{~g}\right.$, benzene/ethyl acetate $\left.=90 / 10\right)$ to afford $\mathbf{2 q}$ ($12.3 \mathrm{mg}, 74 \%, 50 \%$ ee); $[\alpha]_{\mathrm{D}}{ }^{25}-10.8$ (c 0.31, $\mathrm{CHCl}_{3}, 50 \%$ ee); mp. $92.0-93.0{ }^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}=0.32$ (hexane/ethyl acetate $=60 / 40) ;{ }^{1} \mathrm{H}$ NMR $\delta 0.83(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.69-1.96(\mathrm{~m}, 2 \mathrm{H}), 4.31$ (ddd, $J=7.4,7.6,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.24(\mathrm{br}, 1 \mathrm{H}), 6.96-7.10(\mathrm{~m}, 5 \mathrm{H}), 7.28-8.51(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 10.8,30.5,60.4,121.8,125.8,126.5,127.0,128.0,137.2,139.9,149.4,157.4 ;$ IR (KBr) 3173, 1333, 1174, 1120, 701, $599 \mathrm{~cm}^{-1 ;}$ FABMS m/z (rel. intensity) $277\left(\mathrm{M}^{+}+1,85\right)$, 159 (95), 134 (15), 119 (100), 91 (52); Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}: \mathrm{C}, 60.85$; H, 5.84; N, 10.14. Found: C, 60.88 ; H, 5.72; N, 10.23. HPLC (CHIRALCEL OJ-H, hexane $/ i-\mathrm{PrOH}=$ 70:30, $1.0 \mathrm{~mL} \mathrm{~min}^{-1}$), $t_{\mathrm{R}} 11$ (major), 23 (minor) min.

N-(1-Phenylpentyl)-2-pyridinesulfonamide (2r).

To a solution of bis(oxazoline) $-\mathrm{Ph}(30.1 \mathrm{mg}, 0.09 \mathrm{mmol})$ and imine $\mathbf{1 a}(14.8 \mathrm{mg}, 0.06 \mathrm{mmol})$ in toluene (3 mL) was added $\operatorname{BuMgBr}\left(0.68 \mathrm{~mol} \mathrm{~L}^{-1}\right.$ in $\left.\mathrm{Et}_{2} \mathrm{O}, 0.18 \mathrm{~mL}, 0.12 \mathrm{mmol}\right)$ at $-95^{\circ} \mathrm{C}$ and the reaction mixture was stirred for 1 h . Usual workup gave the crude product which was purified by column chromatography $\left(\mathrm{SiO}_{2} 10 \mathrm{~g}\right.$, benzene/ethyl acetate $\left.=90 / 10\right)$ to afford $\mathbf{2 r}$
($12.7 \mathrm{mg}, 69 \%, 51 \%$ ee); $[\alpha]_{\mathrm{D}}{ }^{26}-4.8\left(c 0.36, \mathrm{CHCl}_{3}, 51 \% \mathrm{ee}\right)$; mp. 101.0-102.3 ${ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.20$ (hexane/ethyl acetate $=90 / 10) ;{ }^{1} \mathrm{H}-\mathrm{NMR} \delta 0.79-1.00(\mathrm{~m}, 3 \mathrm{H}), 1.01-1.24(\mathrm{~m}, 4 \mathrm{H}), 1.25-2.00$ $(\mathrm{m}, 2 \mathrm{H}), 4.30-4.45(\mathrm{~m}, 1 \mathrm{H}), 5.55(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.99-7.05(\mathrm{~m}, 5 \mathrm{H}), 7.24-7.31(\mathrm{~m}, 1 \mathrm{H})$, 7.56-7.63 (m, 2H), 8.45-8.78 (m, 1H); ${ }^{13} \mathrm{C}$ NMR $\delta 14.1,22.4,37.2,58.9,121,8,125.8,126.4$, $127.0,128.0,137.1,140.3,149.4,157.4$; IR (KBr) 3084, 2866, 1334, 1177, 768, $614 \mathrm{~cm}^{-1}$; Anal. Calcd $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$: C, 63.13; H, 6.62; N, 9.20. Found: C, 63.05; H, 6.58; N, 9.41. EIMS m/z (rel. intensity) $305\left(\mathrm{M}^{+}, 1\right), 2798$ (50), 252 (52), 167 (95), 149 (100); HPLC (CHIRALCEL OJ-H, = hexane $/ \mathrm{i}-\mathrm{PrOH} 80: 20,1.0 \mathrm{ml} / \mathrm{min}$), $t_{\mathrm{R}} 15$ (minor), 20 (major) min.

N-(1,4-Diphenylpropynyl)-2-pyridinesulfonamide (2s).

To a solution of Dietyl-bis(oxazoline)- $\mathrm{Ph}(44.0 \mathrm{mg}, 0.122 \mathrm{mmol}$) and imine 1a $(20.0 \mathrm{mg}$, $0.081 \mathrm{mmol})$ in toluene $(1 \mathrm{~mL})$ was added $\mathrm{PhC} \equiv \mathrm{CMgBr}\left(0.96 \mathrm{~mol} \mathrm{~L}^{-1}\right.$ in $\mathrm{Et}_{2} \mathrm{O}, 0.13 \mathrm{~mL}, 0.12$ $\mathrm{mmol})$ and Phenylacetylene $(0.0178 \mathrm{ml}, 0.162 \mathrm{mmol})$ at $-78{ }^{\circ} \mathrm{C}$ and the reaction mixture was stirred for 1 h . Usual workup gave the crude product which was purified by column chromatography $\left(\mathrm{SiO}_{2} 10 \mathrm{~g}\right.$, benzene/ethyl acetate $\left.=90 / 10\right)$ to afford $2 \mathrm{~s}(16.8 \mathrm{mg}, 60 \%, 78 \%$ ee); mp. 152.4-153.8 ${ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.35$ (hexane/ethyl acetate $\left.=90 / 10\right) ;{ }^{1} \mathrm{H}$ NMR $\delta 5.63(\mathrm{~d}, J=9.2$ $\mathrm{Hz}, 1 \mathrm{H}), 6.33$ (br, 1H), 7.08-7.33 (m, 9H), 7.50-7.55 (m, 2H), 7.69-7.74 (m, 1H), 7.93-7.98 $(\mathrm{m}, 1 \mathrm{H}), 8.48(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 50.7,85.8,87.0,122.1,122.5,126.6,127.7$, $128.3,128.5,128.6,128.8,131.7,137.4,137.8,149.9,157.52$; IR (KBr) 3080, 1338, 1177, 1124, $609 \mathrm{~cm}^{-1}$; ESIMS: m/z 347 [M-H]; HPLC (CHIRALPAK AS, hexane $/ i-\operatorname{PrOH}=85: 15$, $2.0 \mathrm{~mL} \mathrm{~min}^{-1}$), $t_{\mathrm{R}} 17$ (minor), 26 (major) min.

N-(Phenyl-4-methylphenyl-methyl)-2-pyridinesulfonamide (2t).

To a solution of bis(oxazoline)-Ph ($45.3 \mathrm{mg}, 0.09 \mathrm{mmol}$) and imine $\mathbf{1 i}(20.0 \mathrm{mg}, 0.07 \mathrm{mmol})$
in toluene (3 mL) was added $\operatorname{PhMgBr}\left(1.07 \mathrm{~mol} \mathrm{~L}^{-1}\right.$ in $\left.\mathrm{Et}_{2} \mathrm{O}, 0.14 \mathrm{~mL}, 0.153 \mathrm{mmol}\right)$ at $-78^{\circ} \mathrm{C}$ and the reaction mixture was stirred for 1 h . Usual workup gave the crude product which was purified by column chromatography $\left(\mathrm{SiO}_{2} 10 \mathrm{~g}\right.$, benzene/ethyl acetate $\left.=90 / 10\right)$ to afford $\mathbf{2 t}$ (19.7 mg, $72 \%, 61 \%$ ee); $[\alpha]_{\mathrm{D}}{ }^{25}+4.97$ (c 0.62, $\mathrm{CHCl}_{3}, 61 \%$ ee); mp. $170-172{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $2.26(\mathrm{~s}, 3 \mathrm{H}), 4.21(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.80-5.90(\mathrm{~m}, 1 \mathrm{H}), 6.85-7.20(\mathrm{~m}, 9 \mathrm{H}), 7.21-7.90(\mathrm{~m}$, $3 \mathrm{H}), 8.40-8.55(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 21.2,61.51,121.9,125.9,127.2,128.1,128.8,137.0$, 137.1, 137.2, 140.1, 149.4, 157.2; IR (KBr) 3068, 1334, 1174, $735 \mathrm{~cm}^{-1}$; EIMS m/z (rel. intensity) $339\left(\mathrm{M}^{+}+1,1\right), 196$ (100), 165 (17); Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}: \mathrm{C}, 67.43$; H, 5.36; N, 8.28. Found: C, 67.41; H, 5.27; N, 8.38; HPLC (CHIRALCEL OJ-H, hexane/i-PrOH $=70: 30,1.0 \mathrm{~mL} \mathrm{~min}^{-1}$), $t_{\mathrm{R}} 11$ (major): 14 (minor) min.

2-(2-Pyridylsulfonyl)amino-2-(4-methylphenyl)acetonitrile (3i)

The reaction was carried out as described in the typical procedure except for using imine $\mathbf{1 i}$ ($20.0 \mathrm{mg}, 0.077 \mathrm{mmol}$), bis(oxazoline) $-\mathrm{Ph}(2.8 \mathrm{mg}, 11 \mathrm{~mol} \%), \mathrm{Mg}(\mathrm{OTf})_{2}(2.5 \mathrm{mg}, 10 \mathrm{~mol} \%)$, and trimethylsilyl cyanide ($12 \mu \mathrm{l}, 0.10 \mathrm{mmol}$). Usual work-up gave the crude product which was purified by chromatography (benzene/ethyl acetate $=90 / 10$) to afford $\mathbf{3 i}$ (22.0 mg , $99 \%, 72 \%$ ee $)$ as a white solid; mp $164-165^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{27}+36\left(c 0.03, \mathrm{CHCl}_{3}, 72 \%\right.$ ee $) ; \mathrm{R}_{\mathrm{f}}=0.30$ (benzene/ethyl acetate $=80 / 20) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{DMSO}-D_{6}\right) \delta 2.27(\mathrm{~s}, 3 \mathrm{H}), 5.83(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.16(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.27(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.63-7.70(\mathrm{~m}, 1 \mathrm{H}), 7.91-7.95(\mathrm{~m}, 1 \mathrm{H})$, 8.03-8.11 (m, 1H), 8.70-8.73 (m, 1H), $9.52(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$; $\mathbb{R}(\mathrm{KBr}) 3096,1354,1183$, $614 \mathrm{~cm}^{-1}$; EIMS m/z (rel. intensity) 287 ($\mathrm{M}^{+}, 1$), 223 (5), 145 (25), 91 (38), 79 (100); Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}: \mathrm{C}, 58.52$; H, 4.56; N, 14.62. Found: C: 58.29, H: 4.67, N: 14.30. HPLC (Daicel CHIRALPAK IA, hexane $/ i-\mathrm{PrOH}=90 / 10 ; 0.5 \mathrm{~mL} / \mathrm{min} ; t_{\mathrm{R}}=12.9 \mathrm{~min}$ (major),
$t_{\mathrm{R}}=15.4 \mathrm{~min}($ minor $)$).

2-(2-Pyridylsulfonyl)amino-2-(4-methoxyphenyl)acetonitrile (3j)

The reaction was carried out as described in the typical procedure except for using imine $\mathbf{1} \mathbf{j}$ ($20.0 \mathrm{mg}, 0.072 \mathrm{mmol}$), bis(oxazoline) $-\mathrm{Ph}(2.6 \mathrm{mg}, 11 \mathrm{~mol} \%), \operatorname{Mg}(\mathrm{OTf})_{2}(2.3 \mathrm{mg}, 10 \mathrm{~mol} \%)$, and trimethylsilyl cyanide ($12 \mu \mathrm{l}, 0.094 \mathrm{mmol}$). Usual work-up gave the crude product which was purified by chromatography (benzene/ethyl acetate $=90 / 10$) to afford $\mathbf{3 j}(21.7 \mathrm{mg}$, $99 \%, 84 \%$ ee $)$ as a white solid; mp $140.0-141.0{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{26}+35\left(c 0.03, \mathrm{CHCl}_{3}, 84 \% \mathrm{ee}\right) ; \mathrm{R}_{\mathrm{f}}=$ 0.32 (benzene/ethyl acetate $=80 / 20$); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{DMSO}-D_{6}\right) \delta 3.72(\mathrm{~s}, 3 \mathrm{H}), 5.80(\mathrm{~d}, J=9.0$ $\mathrm{Hz}, 1 \mathrm{H}), 6.91(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.63-7.66(\mathrm{~m}, 1 \mathrm{H}), 7.90-7.94(\mathrm{~m}$, $1 \mathrm{H}), 8.06-8.10(\mathrm{~m}, 1 \mathrm{H}), 8.69(\mathrm{~m}, 1 \mathrm{H}), 9.46-9.51(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H})$; $\mathrm{IR}(\mathrm{KBr}) 3292,3116$, 1514, 1349, 1182, 770, $614 \mathrm{~cm}^{-1}$; EIMS m/z (rel. intensity) $303\left(\mathrm{M}^{+}, 1\right), 272(2), 239$ (4), 161 (47), 146 (12), 134 (8), 79 (100); Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}: \mathrm{C}, 55.43$; H, 4.32; N, 13.85. Found: C: 55.32, H: 4.36, N: 13.16. HPLC (Daicel CHIRALPAK IA, hexane $/ i-\mathrm{PrOH}=90 / 10$, $0.5 \mathrm{~mL} / \mathrm{min}, t_{\mathrm{R}}=19.6 \mathrm{~min}($ major $), t_{\mathrm{R}}=24.2 \mathrm{~min}($ minor $)$).

2-(2-Pyridylsulfonyl)amino-2-(3-methoxyphenyl)acetonitrile (3k)

The reaction was carried out as described in the typical procedure except for using imine $\mathbf{1 k}$ (20.0 mg, 0.072 mmol), bis(oxazoline)- $\mathrm{Ph}(2.6 \mathrm{mg}, 11 \mathrm{~mol} \%), \mathrm{Mg}(\mathrm{OTf})_{2}(2.3 \mathrm{mg}, 10 \mathrm{~mol} \%)$, and trimethylsilyl cyanide $(12 \mu \mathrm{l}, 0.094 \mathrm{mmol})$. Usual work-up gave the crude product which was purified by chromatography (benzene/ethyl acetate $=90 / 10$) to afford $\mathbf{3 k}(21.0 \mathrm{mg}$, $93 \%, 78 \%$ ee $)$ as a white solid; mp 156.2-158.3 ${ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{25}+28\left(c 0.06, \mathrm{CHCl}_{3}, 78 \%\right.$ ee $) ; \mathrm{R}_{\mathrm{f}}=$ 0.30 (benzene/ethyl acetate $=80 / 20$); ${ }^{1} \mathrm{H}$ NMR $\left(\right.$ DMSO- $\left.D_{6}\right) \delta 3.73(\mathrm{~s}, 3 \mathrm{H}), 5.82-5.89(\mathrm{~m}, 1 \mathrm{H})$, 6.90-7.02 (m, 3H), 7.26-7.34 (m, 1H), 7.64-7.71 (m, 1H), 7.89-8.13 (m, 2H), 8.71-8.74 (m,

1H), 8.59 (d, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$; IR (KBr) 3292, 3094, 1347, 1184, 1047, $620 \mathrm{~cm}^{-1}$; ESIMS : $\mathrm{m} / \mathrm{z} 326\left[\mathrm{M}+\mathrm{Na}^{+}\right]$; HPLC (Daicel CHIRALPAK AD-H, hexane $/ i-\mathrm{PrOH}=80 / 20,1.0 \mathrm{~mL} / \mathrm{min}$, $t_{\mathrm{R}}=14.9 \min ($ minor $), t_{\mathrm{R}}=18.3 \min ($ major $\left.)\right)$.

2-(2-Pyridylsulfonyl)amino-2-(4-chlorophenyl)acetonitrile (31)

The reaction was carried out as described in the typical procedure except for using imine $\mathbf{1 1}$ ($20.0 \mathrm{mg}, 0.071 \mathrm{mmol}$), bis(oxazoline) $-\mathrm{Ph}(2.6 \mathrm{mg}, 11 \mathrm{~mol} \%), \mathrm{Mg}(\mathrm{OTf})_{2}(2.3 \mathrm{mg}, 10 \mathrm{~mol} \%)$, and trimethylsilyl cyanide ($12 \mu \mathrm{l}, 0.094 \mathrm{mmol}$). Usual work-up gave the crude product which was purified by chromatography (benzene/ethyl acetate $=90 / 10$) to afford $\mathbf{3 1}(21.7 \mathrm{mg}$, $99 \%, 72 \%$ ee $)$ as a white solid; mp $162-163{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{27}+21\left(c 0.03, \mathrm{CHCl}_{3}, 72 \%\right.$ ee $) ; \mathrm{R}_{\mathrm{f}}=0.35$ (benzene/ethyl acetate $=80 / 20) ;{ }^{1} \mathrm{H}$ NMR $\left(\right.$ DMSO- $\left.D_{6}\right) \delta 5.96(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.38-7.48$ $(\mathrm{m}, 4 \mathrm{H}), 7.65-7.71(\mathrm{~m}, 1 \mathrm{H}), 7.91-7.95(\mathrm{~m}, 1 \mathrm{H}), 8.04-8.11(\mathrm{~m}, 1 \mathrm{H}), 8.70-8.72(\mathrm{~m}, 1 \mathrm{H}), 9.62(\mathrm{~d}$, $J=9.2 \mathrm{~Hz}, 1 \mathrm{H}) ; \operatorname{IR}(\mathrm{KBr}) 3312,3098,1348,1185,612 \mathrm{~cm}^{-1} ;$ EIMS m$/ \mathrm{z}$ (rel. intensity) 308 $\left(\mathrm{M}^{+}, 2\right) 243$ (9), 165 (19), 111 (17), 78 (100); Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{ClN}_{3} \mathrm{O}_{2} \mathrm{~S}: \mathrm{C}, 50.73 ; \mathrm{H}$, 3.28; N, 13.65. Found: C: 51.17, H: 3.58, N: 13.31. HPLC (Daicel CHIRALCEL OJ-H, hexane $/ i-\mathrm{PrOH}=70 / 30 ; 1.0 \mathrm{~mL} / \mathrm{min} ; t_{\mathrm{R}}=17.9 \mathrm{~min}($ minor $), t_{\mathrm{R}}=21.2 \mathrm{~min}($ major $)$).

2-(2-Pyridylsulfonyl)amino-2-(1-naphthyl)acetonitrile (3m)

The reaction was carried out as described in the typical procedure except for using imine $\mathbf{1 m}$ ($20.0 \mathrm{mg}, 0.067 \mathrm{mmol}$), bis(oxazoline) $-\mathrm{Ph}(2.5 \mathrm{mg}, 11 \mathrm{~mol} \%), \mathrm{Mg}(\mathrm{OTf})_{2}(2.2 \mathrm{mg}, 10 \mathrm{~mol} \%)$, and trimethylsilyl cyanide $(11 \mu \mathrm{l}, 0.087 \mathrm{mmol})$. Usual work-up gave the crude product which was purified by chromatography (benzene/ethyl acetate $=90 / 10$) to afford $\mathbf{3 m}$ (22.1 $\mathrm{mg}, 99 \%, 75 \%$ ee $)$ as a white solid; $\mathrm{mp} 166.0-167.0^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{27}+43\left(c 0.03, \mathrm{CHCl}_{3}, 75 \%\right.$ ee $)$; $\mathrm{R}_{\mathrm{f}}=0.32$ (benzene/ethyl acetate $\left.=80 / 20\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{DMSO}-D_{6}\right) \delta 6.50(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H})$,
7.48-7.70 (m, 5H), 7.89-8.14 (m, 5H), $8.64(\mathrm{~m}, 1 \mathrm{H}), 9.57(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H})$; IR (KBr) 3230, 3090, 1348, 1185, 777, $610 \mathrm{~cm}^{-1}$; EIMS m/z (rel. intensity) $323\left(\mathrm{M}^{+}, 2\right), 259$ (5), 232 (13), 181 (20), 154 (56), 127 (28), 79 (100); HPLC (Daicel CHIRALPAK AD-H, hexane $/ i-\mathrm{PrOH}=$ $80 / 20,1.5 \mathrm{~mL} / \mathrm{min}, t_{\mathrm{R}}=15.0 \mathrm{~min}($ minor $), t_{\mathrm{R}}=45.1 \mathrm{~min}($ major $)$).

2-(2-Pyridylsulfonyl)amino-2-(2-naphthyl)acetonitrile (3n)

The reaction was carried out as described in the typical procedure except for using imine $\mathbf{1 n}$ (20.0 mg, 0.067 mmol), bis(oxazoline)- $\mathrm{Ph}(2.5 \mathrm{mg}, 11 \mathrm{~mol} \%), \mathrm{Mg}(\mathrm{OTf})_{2}(2.2 \mathrm{mg}, 10 \mathrm{~mol} \%)$, and trimethylsilyl cyanide ($11 \mu \mathrm{l}, 0.087 \mathrm{mmol}$). Usual work-up gave the crude product which was purified by chromatography (benzene/ethyl acetate $=90 / 10$) to afford $\mathbf{3 n}(21.5 \mathrm{mg}$, $99 \%, 73 \%$ ee $)$ as a white solid; mp 170.0-171.0 ${ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{27}+31\left(c 0.029, \mathrm{CHCl}_{3}, 75 \%\right.$ ee $) ; \mathrm{R}_{\mathrm{f}}=$ 0.31 (benzene/ethyl acetate $=80 / 20) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{DMSO}-D_{6}\right) \delta 6.09(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H})$, 7.46-7.68 (m, 4H), 7.88-8.06 (m, 6H), 8.70-8.73 (m, 1H), $9.67(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}) ;$ IR (KBr) 3095, 1348, 1184, 735, $608 \mathrm{~cm}^{-1}$; EIMS m/z (rel. intensity) $323\left(\mathrm{M}^{+}, 1\right), 296$ (15), 232 (30), 181 (54), 153 (31), 127 (85), 78 (100); HPLC (Daicel CHIRALPAK AD-H, hexane/ $i-\mathrm{PrOH}=$ $80 / 20,1.5 \mathrm{~mL} / \mathrm{min}, t_{\mathrm{R}}=18.7 \mathrm{~min}($ minor $), t_{\mathrm{R}}=22.6 \mathrm{~min}($ major $)$).

(R)-Methyl 2,2-dimethyl-3-phenyl-3-[(8-quinolylsulfonyl)amino]propionate (4f)

The reaction was carried out as described in the typical procedure except for using imine $\mathbf{1 f}$ ($20.0 \mathrm{mg}, 0.067 \mathrm{mmol}$), bis(oxazoline) $-\mathrm{Ph}(2.5 \mathrm{mg}, 0.0074 \mathrm{mmol}), \mathrm{Cu}(\mathrm{OTf})_{2}(2.5 \mathrm{mg}, 0.0067$ $\mathrm{mmol})$, and silylketene acetal ($18 \mu \mathrm{l}, 0.087 \mathrm{mmol}$). Usual work-up gave the crude product which was purified by chromatography (benzene/ethyl acetate $=90 / 10$) to afford $\mathbf{4 f}(5.2 \mathrm{mg}$, $19 \%, 1 \%$ ee) as a white solid; $\mathrm{mp} 91.5-92.5{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{20}+0.081$ (c $1, \mathrm{CHCl}_{3}, 1.0 \%$ ee); R_{f} $=0.68$ (benzene/ethyl acetate $=70 / 30) ;{ }^{1} \mathrm{H}$ NMR $\delta 1.11(\mathrm{~s}, 3 \mathrm{H}), 1.36(\mathrm{~s}, 3 \mathrm{H}), 3.60(\mathrm{~s}, 3 \mathrm{H})$,
$4.49(\mathrm{~d}, J=10 \mathrm{~Hz}, 1 \mathrm{H}), 6.53-6.67(\mathrm{~m}, 4 \mathrm{H}), 6.66(\mathrm{~d}, J=6 \mathrm{~Hz}, 1 \mathrm{H}), 7.23-7.31(\mathrm{~m}, 2 \mathrm{H})$, 7.44-7.54 (m, 1H), 7.72-7.76(m, 1H), 7.99-8.09 (m, 2H), $9.06(\mathrm{~d}, J=4 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR δ $22.9,23.2,47.8,52.2,58.9,115.9,120.2,121.3,122.1,126.6,127.3,127.4,127.5,127.7$, 131.1, 141.0, 177.3; $\operatorname{IR}(\mathrm{KBr}) 3244,1740,1491,1323,1136,1048,720 \mathrm{~cm}^{-1}$; EIMS m/z (rel. intensity) $399\left(\mathrm{M}^{+}+1,26\right), 247$ (100), 209 (36), 128 (90); Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}$: C, 63.30; H, 5.56; N, 7.03. Found: C, 63.55; H, 5.26; N, 6.89. HPLC (CHIRALCEL AS-H, hexane $/{ }^{i} \mathrm{PrOH}=80: 20,1.0 \mathrm{ml} / \mathrm{min}$) $t_{R} 14.6$ (major), 18.1 (minor) min .

(R)-Methyl 2,2-dimethyl-3-phenyl-3-[(2-thienylsulfonyl)amino]propionate (4g)

The reaction was carried out as described in the typical procedure except for using imine $\mathbf{1 g}$ ($25.0 \mathrm{mg}, 0.098 \mathrm{mmol}$), bis(oxazoline) $-\mathrm{Ph}(3.7 \mathrm{mg}, 0.0108 \mathrm{mmol}), \mathrm{Cu}(\mathrm{OTf})_{2}(3.6 \mathrm{mg}, 0.0098$ $\mathrm{mmol})$, and silylketene acetal ($26 \mu \mathrm{l}, 0.128 \mathrm{mmol}$). Usual work-up gave the crude product which was purified by chromatography (benzene/ethyl acetate $=95 / 5)$ to afford $\mathbf{4 g}(17.4 \mathrm{mg}$, $47 \%, 0.5 \%$ ee $)$ as a white solid; $\mathrm{mp} 106.1-108.5^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{20}-0.024\left(c 1, \mathrm{CHCl}_{3}, 0.5 \%\right.$ ee); R_{f} $=0.50$ (benzene/ethyl acetate $=90 / 10) ;{ }^{1} \mathrm{H}$ NMR $\delta 1.11(\mathrm{~s}, 3 \mathrm{H}), 1.38(\mathrm{~s}, 3 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H})$, $4.40(\mathrm{~d}, J=10 \mathrm{~Hz}, 1 \mathrm{H}), 6.31(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H})$, 6.69-6.74 (m, 1H), 6.96-7.01 (m, 2H), 7.06-7.15 (m, 3H), 7.27-7.28 ($\mathrm{s}, 2 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR δ 22.7, 24.9, 47.2, 52.2, 65.1, 126.6, 127.4, 127.6, 127.8, 131.1, 131.7, 136.7, 141.5, 176.0; IR (KBr) 3283, 1734, 1457, 1331, 1157, 1134, $706 \mathrm{~cm}^{-1}$; EIMS m/z (rel. intensity) 353 ($\mathrm{M}^{+}, 14$), 313 (38), 252 (60), 236 (100); Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{NO}_{4} \mathrm{~S}_{2}$: C, 54.37; H, 5.42; N, 3.96. Found: C, 54.45; H, 5.47; N, 3.41. HPLC (CHIRALPAK AD-H, hexane $/{ }^{i} \operatorname{PrOH}=90: 10,1.0 \mathrm{ml} / \mathrm{min}$) $t_{R} 21.2$ (major), 24.2 (minor) min.

(R)-Methyl 2,2-dimethyl-3-phenyl-3-[(2-furylsulfonyl)amino]propionate (4h)

The reaction was carried out as described in the typical procedure except for using imine $\mathbf{1 h}$ ($25.0 \mathrm{mg}, 0.0106 \mathrm{mmol}$), bis(oxazoline) $-\mathrm{Ph}(4.0 \mathrm{mg}, 0.012 \mathrm{mmol}), \mathrm{Cu}(\mathrm{OTf})_{2}(3.6 \mathrm{mg}, 0.011$ $\mathrm{mmol})$, and silylketene acetal ($28 \mu \mathrm{l}, 0.138 \mathrm{mmol}$). Usual work-up gave the crude product which was purified by chromatography (benzene/ethyl acetate $=90 / 10$) to afford $\mathbf{4 h}(21.0 \mathrm{mg}$, $59 \%, 8 \%$ ee $)$ as a white solid; mp 89.6-90.5 ${ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{20}+3.06\left(c 1, \mathrm{CHCl}_{3}, 8.0 \%\right.$ ee $) ; \mathrm{R}_{f}=0.53$ (benzene/ethyl acetate $=90 / 10) ;{ }^{1} \mathrm{H}$ NMR $\delta 1.08(\mathrm{~s}, 3 \mathrm{H}), 1.37(\mathrm{~s}, 3 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H}), 4.32(\mathrm{~d}, J$ $=10 \mathrm{~Hz}, 1 \mathrm{H}), 6.09-6.12(\mathrm{~m}, 1 \mathrm{H}), 6.42(\mathrm{~d}, J=10 \mathrm{~Hz}, 1 \mathrm{H}), 6.59-6.61(\mathrm{~m}, 1 \mathrm{H}), 6.97-7.14(\mathrm{~m}$, $\left.{ }^{6 H}\right) ;{ }^{13} \mathrm{C}$ NMR $\delta 22.7,25.0,47.0,52.3,65.0,110.6,115.8,127.4,127.8,136.8,145.1,145.2$, 148.0, 176.0; $\operatorname{IR}(\mathrm{KBr}) 3283,1733,1457,1350,1162,1131,636 \mathrm{~cm}^{-1}$; EIMS m/z (rel. intensity) $337\left(\mathrm{M}^{+}, 40\right), 281(100), 236$ (80); Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{NO}_{5} \mathrm{~S}: \mathrm{C}, 56.96$; H, 5.68; N, 4.15. Found: C, 56.72; H, 5.65; N, 3.99. HPLC (CHIRALPAK AD-H, hexane $/^{i} \mathrm{PrOH}=80: 20,1.0 \mathrm{ml} / \mathrm{min}$) $t_{R} 10.3$ (major), 12.6 (minor) min.

(R)-Methyl 2,2-dimethyl-3-(4-methylphenyl)-3-[(2-pyridylsulfonyl)amino]propionate (4i)

The reaction was carried out as described in the typical procedure except for using imine $\mathbf{1 i}$ ($25.0 \mathrm{mg}, 0.0096 \mathrm{mmol}$), bis(oxazoline) $-\mathrm{Ph}(3.7 \mathrm{mg}, 0.011 \mathrm{mmol}), \mathrm{Cu}(\mathrm{OTf})_{2}(3.5 \mathrm{mg}, 0.011$ mmol), and silylketene acetal ($25 \mu \mathrm{l}, 0.096 \mathrm{mmol}$). Usual work-up gave the crude product which was purified by chromatography (benzene/ethyl acetate $=85 / 15)$ to afford $\mathbf{4 i}(13.9 \mathrm{mg}$, $40 \%, 70 \%$ ee $)$ as a white solid; mp 118.3-119.0 ${ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{20}-10.4$ (c 1, $\mathrm{CHCl}_{3}, 70 \%$ ee $) ; \mathrm{R}_{f}=$ 0.59 (benzene/ethyl acetate $=70 / 30$); ${ }^{1} \mathrm{H}$ NMR $\delta 1.09(\mathrm{~s}, 3 \mathrm{H}), 1.38(\mathrm{~s}, 3 \mathrm{H}), 2.18(\mathrm{~s}, 3 \mathrm{H}), 3.66$ (s, 3H), $4.40(\mathrm{~d}, J=10 \mathrm{~Hz}, 1 \mathrm{H}), 6.46(\mathrm{~d}, J=10 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{~s}, 3 \mathrm{H}), 7.14-7.23(\mathrm{~m}, 2 \mathrm{H})$, 7.50-7.52 (m, 2H), 8.42-8.44 (s, 1H); ${ }^{13} \mathrm{C}$ NMR δ 21.0, 22.6, 24.8, 47.0, 52.1, 64.9, 121.6, 125.4, 127.6, 128.0, 133.5, 136.4, 136.8, 149.2, 157.0, 175.9; IR (KBr) 2933, 1734, 1573,

1429, 1341, 1178, $779 \mathrm{~cm}^{-1}$; EIMS m/z (rel. intensity) $362\left(\mathrm{M}^{+}, 15\right.$), 279 (32), 261 (100), 220 (73); Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}$: C, 59.65; H, 6.12; N, 7.73. Found: C, 59.55; H, 6.24; $\mathrm{N}, 7.60$. HPLC (CHIRALPAK AD-H, hexane $/{ }^{i} \mathrm{PrOH}=80: 20,1.0 \mathrm{ml} / \mathrm{min}$) $t_{R} 11.7$ (major), 17.2 (minor) min.
(R)-Methyl 2,2-dimethyl-3-(4-methoxyphenyl)-3-[(2-pyridylsulfonyl)amino]propionate (4j)

The reaction was carried out as described in the typical procedure except for using imine $\mathbf{1} \mathbf{j}$ ($25.0 \mathrm{mg}, 0.0092 \mathrm{mmol}$), bis(oxazoline) $-\mathrm{Ph}(3.5 \mathrm{mg}, 0.010 \mathrm{mmol}), \mathrm{Cu}(\mathrm{OTf})_{2}(3.4 \mathrm{mg}, 0.0092$ $\mathrm{mmol})$, and silylketene acetal ($24 \mu \mathrm{l}, 0.118 \mathrm{mmol}$). Usual work-up gave the crude product which was purified by chromatography (benzene/ethyl acetate $=90 / 10$) to afford $\mathbf{4 j}(16.6 \mathrm{mg}$, $49 \%, 40 \%$ ee $)$ as a white solid; mp 111.3-120.0 ${ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{20}-36.3\left(c 1.0, \mathrm{CHCl}_{3}, 40 \%\right.$ ee $) ; \mathrm{R}_{f}=$ 0.45 (benzene/ethyl acetate $=70 / 30$); ${ }^{1} \mathrm{H}$ NMR $\delta 1.09(\mathrm{~s}, 3 \mathrm{H}), 1.38(\mathrm{~s}, 3 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H}), 3.70$ $(\mathrm{s}, 3 \mathrm{H}), 4.40(\mathrm{~d}, J=10 \mathrm{~Hz}, 1 \mathrm{H}), 6.47(\mathrm{~d}, J=2 \mathrm{~Hz}, 1 \mathrm{H}), 6.52(\mathrm{~d}, J=2 \mathrm{~Hz}, 1 \mathrm{H}), 6.79(\mathrm{~d}, J=8 \mathrm{~Hz}$, $2 \mathrm{H}), 7.20-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.52-7.54(\mathrm{~m}, 2 \mathrm{H}), 8.44-8.46(\mathrm{~m}, 1 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\delta 22.7,24.6,47.2$, 52.2, 55.2, 64.6, 112.9, 121.6, 125.6, 128.4, 128.7, 128.9, 136.9, 149.3, 158.3, 175.9; IR $(\mathrm{KBr}) 2955,1736,1516,1431,1178,1120,607 \mathrm{~cm}^{-1}$; EIMS m/z (rel. intensity) $378\left(\mathrm{M}^{+}, 28\right)$, 277 (100), 236 (72); Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}: \mathrm{C}, 57.13$; H, 5.86; N, 7.40. Found: C, 57.36; H, 6.08; N, 7.48. HPLC (CHIRALPAK AD-H, hexane $\left./{ }^{i} \mathrm{PrOH}=80: 20,1.0 \mathrm{ml} / \mathrm{min}\right) t_{R}$ 12.1 (minor), 17.3 (major) min.
(R)-Methyl 2,2-dimethyl-3-(4-chlorophenyl)-3-[(2-pyridylsulfonyl)amino]propionate (4k)

The reaction was carried out as described in the typical procedure except for using imine $\mathbf{1 1}$
$(25.0 \mathrm{mg}, 0.0091 \mathrm{mmol})$, bis(oxazoline) $-\mathrm{Ph}(3.4 \mathrm{mg}, 0.010 \mathrm{mmol}), \mathrm{Cu}(\mathrm{OTf})_{2}(3.3 \mathrm{mg}, 0.009$ $\mathrm{mmol})$, and silylketene acetal ($24 \mu \mathrm{l}, 0.118 \mathrm{mmol}$). Usual work-up gave the crude product which was purified by chromatography (benzene/ethyl acetate $=85 / 15)$ to afford $\mathbf{4 1}(29.5 \mathrm{mg}$, $52 \%, 75 \%$ ee $)$ as a white solid; mp 141.3-142.0 ${ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{20}-17.2\left(c 1, \mathrm{CHCl}_{3}, 62 \%\right.$ ee $) ; \mathrm{R}_{f}=$ 0.53 (benzene/ethyl acetate $=70 / 30$); ${ }^{1} \mathrm{H}$ NMR $\delta 1.09(\mathrm{~s}, 3 \mathrm{H}), 1.41(\mathrm{~s}, 3 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H}), 4.42$ $(\mathrm{d}, J=10 \mathrm{~Hz}, 1 \mathrm{H}), 6.58(\mathrm{~d}, J=10 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{~d}, J=14 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{~d}, J=9 \mathrm{~Hz}, 1 \mathrm{H})$, $7.30(\mathrm{~s}, 1 \mathrm{H}), 7.56-7.59(\mathrm{~m}, 4 \mathrm{H}), 8.46(\mathrm{~d}, J=4 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 22.7,24.8,47.0,52.3$, $64.5,121.6,125.7,127.5,129.2,133.0,135.4,137.0,149.4,157.0,175.7$; IR (KBr) 3343, 1737, 1425, 1341, 1179, 1119, $779 \mathrm{~cm}^{-1}$; EIMS m/z (rel. intensity) $382\left(\mathrm{M}^{+}, 7\right), 351$ (100), 318 (60); Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{ClN}_{2} \mathrm{O}_{4} \mathrm{~S}$: C, 53.33; H, 5.00; N, 7.32. Found: C, 53.55; H, 5.03; $\mathrm{N}, 7.21$. HPLC (CHIRALPAK AD-H, hexane $/^{i} \operatorname{PrOH}=80: 20,1.0 \mathrm{ml} / \mathrm{min}$) $t_{R} 15.7$ (major), 24.7 (minor) min.

(R)-Methyl 2,2-dimethyl-3-(1-naphthyl)-3-[(2-pyridylsulfonyl)amino]propionate (4m)

The reaction was carried out as described in the typical procedure except for using imine $\mathbf{1 m}$ ($25.0 \mathrm{mg}, 0.0084 \mathrm{mmol}$), bis(oxazoline) $-\mathrm{Ph}(3.2 \mathrm{mg}, 0.0092 \mathrm{mmol}), \mathrm{Cu}(\mathrm{OTf})_{2}(3.1 \mathrm{mg}$, $0.0084 \mathrm{mmol})$, and silylketene acetal ($22 \mu \mathrm{l}, 0.109 \mathrm{mmol}$). Usual work-up gave the crude product which was purified by chromatography (benzene/ethyl acetate $=90 / 10$) to afford $\mathbf{4 m}$ $(18.0 \mathrm{mg}, 50 \%, 71 \%$ ee $)$ as a white solid; $\mathrm{mp} 115.1-116.0{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{20}+63.4\left(c 1, \mathrm{CHCl}_{3}, 71 \%\right.$ ee); $\mathrm{R}_{f}=0.63$ (benzene/ethyl acetate $=70 / 30$); ${ }^{1} \mathrm{H}$ NMR $\delta 1.08(\mathrm{~s}, 3 \mathrm{H}), 1.48(\mathrm{~s}, 3 \mathrm{H}), 3.68(\mathrm{~s}$, $3 \mathrm{H}), 5.46(\mathrm{~d}, J=10 \mathrm{~Hz}, 1 \mathrm{H}), 6.56(\mathrm{~d}, J=10 \mathrm{~Hz}, 1 \mathrm{H}), 6.83-6.89(\mathrm{~m}, 1 \mathrm{H}), 6.98-7.25(\mathrm{~m}, 4 \mathrm{H})$, 7.40-7.48 (m, 3H), 7.64-7.68(m, 1H), 8.03-8.13 (m, 2H), ${ }^{13} \mathrm{C}$ NMR $\delta 22.1,25.4,48.1,52.3$, 57.7, 121.4, 122.7, 124.5, 125.2, 126.0, 126.4, 127.8, 128.2, 128.4, 131.4, 132.8, 133.5, 136.1, $148.8,156.4,176.0 ; \operatorname{IR}(\mathrm{KBr}) 3297,1732,1431,1337,1172,1120,775 \mathrm{~cm}^{-1} ;$ EIMS m/z (rel.
intensity) $398\left(\mathrm{M}^{+}, 26\right), 297$ (100), 256 (76), 217 (60); Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}$: C, 63.30; H, 5.56; N, 7.03. Found: C, 63.00; H, 5.54; N, 6.85. HPLC (CHIRALPAK AD-H, hexane $/{ }^{\prime} \mathrm{PrOH}=80: 20,0.30 \mathrm{ml} / \mathrm{min}$) $t_{R} 68.4$ (major), 72.7 (minor) min.

(R)-Methyl 2,2-dimethyl-3-(2-naphthyl)-3-[(2-pyridylsulfonyl)amino]propionate (4n)

The reaction was carried out as described in the typical procedure except for using imine $\mathbf{1 n}$ ($25.0 \mathrm{mg}, 0.0084 \mathrm{mmol}$), bis(oxazoline) $-\mathrm{Ph}(3.2 \mathrm{mg}, 0.0092 \mathrm{mmol}), \mathrm{Cu}(\mathrm{OTf})_{2}(3.1 \mathrm{mg}$, $0.0084 \mathrm{mmol})$, and silylketene acetal ($22 \mu \mathrm{l}, 0.011 \mathrm{mmol}$). Usual work-up gave the crude product which was purified by chromatography (benzene/ethyl acetate $=90 / 10$) to afford $\mathbf{4 n}$ (20.6 mg, $62 \%, 64 \%$ ee) as a white solid; mp $109.8-110.5^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{20}-23.6\left(c 1, \mathrm{CHCl}_{3}, 64 \%\right.$ ee); $\mathrm{R}_{f}=0.63$ (benzene/ethyl acetate $=70 / 30$); ${ }^{1} \mathrm{H}$ NMR $\delta 1.15(\mathrm{~s}, 3 \mathrm{H}), 1.47(\mathrm{~s}, 3 \mathrm{H}), 3.68(\mathrm{~s}$, $3 \mathrm{H}), 4.60(\mathrm{~d}, J=10 \mathrm{~Hz}, 1 \mathrm{H}), 6.68(\mathrm{~d}, J=10 \mathrm{~Hz}, 1 \mathrm{H}), 6.81-6.88(\mathrm{~m}, 1 \mathrm{H}), 7.03(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H})$, 7.15-7.23 (m, 1H), 7.36-7.48 (m, 5H), 7.59-7.68 (m, 2H), $8.26(\mathrm{~d}, J=4 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR δ 22.7, 24.9, 47.1, 52.2, 65.3, 121.5, 125.2, 125.3, 125.8, 127.0, 127.1, 127.4, 127.5, 132.0, 132.1, 133.8, 136.4, 149.1, 156.8, 175.9; IR (KBr) 2952, 1733, 1433, 1336, 1176, 1122, 746 $\mathrm{cm}^{-1 ;}$ EIMS m/z (rel. intensity) 398 ($\mathrm{M}^{+}, 15$), 367 (19), 344 (55), 256 (100); Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}: \mathrm{C}, 63.30$; H, 5.56; N, 7.03. Found: C, 63.34; H, 5.69; N, 6.86. HPLC (CHIRALPAK AD-H, hexane $/^{i} \operatorname{PrOH}=80: 20,1.0 \mathrm{ml} / \mathrm{min}$) $t_{R} 14.3$ (major), 22.4 (minor) min.

(R)-Methyl 2,2-dimethyl-3-(2-furyl)-3-[(2-pyridylsulfonyl)amino]propionate (4o)

The reaction was carried out as described in the typical procedure except for using imine $\mathbf{1 0}$ ($25.0 \mathrm{mg}, 0.108 \mathrm{mmol}$), bis(oxazoline) $-\mathrm{Ph}(4.1 \mathrm{mg}, 0.0119 \mathrm{mmol}), \mathrm{Cu}(\mathrm{OTf})_{2}(4.0 \mathrm{mg}, 0.0108$ $\mathrm{mmol})$, and silylketene acetal ($28 \mu \mathrm{l}, 0.014 \mathrm{mmol}$). Usual work-up gave the crude product which was purified by chromatography (benzene/ethyl acetate $=75 / 25$) to afford $\mathbf{4 o}(19.1 \mathrm{mg}$,
$52 \%, 73 \%$ ee $)$ as a white solid; $\mathrm{mp} 108.0-109.2^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{20}-19.1\left(c 1, \mathrm{CHCl}_{3}, 73 \%\right.$ ee $) ; \mathrm{R}_{f}=$ 0.48 (benzene/ethyl acetate $=70 / 30$); ${ }^{1} \mathrm{H}$ NMR $\delta 1.19(\mathrm{~s}, 3 \mathrm{H}), 1.33(\mathrm{~s}, 3 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 4.55$ $(\mathrm{d}, J=10 \mathrm{~Hz}, 1 \mathrm{H}), 6.19(\mathrm{~d}, J=12 \mathrm{~Hz}, 1 \mathrm{H}), 7.01-7.02(\mathrm{~m}, 1 \mathrm{H}), 7.27-7.36(\mathrm{~m}, 3 \mathrm{H}), 7.72-7.81$ $(\mathrm{m}, 2 \mathrm{H}), 8.47(\mathrm{~d}, J=6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 22.6,23.6,46.9,52.2,58.3,108.1,109.7,121.5$, $125.8,137.2,141.4,149.4,150.0,156.8,175.5$; IR (KBr) 2921, 1737, 1436, 1342, 1181, 1121, $752 \mathrm{~cm}^{-1}$; EIMS m/z (rel. intensity) 338 ($\mathrm{M}^{+}, 35$), 277 (69), 261 (100), 175 (57); Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}$: C, 53.24; H, 5.36; N, 8.28. Found: C, 53.38; H, 5.27; N, 8.17. HPLC (CHIRALPAK AD-H, hexane $/{ }^{i} \operatorname{PrOH}=80: 20,0.60 \mathrm{ml} / \mathrm{min}$) $t_{R} 35.0$ (major), $t_{S} 38.1$ (minor) min.

(R)-(E)-Methyl 2,2-dimethyl-5-phenyl-3-[(2-pyridylsulfonyl)amino]pent-4-enoate (4p)

The reaction was carried out as described in the typical procedure except for using imine $\mathbf{1 p}$ ($25.0 \mathrm{mg}, 0.094 \mathrm{mmol}$), bis(oxazoline) $-\mathrm{Ph}(3.5 \mathrm{mg}, 0.0103 \mathrm{mmol}), \mathrm{Cu}(\mathrm{OTf})_{2}(3.4 \mathrm{mg}, 0.0094$ $\mathrm{mmol})$, and silylketene acetal ($25 \mu \mathrm{l}, 0.0122 \mathrm{mmol}$). Usual work-up gave the crude product which was purified by chromatography (benzene/ethyl acetate $=90 / 10$) to afford $\mathbf{4 p}(14.9 \mathrm{mg}$, $43 \%, 71 \%$ ee $)$ as a white solid; $\mathrm{mp} 97.5-98.9^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{20}-51.8\left(c 1, \mathrm{CHCl}_{3}, 71 \%\right.$ ee $) ; \mathrm{R}_{f}=$ 0.65 (benzene/ethyl acetate $=70 / 30$); ${ }^{1} \mathrm{H}$ NMR $\delta 1.19(\mathrm{~s}, 3 \mathrm{H}), 1.38(\mathrm{~s}, 3 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 3.93$ (dd, $J=9,10 \mathrm{~Hz}, 1 \mathrm{H}), 5.71(\mathrm{dd}, J=10,10 \mathrm{~Hz}, 1 \mathrm{H}), 5.96(\mathrm{~d}, J=14 \mathrm{~Hz}, 1 \mathrm{H}), 6.95-6.98(\mathrm{~m}, 2 \mathrm{H})$, 7.09-7.20 (m, 4H), 7.57-7.65 (m, 2H), $7.87(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}), 8.54(\mathrm{~d}, J=1 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 23.1,23.7,46.6,52.1,64.0,121.9,124.2,125.2,125.9,127.6,128.0,133.4,135.4$, 137.2, 149.6, 157.4, 175.9; IR (KBr) 3245, 1733, 1429, 1339, 1120, 1179, $600 \mathrm{~cm}^{-1}$; EIMS m / z (rel. intensity) $374\left(\mathrm{M}^{+}, 20\right), 367$ (45), 343 (100), 281 (60); Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}: \mathrm{C}, 60.94 ; \mathrm{H}, 5.92$; N, 7.48. Found: C, 61.02; H, 5.78; N, 7.31. HPLC
(CHIRALPAK AD-H, hexane $/{ }^{i} \operatorname{PrOH}=80: 20,1.0 \mathrm{ml} / \mathrm{min}$) $t_{R} 11.6$ (major), $t_{S} 17.0$ (minor) min.

(sz)

