Advanced Synthesis \& Catalysis

Supporting Information

© Copyright Wiley-VCH Verlag GmbH \& Co. KGaA, 69451 Weinheim, 2008

Supporting Information

Organocatalytic Enantioselective Hydrophosphonylation of Sulfonylimines Having Heteroarylsulfonyl Group as a Novel Stereocontroller Shuichi Nakamura,* Hiroki Nakashima, Akiko Yamamura, Norio Shibata and Takeshi Toru* Department of Applied Chemistry, Graduate School of Engineering,

 Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, JapanTable S1. Enantioselective Addition of phosphites to aldimine $\mathbf{1 g}$ using various cinchona alkaloids.

				 2j
run	catalyst	Yiled (\%)	Ee (\%)	
1	Quinine	>99	92 (S)	
2	Quinidine	>99	$88(R)$	
3	Cinconine	97	58 (S)	
4	Cinconidine	97	58 (R)	
5	Hydroquinine	>99	91 (S)	
6	Hydroquinidine	>99	$92(R)$	
7	(DHQD) $2_{2} \mathrm{PYR}$	98	40 (S)	

Table S2. Enantioselective hydrophosphonilation to Aldimines 1f using quinine.

run	Imine	R	Temp $\left({ }^{\circ} \mathrm{C}\right)$	Yield (\%)	Ee (\%)
1	1f	Et	rt	98	70 (S)
2	$1 f$	$E t^{\text {a }}$	rt	90	0
3	1f	Me	rt	89	60
4	1f	$i-\operatorname{Pr}$	rt	trace	-
$5^{\text {b }}$	1f	Ph	rt	94	61
6	1f	Et	-40	trace	-
$7{ }^{\text {b }}$	1f	Ph	-40	93	83 (S)

${ }^{\mathrm{a}} \mathrm{TMSOP}(\mathrm{OEt})_{2}$ was used as a phosphite. ${ }^{\mathrm{b}} 60 \mathrm{~min}$.

General. All reactions were performed in oven-dried glassware under a positive pressure of nitrogen. Solvents were transferred via syringe and were introduced into the reaction vessels though a rubber septum. All of the reactions were monitored by thin-layer chromatography (TLC) carried out on 0.25 mm Merck silicagel (60-F254). The TLC plates were visualized with UV light and 7\% phosphomolybdic acid or panisaldehyde in ethanol/ heat. Column chromatography was carried out on a column packed with silicagel 60 N spherical neutral size $63-210 \mu \mathrm{~m}$. The ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (200 or 600 MHz), ${ }^{19} \mathrm{~F}-\mathrm{NMR}\left(188 \mathrm{MHz}\right.$), and ${ }^{13} \mathrm{C}-$ NMR (50.3 or 150 MHz), ${ }^{31} \mathrm{P}$ NMR (80.9 MHz) spectra for solution in CDCl_{3}, were recorded on a Varian Gemini-200 or Bruker AVANCE600. Chemical shifts (δ) are expressed in ppm downfield from internal TMS or CHCl_{3}. HPLC analyses were performed on a JASCO PU-2080 Plus or SHIMADZU LC-2010A HT using $4.6 \times 250 \mathrm{~mm}$ CHIRALCEL OJ-H, CHIRALCEL IC column. Mass spectra were recorded on a SHIMADZU GCMS-QP5050A. APCI Mass spectra were recorded on a SHIMADZU LCMS-2050EV. Optical rotations were measured on a HORIBA SEPA-300. Infrared spectra were recorded on a JASCO FT/IR-200 spectrometer.
The known compounds 1a-e were prepared using same procedure for the preparation of $\mathbf{1 f}$.

Typical Procedure for Preparation of \boldsymbol{N}-Benzylidene-(6-methyl-2-pyridine)sulfonamide (1g):

A solution of 6-methyl-2-pyridinesulfonamide ($500 \mathrm{mg}, 2.90 \mathrm{mmo}$) in THF (10 mL) was added benzaldehyde ($0.32 \mathrm{~mL}, 3.20 \mathrm{mmol})$), triethylamine ($1.20 \mathrm{~mL}, 8.70 \mathrm{mmol}$) and titanium(IV) chloride ($2.90 \mathrm{~mL}, 2.90 \mathrm{mmol}, 1.00 \mathrm{~mol} \mathrm{~L}^{-1}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) at $0{ }^{\circ} \mathrm{C}$, and the mixture was stirred for 2 h . The mixture was filtered through Celite ${ }^{\circledR}$ and washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic solution was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, washed saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure to leave a residue which was recrystallized with hexane/ethyl acetate to afford 1 g ($683 \mathrm{mg}, 90 \%$):
m.p. 118.8-122.6 ${ }^{\circ} \mathrm{C} ; \mathrm{R}_{f}=0.35$ (hexane/ethyl acetate $=60: 40$); ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.61(\mathrm{~s}, 3 \mathrm{H})$, $7.37(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.65(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.83(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.99(\mathrm{~d}, J$ $=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.05(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 9.25(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 24.4,120.5,127.2$, $129.2,131.6,132.4,135.2,137.9,155.0,160.3,174.0$; $\mathrm{IR}(\mathrm{KBr}) 1606,1324,1123,789,637 \mathrm{~cm}^{-1 ;}$ APCIMS $\mathrm{m} / \mathrm{z} 251.3[\mathrm{M}+\mathrm{H}]$; Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}: \mathrm{C}, 59.98 ; \mathrm{H}, 4.65$; N, 10.76. Found: C, 59.94; H, 4.81; N, 10.74 .

N-Benzylidene-2-quinolinesulfonamide (1h)

The reaction was carried out as described in the typical procedure except for using 2-quinolinesulfonamide ($500 \mathrm{mg}, 2.40 \mathrm{mmol}$), benzaldehyde ($0.26 \mathrm{~mL}, 2.64$ mmol), triethylamine ($1.00 \mathrm{~mL}, 7.20 \mathrm{mmol}$), and titanium(IV) chloride (1.00 mol L^{-1} in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 2.40 \mathrm{~mL}, 2.40 \mathrm{mmol}$). Usual work-up gave the crude product which was recrystallized from hexane/ethyl acetate to afford $\mathbf{1 h}$ ($345 \mathrm{mg}, 49 \%$);
m.p. 147.2-150.8 ${ }^{\circ} \mathrm{C} ; \mathrm{R}_{f}=0.35$ (hexane/ethyl acetate $=60: 40$); ${ }^{1} \mathrm{H}$ NMR $\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.44-7.51(\mathrm{~m}$, 2H), 7.59-7.99 (m, 6H), $8.23(\mathrm{t}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.42(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 9.31(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (50.3 MHz , CDCl_{3}) $\delta 118.6,127.5,128.9,129.0,129.1,130.1,130.8,131.4,132.1,135.1,138.5,147.1,154.8,173.6 \mathrm{IR}$ $(\mathrm{KBr}) 1605,1564,1329,1174,1130,1095,793 \mathrm{~cm}^{-1}$; APCIMS m/z $297.1[\mathrm{M}+\mathrm{H}]$; Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}: \mathrm{C}, 64.85$; H, 4.08; N, 9.45. Found: C, 65.09; H, 4.09; N, 9.33.

N-[(4-Methylphenyl)methylidene]-(6-methyl-2-pyridinesulfonamide) (1i)

The reaction was carried out as described in the typical procedure except for using 6-methyl-2-pyridinesulfonamide ($350 \mathrm{mg}, 2.03 \mathrm{mmol}$), p-tolualdehyde $(0.26 \mathrm{~mL}, 2.23 \mathrm{mmol})$, triethylamine ($0.85 \mathrm{~mL}, 6.09 \mathrm{mmol}$), and titanium(IV) chloride ($1.00 \mathrm{~mol} \mathrm{~L}^{-1}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 2.03 \mathrm{~mL}, 2.03 \mathrm{mmol}$). Usual work-up gave the crude product which was recrystallized from hexane/ethyl acetate to afford $\mathbf{1 i}(460 \mathrm{mg}, 83 \%)$;
mp 147.2-148.5 ${ }^{\circ} \mathrm{C} ; \mathrm{R}_{f}=0.30$ (hexane/ethyl acetate $\left.=60: 40\right) ;{ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.18(\mathrm{~s}, 1 \mathrm{H})$, $8.03(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.77-7.87(\mathrm{~m}, 3 \mathrm{H}), 7.28-7.37(\mathrm{~m}, 3 \mathrm{H}), 2.60(\mathrm{~s}, 3 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (50.3 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 22.2,24.5,120.2,127.0,129.6,129.7,131.5,137.7,146.5,154.8,159.9,173.3$; IR (KBr) 1596, 1562, 1455, 1324, 1175, 1122, 811, $763 \mathrm{~cm}^{-1}$; APCIMS m/z $275.2[\mathrm{M}+\mathrm{H}]$; Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}: \mathrm{C}, 61.29 ; \mathrm{H}, 5.14 ; \mathrm{N}, 10.21$. Found: C, 61.32; H, 5.19; N, 10.19.

N-[(4-Methoxyphenyl)methylidene]-(6-methyl-2-pyridinesulfonamide) (1j)

The reaction was carried out as described in the typical procedure except for using 6-methyl-2-pyridinesulfonamide ($350 \mathrm{mg}, 2.03 \mathrm{mmol}$), panisaldehyde ($0.27 \mathrm{~mL}, 2.23 \mathrm{mmol}$), triethylamine ($0.85 \mathrm{~mL}, 6.09 \mathrm{mmol}$), and titanium(IV) chloride ($1.00 \mathrm{~mol} \mathrm{~L}^{-1}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 2.03 \mathrm{~mL}, 2.03 \mathrm{mmol}$). Usual work-up gave the crude product which was recrystallized from hexane/ethyl acetate to afford $\mathbf{1 j}$ (478 $\mathrm{mg}, 81 \%$);
mp 153.0-154.2 ${ }^{\circ} \mathrm{C} ; \mathrm{R}_{f}=0.35$ (hexane/ethyl acetate $\left.=60: 40\right) ;{ }^{1} \mathrm{H}$ NMR $\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.12(\mathrm{~s}, 1 \mathrm{H})$, $8.01(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.92(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.80(\mathrm{dd}, J=7.6,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $6.97(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 2.60(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(50.3 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 24.5,55.7,114.5,120.0$, 125.0, 126.8, 133.8, 137.6, 155.1, 159.8, 165.2, 172.4; IR (KBr) 1590, 1551, 1317, 1172, 1110, 811, 614 cm^{-1}; APCIMS m/z $291.7[\mathrm{M}+\mathrm{H}]$; Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}: \mathrm{C}, 57.92 ; \mathrm{H}, 4.86$; N, 9.65. Found: C, 58.04; H, 4.89; N, 9.59.

N-[(2-Methoxyphenyl)methylidene]-(6-methyl-2-pyridinesulfonamide) (1k)

The reaction was carried out as described in the typical procedure except for using 6-methyl-2-pyridinesulfonamide ($300 \mathrm{mg}, 1.74 \mathrm{mmol}$), o-anisaldehyde ($260 \mathrm{mg}, 1.91 \mathrm{mmol}$), triethylamine ($0.73 \mathrm{~mL}, 5.23 \mathrm{mmol}$), and titanium(IV) chloride ($1.00 \mathrm{~mol} \mathrm{~L}^{-1}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 1.74 \mathrm{~mL}, 1.74 \mathrm{mmol}$). Usual work-up gave the crude product which was recrystallized from hexane/ethyl acetate to afford $\mathbf{1 k}(341 \mathrm{mg}, 67 \%)$;
mp 129.9-131-9 ${ }^{\circ} \mathrm{C} ; \mathrm{R}_{f}=0.35$ (hexane/ethyl acetate $\left.=60: 40\right) ;{ }^{1} \mathrm{H}$ NMR $\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.70(\mathrm{~s}, 1 \mathrm{H})$, 7.99-8.08 (m, 2H), $7.80(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.53-7.62(\mathrm{~m}, 1 \mathrm{H}), 7.34(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.93-7.00(\mathrm{~m}, 2 \mathrm{H})$, $3.93(\mathrm{~s}, 3 \mathrm{H}), 2.61(\mathrm{~s}, 3 \mathrm{H}){ }^{13} \mathrm{C}$ NMR ($50.3 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 24.5,55.8,111.4,120.1,120.6,120.7,126.8$, 129.2, 137.1, 137.6, 155.0, 159.8, 161.6, 169.4; IR (KBr) 1594, 1565, 1324, 1257, 1150, 1121, 818, $768 \mathrm{~cm}^{-}$ ${ }^{1}$; APCIMS m/z $291.2[\mathrm{M}+\mathrm{H}]$; Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}$: C, 57.92; H, 4.86; N, 9.65. Found: C, 57.65; H, 5.02; N, 9.52.

N-[(3-Methoxyphenyl)methylidene]-(6-methyl-2-pyridinesulfonamide) (11)

The reaction was carried out as described in the typical procedure except for using 6-methyl-2-pyridinesulfonamide ($300 \mathrm{mg}, 1.74 \mathrm{mmol}$), manisaldehyde ($0.23 \mathrm{~mL}, 1.91 \mathrm{mmol}$), triethylamine $(0.73 \mathrm{~mL}, 5.23 \mathrm{mmol})$, and titanium(IV) chloride ($1.00 \mathrm{~mol} \mathrm{~L}^{-1}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 1.74 \mathrm{~mL}, 1.74 \mathrm{mmol}$). Usual work-up gave the crude product which was recrystallized from hexane/ethyl acetate to afford $\mathbf{1 1}$ (359 mg, 71\%);
mp 98.0-99.7 ${ }^{\circ} \mathrm{C} ; \mathrm{R}_{f}=0.30$ (hexane/ethyl acetate $=60: 40$); ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.20(\mathrm{~s}, 1 \mathrm{H}), 8.04$ $(\mathrm{d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.84(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.34-7.52(\mathrm{~m}, 4 \mathrm{H}), 7.16-7.20(\mathrm{~m}, 1 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 2.61(\mathrm{~s}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 24.4,55.5,113.3,120.5,122.6,125.8,127.2,130.1,133.7,137.9,155.0$, 160.1, 160.3, 173.9; IR (KBr) 1596, 1569, 1321, 1275, 1174, 1118, 823, $639 \mathrm{~cm}^{-1}$; APCIMS m/z 290.3 $[\mathrm{M}+\mathrm{H}]$; Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}$: C, 57.92; H, 4.86; N, 9.65. Found: C, 57.99; H, 4.97; N, 9.65.

N-[(4-Chlorophenyl)methylidene]-(6-methyl-2-pyridinesulfonamide) (1m)

The reaction was carried out as described in the typical procedure except for using 6-methyl-2-pyridinesulfonamide ($350 \mathrm{mg}, \quad 2.03 \mathrm{mmol}$), pchlorobenzaldehyde ($313 \mathrm{mg}, 2.23 \mathrm{mmol}$), triethylamine ($0.85 \mathrm{~mL}, 6.09$ mmol), and titanium(IV) chloride ($1.00 \mathrm{~mol} \mathrm{~L}^{-1}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 2.03 \mathrm{~mL}, 2.03$ $\mathrm{mmol})$. Usual work-up gave the crude product which was recrystallized from hexane/ethyl acetate to afford 1m ($434 \mathrm{mg}, 73 \%$);
$\mathrm{mp} 175.8-178.0{ }^{\circ} \mathrm{C} ; \mathrm{R}_{f}=0.35$ (hexane/ethyl acetate $=60: 40$); ${ }^{1} \mathrm{H}$ NMR $\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.19(\mathrm{~s}, 1 \mathrm{H})$, $8.04(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.87-7.93(\mathrm{~m}, 2 \mathrm{H}), 7.80(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.37(\mathrm{~d}, J=$ $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.60(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($50.3 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 24.8,120.4,127.2,129.4,130.6,132.4,137.8$, 141.6, 154.5, 160.1, 172.1; IR (KBr) 1591, 1561, 1325, 1179, 1122, $783 \mathrm{~cm}^{-1}$; APCIMS m/z $295.1[\mathrm{M}+\mathrm{H}]$; Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{ClN}_{2} \mathrm{O}_{2} \mathrm{~S}$: C, 52.97; H, 4.76; N, 9.50. Found: C, 52.92; H, 4.77; N, 9.46.

N-(1-Naphtylmethylidene)-(6-methyl-2-pyridinesulfonamide) (1n)

The reaction was carried out as described in the typical procedure except for using 6-methyl-2-pyridinesulfonamide ($350 \mathrm{mg}, 2.03 \mathrm{mmol}$), 1-naphthaldehyde $(0.30 \mathrm{~mL}, 2.23 \mathrm{mmol})$, triethylamine ($0.85 \mathrm{~mL}, 6.09 \mathrm{mmol}$), and titanium(IV) chloride ($1.00 \mathrm{~mol} \mathrm{~L}^{-1}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 2.03 \mathrm{~mL}, 2.03 \mathrm{mmol}$). Usual work-up gave the crude product which was recrystallized from hexane/ethyl acetate to afford
1n (389 mg, 62\%);
$\mathrm{mp} 154.5-155.0{ }^{\circ} \mathrm{C} ; \mathrm{R}_{f}=0.35$ (hexane/ethyl acetate $\left.=60: 40\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.78(\mathrm{~s}, 1 \mathrm{H})$, $8.98(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.06-8.22(\mathrm{~m}, 3 \mathrm{H}), 7.78-7.93(\mathrm{~m}, 2 \mathrm{H}), 7.53-7.70(\mathrm{~m}, 3 \mathrm{H}), 7.34(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H})$, $2.59(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C} \operatorname{NMR}\left(50.3 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 24.6,120.2,124.2,124 . .9,126.8,127.0,127.5,128.8,131.6$, 133.5, 135.4, 136.2, 137.7, 154.9, 160.0, 173.3; IR (KBr) 1596, 1564, 1325, 1120, $740 \mathrm{~cm}^{-1}$; APCIMS m/z $311.2[\mathrm{M}+\mathrm{H}]$; Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}: \mathrm{C}, 65.79 ; \mathrm{H}, 4.55$; N, 9.03. Found: C, 65.72; H, 4.50; N, 9.01.

N-(2-Naphtylmethylidene)-(6-methyl-2-pyridinesulfonamide) (10)

The reaction was carried out as described in the typical procedure except for using 6-methyl-2-pyridinesulfonamide ($350 \mathrm{mg}, \quad 2.03 \mathrm{mmol}$), 2naphthaldehyde ($348 \mathrm{mg}, 2.23 \mathrm{mmol}$), triethylamine ($0.85 \mathrm{~mL}, 6.09 \mathrm{mmol}$), and titanium(IV) chloride ($1.00 \mathrm{~mol} \mathrm{~L}^{-1}$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}, 2.03 \mathrm{~mL}, 2.03 \mathrm{mmol}\right)$. Usual work-up gave the crude product which was recrystallized from hexane/ethyl acetate to afford $\mathbf{1 0}$ (451 mg, 72\%);
mp 153.9-155.6 ${ }^{\circ} \mathrm{C} ; \mathrm{R}_{f}=0.35$ (hexane/ethyl acetate $=60: 40$); ${ }^{1} \mathrm{H}$ NMR $\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.36(\mathrm{~s}, 1 \mathrm{H})$, $8.38(\mathrm{~s}, 1 \mathrm{H}), 7.78-8.09(\mathrm{~m}, 6 \mathrm{H}), 7.52-7.68(\mathrm{~m}, 2 \mathrm{H}), 7.35(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.60(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (50.3 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 24.6,120.3,124.0,127.0,127.8,128.9,129.4,129.8,132.3,136.4,137.7,154.7,160.0$, 173.4 ; $\operatorname{IR}(\mathrm{KBr}) 1602,1590,1323,1122,824,750 \mathrm{~cm}^{-1}$; APCIMS m/z $311.2[\mathrm{M}+\mathrm{H}]$; Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}: \mathrm{C}, 65.79 ; \mathrm{H}, 4.55 ; \mathrm{N}, 9.03$. Found: C, $65.94 ; \mathrm{H}, 4.57$; N, 9.04 .

N -(3-phenylpropenylidene)-(6-methyl-2-pyridinesulfonamide) (1p)

The reaction was carried out as described in the typical procedure except for using 6-methyl-2-pyridinesulfonamide ($350 \mathrm{mg}, 2.03 \mathrm{mmol}$), transcinnamaldehyde ($0.28 \mathrm{ml}, 2.23 \mathrm{mmol}$), triethylamine ($0.85 \mathrm{~mL}, 6.09 \mathrm{mmol}$), and titanium(IV) chloride ($1.00 \mathrm{~mol} \mathrm{~L}^{-1}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 2.03 \mathrm{~mL}, 2.03 \mathrm{mmol}$). Usual work-up gave the crude product which was recrystallized from hexane/ethyl acetate to afford $\mathbf{1 p}$ (388 mg, 67\%);
mp 151.0-153.9 ${ }^{\circ} \mathrm{C} ; \mathrm{R}_{f}=0.40$ (hexane/ethyl acetate $\left.=60: 40\right) ;{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.63(\mathrm{~s}, 3 \mathrm{H})$, 7.03-7.07 (dd, $J=7.8,9.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.43-7.47(\mathrm{~m}, 3 \mathrm{H}), 7.58-7.60(\mathrm{~m}, 3 \mathrm{H}), 7.82(\mathrm{t}, J$ $=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.02(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.98(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 24.4,120.4$, 124.7, 127.2, 128.8, 129.2, 131.8, 134.1, 137.9, 154.9, 155.2, 160.3, 174.5; IR (KBr) 1617, 1552, 1320, $1175,1122,791 \mathrm{~cm}^{-1}$; APCIMS m/z $287.2[\mathrm{M}+\mathrm{H}]$; Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}: \mathrm{C}, 62.92 ; \mathrm{H}, 4.93 ; \mathrm{N}, 9.78$. Found: C, 62.86; H, 4.81; N, 9.71.

General procedure for the enantioselective hydrophosphonylation of imines: (S)-Diphenyl (6-methyl-2-pyridysulfonylamino-phenyl)methylphosphonate (2j):

To a solution of $\mathbf{1 g}(40 \mathrm{mg}, 0.154 \mathrm{~mol})$ and (-)-hydroquinine $(5.0 \mathrm{mg}, 0.0154$ mmol) in toluene (1.9 mL) was added diphenyl phosphite ($39 \mu \mathrm{l}, 0.200 \mathrm{mmol}$) at $-78{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred for 60 min . Water was then added to the reaction mixture, and aqueous layer was extracted with CHCl_{3}. The combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure to give the crude product which was purified by column chromatography (silica gel, hexane/ethyl acetate $=$ $50 / 50$) to give $\mathbf{2 j}$ ($73.9 \mathrm{mg}, \mathbf{9 9 \%}$, $\mathbf{9 8 \%}$ ee). Single recrystallization of $\mathbf{2 j}$ (98% ee) afforded 99.4% ee of $\mathbf{2 j}$.
$[\alpha]_{\mathrm{D}}{ }^{20}+50.1$ (c 1.0, $\mathrm{CHCl}_{3}, 99 \%$ ee); m.p. $164.8-166.5{ }^{\circ} \mathrm{C} ; \mathrm{R}_{f}=0.30$ (hexane/ethyl acetate $=50 / 50$); ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.32(\mathrm{~s}, 3 \mathrm{H}), 5.26(\mathrm{dd}, J=8.6,9.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.54(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.76-6.80$ (m, 2H), 6.97-7.32 (m, 14H), 7.38-7.53 (m, 2H); ${ }^{13} \mathrm{C}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 24.0,55.6(\mathrm{~d}, J=160 \mathrm{~Hz})$, $57.2,118.5,120.1(\mathrm{~d}, J=4.4 \mathrm{~Hz}), 120.5(\mathrm{~d}, J=4.4 \mathrm{~Hz}), 125.0(\mathrm{~d}, J=10.4 \mathrm{~Hz}), 125.9,127.9,128.0,128.1$, 128.2, $129.4(\mathrm{~d}, J=8.3 \mathrm{~Hz}), 132.1,137.1,149.7,159.1 ;{ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 13.6 ; \operatorname{IR}(\mathrm{KBr}) 3202,1489$, 1334, 1222, $947,697 \mathrm{~cm}^{-1}$; APCIMS m/z $495.4[\mathrm{M}+\mathrm{H}]$; Anal. Calcd for $\mathrm{C}_{25} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{PS}: \mathrm{C}, 60.72 ; \mathrm{H}, 4.69$; $\mathrm{N}, 5.67$. Found: C, $61.02 ; \mathrm{H}, 4.79 ; \mathrm{N}, 5.56$. HPLC (CHIRALPAK ${ }^{\circledR} \mathrm{IA}$, hexane $\left./ \mathrm{CHCl}_{3}=50: 50,1.5 \mathrm{ml} / \mathrm{min}\right) t_{R}$ 7.07 (minor), $t_{S} 7.98$ (major) min.

(S)-Diethyl [(2-pyridylsulfonyl)amino-phenyl-methyl] phosphonate (2f)

The reaction was carried out as described in the typical procedure except for using 1f ($40.0 \mathrm{mg}, 0.162 \mathrm{mmol}$), (-)-quinine ($5.2 \mathrm{mg}, 0.0162 \mathrm{mmol}$), toluene (2.0 mL), and diethyl phosphite $(27 \mu \mathrm{l}, 0.211 \mathrm{mmol})$. Usual work-up gave the crude product which was purified by column chromatography (silica gel, hexane/ethyl acetate $=$ $10 / 90$) to give $2 f(61.0 \mathrm{mg}, 98 \%, 70 \%$ ee) as a white solid.
$[\alpha]_{\mathrm{D}}{ }^{25}+1.1\left(c 1, \mathrm{CHCl}_{3}, 70 \%\right.$ ee); m.p. 121.2-123.4 ${ }^{\circ} \mathrm{C} ; \mathrm{R}_{f}=0.25$ (hexane/ethyl acetate $=10 / 90$); ${ }^{1} \mathrm{H}$ NMR $\left(200 \mathrm{NHz}, \mathrm{CDCl}_{3}\right) \delta 1.04(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.08-1.38(\mathrm{~m}, 3 \mathrm{H}), 3.55-3.74(\mathrm{~m}, 1 \mathrm{H}), 3.80-3.99(\mathrm{~m}, 1 \mathrm{H}), 4.11-$
$4.28(\mathrm{~m}, 2 \mathrm{H}), 4.87(\mathrm{dd}, J=9.6,9.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.66(\mathrm{br}, 1 \mathrm{H}), 6.99-7.26(\mathrm{~m}, 6 \mathrm{H}), 7.52-7.64(\mathrm{~m}, 2 \mathrm{H}), 8.41-8.44$ $(\mathrm{m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 16.5(\mathrm{~d}, J=5.7 \mathrm{~Hz}), 16.8(\mathrm{~d}, J=5.9 \mathrm{~Hz}), 55.8(\mathrm{~d}, J=154 \mathrm{~Hz}), 64.0$ $(\mathrm{d}, J=6.8 \mathrm{~Hz}), 64.3(\mathrm{~d}, J=7.2 \mathrm{~Hz}), 122.2,126.6,128.3,128.6,133.7,137.7,137.7,150.2,157.9 ;{ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 20.9 ; \operatorname{IR}(\mathrm{KBr}) 3119,1461,1334,1178,1022,702 \mathrm{~cm}^{-1} ;$ APCIMS m/z $385.2[\mathrm{M}+\mathrm{H}] ;$ Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{5}$ PS: C, $49.99 ; \mathrm{H}, 5.51$; N, 7.29. Found: C, $50.00 ; \mathrm{H}, 5.40 ; \mathrm{N}, 6.99$. HPLC (CHIRALCEL ${ }^{\circledR}$ OJ-H, hexane/ ${ }^{/} \mathrm{PrOH}=80: 20,1.0 \mathrm{ml} / \mathrm{min}$) $t_{R} 5.59$ (major), $t_{S} 11.5$ (minor) min.

Diethyl [(2-quinolinesulfonyl)amino-phenyl-methyl] phosphonate (2h)

The reaction was carried out as described in the typical procedure except for using 1h ($40.0 \mathrm{mg}, 0.135 \mathrm{mmol}$), (-)-quinine ($4.4 \mathrm{mg}, 0.0135 \mathrm{mmol}$), toluene $(1.7 \mathrm{~mL})$, and diethyl phosphite ($21 \mu \mathrm{l}, 0.176 \mathrm{mmol}$). Usual work-up gave the crude product which was purified by column chromatography (silica gel, hexane/ethyl acetate $=10 / 90)$ to give $\mathbf{2 h}(41.0 \mathrm{mg}, 86 \%, 49 \%$ ee $)$ as a white solid.
$[\alpha]_{\mathrm{D}}{ }^{20}+45.5\left(c 1.2, \mathrm{CHCl}_{3}, 49 \%\right.$ ee); m.p 146.2-148.4 ${ }^{\circ} \mathrm{C} ; \mathrm{R}_{f}=0.30$ (hexane/ethyl acetate $\left.=10 / 90\right) ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.00(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.31(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 3.57-3.64(\mathrm{~m}, 1 \mathrm{H}), 3.84-3.90(\mathrm{~m}, 1 \mathrm{H})$, 4.18-4.23 (m, 2H), 4.88-4.94 (m, 1H), $6.17(\mathrm{br}, 1 \mathrm{H}), 6.83(\mathrm{~m}, 3 \mathrm{H}), 7.10(\mathrm{~d}, J=4.2,2 \mathrm{H}), 7.61-7.63(\mathrm{~m}, 1 \mathrm{H})$, $7.71(\mathrm{~d}, J=8.4,1 \mathrm{H}), 7.75-7.77(\mathrm{~m}, 2 \mathrm{H}), 8.00(\mathrm{~d}, J=8.4,1 \mathrm{H}), 8.06(\mathrm{~d}, J=8.4,1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $(50.3 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 16.2(\mathrm{~d}, J=5.6 \mathrm{~Hz}), 16.6(\mathrm{~d}, J=5.6 \mathrm{~Hz}), 55.6(\mathrm{~d}, J=155 \mathrm{~Hz}), 63.6(\mathrm{~d}, J=6.8 \mathrm{~Hz}), 64.0(\mathrm{~d}, J=$ $7.2 \mathrm{~Hz}), 117,5,127.2,127.4,127.6(\mathrm{~d}, J=2.0 \mathrm{~Hz}), 127.8,127.9,128.2,128.4,129.7,130.3,133.3,137.6$, 146.5, 156.7; ${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 21.0 ; \operatorname{IR}(\mathrm{KBr}) 3103,1498,1330,1177,1025,653 \mathrm{~cm}^{-1} ;$ APCIMS m/z $435.1[\mathrm{M}+\mathrm{H}]$; Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{PS}: \mathrm{C}, 55.29$; H, 5.34; N, 6.45. Found: C, 55.09; H, 5.57; N, 6.27.; HPLC (CHIRALCEL ${ }^{\circledR} \mathrm{OJ}-\mathrm{H}$, hexane $/{ }^{i} \mathrm{PrOH}=80: 20,1.0 \mathrm{ml} / \mathrm{min}$) $t_{R} 5.88$ (major), $t_{S} 11.1$ (minor) min.

(S)-Diphenyl [(2-pyridylsulfonyl)amino-phenyl-methyl] phosphonate (2i)

The reaction was carried out as described in the typical procedure except for using 1f ($40.0 \mathrm{mg}, 0.162 \mathrm{mmol}$), (-)-quinine ($5.3 \mathrm{mg}, 0.0162 \mathrm{mmol}$), toluene (2.0 mL), and diphenyl phosphite ($41 \mu \mathrm{l}, 0.211 \mathrm{mmol}$). Usual work-up gave the crude product which was purified by column chromatography (silica gel, hexane/ethyl acetate $=50 / 50)$ to give $\mathbf{2 i}(74.7 \mathrm{mg}, 96 \%, 88 \%$ ee $)$ as a white solid.
$[\alpha]_{\mathrm{D}}{ }^{20}+12.3\left(c 1.0, \mathrm{CHCl}_{3}, 89 \%\right.$ ee); m.p. 203.8-205.2 ${ }^{\circ} \mathrm{C} ; \mathrm{R}_{f}=0.25$ (hexane/ethyl acetate $=50 / 50$); ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.30(\mathrm{dd}, J=10,10 \mathrm{~Hz}, 1 \mathrm{H}), 6.76-6.73(\mathrm{~m}, 3 \mathrm{H}), 7.05-7.26(\mathrm{~m}, 14 \mathrm{H}), 7.53(\mathrm{~d}, J=$ $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.36(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(50.3 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 55.6(\mathrm{~d}, J=$ $160 \mathrm{~Hz}), 120.1(\mathrm{~d}, J=4.4 \mathrm{~Hz}), 120.5(\mathrm{~d}, J=4.4 \mathrm{~Hz}), 121.6,125.2(\mathrm{~d}, J=10.8 \mathrm{~Hz}), 126.3,128.2,128.4$, $129.4(\mathrm{~d}, J=9.6 \mathrm{~Hz}), 132.1,137.1,149.4 ;{ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 13.4 ; \operatorname{IR}(\mathrm{KBr}) 3283,3185,1587,1489,1346$, 1204, 943, $916 \mathrm{~cm}^{-1}$; APCIMS m/z $481.3[\mathrm{M}+\mathrm{H}]$; Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{PS}: \mathrm{C}, 59.99 ; \mathrm{H}, 4.41 ; \mathrm{N}, 5.83$. Found: C, 59.90; H, 4.31; N, 5.56.; HPLC (CHIRALPAK ${ }^{\circledR} \mathrm{IA}$, hexane $\left./ \mathrm{CHCl}_{3}=50: 50,1.5 \mathrm{ml} / \mathrm{min}\right) t_{R} 11.8$ (minor), $t_{S} 13.1$ (major) min.

(S)-Diphenyl [(6-methyl-2-pyridinesulfonyl)amino-(4-methylphenyl)-methyl] phosphonate (3)

The reaction was carried out as described in the typical procedure except for using $1 \mathrm{ii}(40.0 \mathrm{mg}, 0.146 \mathrm{mmol})$, (-)-hydroquinine ($4.77 \mathrm{mg}, 0.0146 \mathrm{mmol}$), toluene (1.8 mL), and diphenyl phosphite ($37 \mu \mathrm{l}, 0.190 \mathrm{mmol}$). Usual work-up gave the crude product which was purified by column chromatography (silica gel, hexane/ethyl acetate $=50 / 50)$ to give $3(74.2 \mathrm{mg}, 99 \%, 92 \%$ ee) as a white solid. Single recrystallization of 3 (92% ee) afforded 99% ee of 3 .
$[\alpha]_{\mathrm{D}}{ }^{20}+35.9$ (с 1.0, $\mathrm{CHCl}_{3}, 98 \%$ ee); m.p $173.2-176.0{ }^{\circ} \mathrm{C} ; \mathrm{R}_{f}=0.30$ (hexane/ethyl acetate $=50 / 50) ;{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.37(\mathrm{~s}, 3 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 5.16-5.22(\mathrm{dd}, J=$ $9.0,9.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.27(\mathrm{br}, 1 \mathrm{H}), 6.59(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.83-6.85(\mathrm{~m}, 2 \mathrm{H}), 7.04(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.07-$ $7.10(\mathrm{~m}, 1 \mathrm{H}), 7.13-7.19(\mathrm{~m}, 7 \mathrm{H}), 7.30(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.48(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (150 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 24.0,55.3,54.9(\mathrm{~d}, J=161 \mathrm{~Hz}), 113.7(\mathrm{~d}, J=1.5 \mathrm{~Hz}), 118.8,120.4(\mathrm{~d}, J=$ $4.2 \mathrm{~Hz}), 120.7(\mathrm{~d}, J=4.0 \mathrm{~Hz}), 124.4,125.3,125.4,126.1,129.5,129.7(\mathrm{~d}, J=5.2 \mathrm{~Hz}), 137.4,150.0(\mathrm{~d}, J=$ $9.6 \mathrm{~Hz}), 150.1(\mathrm{~d}, J=10 \mathrm{~Hz}), 156.6,159.5 ;{ }^{31} \mathrm{P} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 13.8$; $\operatorname{IR}(\mathrm{KBr}) 3177,1490,1335,1197,957$ $\mathrm{cm}^{-1} ;$ APCIMS $\mathrm{m} / \mathrm{z} 507.1[\mathrm{M}-\mathrm{H}] ;$ HPLC (CHIRALPAK ${ }^{\circledR} \mathrm{IA}$, hexane $/ \mathrm{CHCl}_{3}=50: 50,1.5 \mathrm{ml} / \mathrm{min}$) $t_{R} 6.88$ (minor), $t_{S} 7.79$ (major) min.

(S)-Diphenyl [(6-methyl-2-pyridinesulfonyl)amino-(4-methoxyphenyl)-methyl] phosphonate (4)

The reaction was carried out as described in the typical procedure except for using $\mathbf{1 j}(40.0 \mathrm{mg}, 0.138 \mathrm{mmol})$, (-)-hydroquinine ($4.50 \mathrm{mg}, 0.0138 \mathrm{mmol}$), toluene (1.7 mL), and diphenyl phosphite ($34.4 \mu \mathrm{l}, 0.180 \mathrm{mmol}$). Usual work-up gave the crude product which was purified by column chromatography (silica gel, hexane/ethyl acetate $=50 / 50)$ to give $4(72.4 \mathrm{mg}, 99 \%, 94 \%$ ee $)$ as a white solid. Single recrystallization of 4 (94% ee) afforded 98% ee of 4 .
$[\alpha]_{\mathrm{D}}{ }^{20}+46.8$ (с 1.0, $\mathrm{CHCl}_{3}, 98 \%$ ee); m.p $158.2-160.4{ }^{\circ} \mathrm{C} ; \mathrm{R}_{f}=0.30$ (hexane/ethyl acetate $=50 / 50$); ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.21(\mathrm{~s}, 3 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 5.17-5.23$ (dd, $J=$ $9.6,9.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.30(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.87(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.03(\mathrm{~d}, J=7.8$ $\mathrm{Hz}, 1 \mathrm{H}), 7.07-7.11(\mathrm{~m}, 3 \mathrm{H}), 7.14-7.18(\mathrm{~m}, 5 \mathrm{H}), 7.29(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.46(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{~d}, J=$ $7.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 21.0,23.8,55.3(\mathrm{~d}, J=161 \mathrm{~Hz}), 118.8,120.4(\mathrm{~d}, J=4.2 \mathrm{~Hz})$, $120.7(\mathrm{~d}, J=4.2 \mathrm{~Hz}), 125.2,125.4,125.9,128.2,128.3,128.8(\mathrm{~d}, J=1.8 \mathrm{~Hz}), 129.4,129.5,129.7,137.3$, $138.1(\mathrm{~d}, J=2.9 \mathrm{~Hz}), 149.9(\mathrm{~d}, J=9.8 \mathrm{~Hz}), 150.1(\mathrm{~d}, J=10.0 \mathrm{~Hz}), 156.5,159.5 ;{ }^{31} \mathrm{P}$ NMR (CDCl $\left.{ }^{2}\right) \delta 13.8$; $\operatorname{IR}(\mathrm{KBr}) 3213,1488,1345,1159,943 \mathrm{~cm}^{-1}$; APCIMS m/z $525.3[\mathrm{M}+\mathrm{H}]$; HPLC (CHIRALPAK ${ }^{\circledR}$ IA, hexane $/ \mathrm{CHCl}_{3}=50: 50,1.5 \mathrm{ml} / \mathrm{min}$) $t_{R} 7.99$ (minor), $t_{S} 9.30$ (major) min.

(S)-Diphenyl [(6-methyl-2-pyridinesulfonyl)amino-(2-methoxyphenyl)-methyl] phosphonate (5)

The reaction was carried out as described in the typical procedure except for using $1 \mathbf{k}$ ($40.0 \mathrm{mg}, 0.138 \mathrm{mmol}$), (-)-hydroquinine ($4.5 \mathrm{mg}, 0.0138 \mathrm{mmol}$), toluene (1.7 mL), and diphenyl phosphite ($37.4 \mu \mathrm{l}, 0.200 \mathrm{mmol}$). Usual work-up gave the crude product which was purified by column chromatography (silica gel, hexane/ethyl acetate $=50 / 50)$ to give $5(72.3 \mathrm{mg}, 99 \%, 85 \%$ ee $)$ as a white solid.

Single recrystallization of 5 (85% ee) afforded 96% ee of 5 .
$[\alpha]_{\mathrm{D}}{ }^{24}+41.9\left(c \quad 1.0, \mathrm{CHCl}_{3}, 96 \%\right.$ ee); m.p 88.2-89.5 ${ }^{\circ} \mathrm{C} ; \mathrm{R}_{f}=0.30$ (hexane/ethyl acetate $=50 / 50$); ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.31(\mathrm{~s}, 3 \mathrm{H}), 3.63(\mathrm{~s}, 3 \mathrm{H}), 5.52-5.58(\mathrm{dd}, J=10.8,10.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.45(\mathrm{~d}, J=9.6 \mathrm{~Hz}$, $1 \mathrm{H}), 6.58(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.71(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.87-6.88(\mathrm{~m}, 2 \mathrm{H}), 7.00(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.06-$ $7.10(\mathrm{~m}, 2 \mathrm{H}), 7.14-7.20(\mathrm{~m}, 6 \mathrm{H}), 7.29-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.48(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}){ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 24.0,55.4,110.6,118.9,120.2(\mathrm{~d}, J=4.4 \mathrm{~Hz}), 120.5,120.6(\mathrm{~d}, J=4.2 \mathrm{~Hz})$, $120.8,125.0,125.2,126.1,129.4,129.6,129.8(\mathrm{~d}, J=2.7 \mathrm{~Hz}), 129.9,137.1,150.1(\mathrm{~d}, J=9.5 \mathrm{~Hz}), 150.4(\mathrm{~d}$, $J=9.9 \mathrm{~Hz}), 156.3,156.7(\mathrm{~d}, J=5.7 \mathrm{~Hz}), 159.4 ;{ }^{31} \mathrm{P} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 13.7 ; \operatorname{IR}(\mathrm{KBr}) 3185,1492,1340,1253$, $949,757 \mathrm{~cm}^{-1}$; APCIMS m/z $525.1[\mathrm{M}+\mathrm{H}]$; HPLC (CHIRALPAK ${ }^{\circledR}$ IA, hexane $/ \mathrm{CHCl}_{3}=70: 30,1.0 \mathrm{ml} / \mathrm{min}$) $t_{R} 33.3$ (minor), $t_{S} 34.7$ (major) min.

(R)-Diphenyl [(6-methyl-2-pyridinesulfonyl)amino-(3-methoxyphenyl)-methyl] phosphonate (6)

The reaction was carried out as described in the typical procedure except for using $11(40.0 \mathrm{mg}, 0.138 \mathrm{mmol})$, (-)-hydroquinidine ($4.5 \mathrm{mg}, 0.0138 \mathrm{mmol}$), toluene (1.7 mL), and diphenyl phosphite ($37.4 \mu \mathrm{l}, 0.200 \mathrm{mmol}$). Usual work-up gave the crude product which was purified by column chromatography (silica gel, hexane/ethyl acetate $=50 / 50)$ to give $6(72.3 \mathrm{mg}, 99 \%, 88 \%$ ee $)$ as a white solid. Single recrystallization of $\mathbf{6}(89 \%$ ee) afforded 93% ee of 6 .
$[\alpha]_{\mathrm{D}}{ }^{25}-41.5\left(c 1, \mathrm{CHCl}_{3}, 93 \%\right.$ ee); m.p 137.2-140.4 ${ }^{\circ} \mathrm{C} ; \mathrm{R}_{f}=0.30$ (hexane/ethyl acetate $=50 / 50$); ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.35(\mathrm{~s}, 3 \mathrm{H}), 3.57(\mathrm{~s}, 3 \mathrm{H}), 5.21-5.26(\mathrm{dd}, J=10.2,10.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.48(\mathrm{br}, 1 \mathrm{H}), 6.63(\mathrm{~d}$, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{~s}, 1 \mathrm{H}), 6.80(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.98(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, $7.02(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.07(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.16-7.17(\mathrm{~m}, 5 \mathrm{H}), 7.28-7.31(\mathrm{~m}, 2 \mathrm{H}), 7.45(\mathrm{t}, J=7.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.54(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 24.0,55.0,55.5(\mathrm{~d}, J=160 \mathrm{~Hz}), 113.3(\mathrm{~d}, J=$ $6.3 \mathrm{~Hz}), 114.5,118.8,120.3(\mathrm{~d}, J=4.4 \mathrm{~Hz}), 120.7(\mathrm{~d}, J=4.2 \mathrm{~Hz}), 120.9(\mathrm{~d}, J=6.8 \mathrm{~Hz}), 125.3,125.5,126.1$, $129.2,129.5,129.7,133.7,137.3,150.1(\mathrm{~d}, J=9.8 \mathrm{~Hz}), 150.1(\mathrm{~d}, J=10.5 \mathrm{~Hz}), 156.6,159.4,159.5 ;{ }^{31} \mathrm{P}$ NMR ($\left.\mathrm{CDCl}_{3}\right) \delta 13.4 ; \operatorname{IR}(\mathrm{KBr}) 3213,1591,1490,1257,948,759 \mathrm{~cm}^{-1} ;$ APCIMS m/z $525.1[\mathrm{M}+\mathrm{H}] ;$ HPLC (CHIRALPAK ${ }^{\circledR}$ IA, hexane $/ \mathrm{CHCl}_{3}=50: 50,1.5 \mathrm{ml} / \mathrm{min}$) $t_{R} 6.45$ (major), $t_{S} 7.25$ (minor) min.

(S)-Diphenyl [(6-methyl-2-pyridinesulfonyl)amino-(4-chlorophenyl)-methyl] phosphonate (7)

The reaction was carried out as described in the typical procedure except for using $\mathbf{1 m}(40.0 \mathrm{mg}, 0.136 \mathrm{mmol})$, (-)-hydroquinine ($4.4 \mathrm{mg}, 0.0136 \mathrm{mmol}$), toluene (1.7 mL), and diphenyl phosphite ($34 \mu \mathrm{l}, 0.272 \mathrm{mmol}$). Usual work-up gave the crude product which was purified by column chromatography (silica gel, hexane/ethyl acetate $=50 / 50)$ to give $7(71.9 \mathrm{mg}, 99 \%, 87 \%$ ee $)$ as a white solid. Single recrystallization of $7(87 \%$ ee) afforded 98% ee of 7 .
$[\alpha]_{\mathrm{D}}{ }^{20}+40.3\left(c 1.0, \mathrm{CHCl}_{3}, 98 \%\right.$ ee); m.p 153.3-155.4 ${ }^{\circ} \mathrm{C} ; \mathrm{R}_{f}=0.30$ (hexane/ethyl acetate $=50 / 50) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.35(\mathrm{~s}, 3 \mathrm{H}), 5.24-5.28(\mathrm{dd}, J=10.2,10.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.59(\mathrm{br}$, $1 \mathrm{H}), 6.85-6.87(\mathrm{~m}, 2 \mathrm{H}), 7.04(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.08-7.14(\mathrm{~m}, 4 \mathrm{H}), 7.17-7.20(\mathrm{~m}, 5 \mathrm{H}), 7.25-7.32(\mathrm{~m}, 2 \mathrm{H})$, 7.37-7.54 (m, 2H); ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 24.0,55.0(\mathrm{~d}, J=160 \mathrm{~Hz}), 118.8,120.2(\mathrm{~d}, J=4.4 \mathrm{~Hz})$, $120.6(\mathrm{~d}, J=4.2 \mathrm{~Hz}), 125.5,125.6,126.2,128.3(\mathrm{~d}, J=1.8 \mathrm{~Hz}), 129.7,129.8,129.8,131.3,134.3(\mathrm{~d}, J=3.3$ $\mathrm{Hz}), 137.5,149.8(\mathrm{~d}, J=9.5 \mathrm{~Hz}), 150.0(\mathrm{~d}, J=10.1 \mathrm{~Hz}), 156.5,159.6 ;{ }^{31} \mathrm{P} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 13.0 ; \mathrm{IR}(\mathrm{KBr})$

3220, 1591, 1489, 1338, 1187, 945, $767 \mathrm{~cm}^{-1}$; APCIMS m/z $529.2[\mathrm{M}+\mathrm{H}]$; HPLC (CHIRALPAK ${ }^{\circledR}$ IA, hexane $/ \mathrm{CHCl}_{3}=50: 50,1.5 \mathrm{ml} / \mathrm{min}$) $t_{R} 9.14$ (minor), $t_{S} 10.5$ (major) min.

(R)-Diphenyl [(6-methyl-2-pyridinesulfonyl)amino-(1-naphtyl)-methyl] phosphonate (8)

The reaction was carried out as described in the typical procedure except for using 1n ($40.0 \mathrm{mg}, 0.129 \mathrm{mmol}$), (-)-hydroquinidine ($4.20 \mathrm{mg}, 0.0129 \mathrm{mmol}$), toluene (1.6 mL), and diphenyl phosphite ($32 \mu \mathrm{l}, 0.167 \mathrm{mmol}$). Usual work-up gave the crude product which was purified by column chromatography (silica gel, hexane/ethyl acetate $=50 / 50)$ to give $8(70.2 \mathrm{mg}, 99 \%, 91 \%$ ee) as a white solid. Single recrystallization of 8 (91% ee) afforded 99% ee of 8 .
$[\alpha]_{\mathrm{D}}{ }^{25}-107.1$ (c $0.82, \mathrm{CHCl}_{3}, 99 \%$ ee); m.p 154.9-155.5 ${ }^{\circ} \mathrm{C} ; \mathrm{R}_{f}=0.30$ (hexane/ethyl acetate $=50 / 50$); ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.07(\mathrm{~s}, 3 \mathrm{H}), 6.09-6.14(\mathrm{~m}, 1 \mathrm{H}), 6.33(\mathrm{br}, 1 \mathrm{H}), 6.60-6.61(\mathrm{~m}, 2 \mathrm{H}), 6.73(\mathrm{~d}, \mathrm{~J}=$ $7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.09(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.18-7.23(\mathrm{~m}, 2 \mathrm{H})$, 7.26-7.28 (m, 3H), 7.34-7.37 (m, 2H), 7.42-7.45 (m, 1H), 7.49-7.51 (m, 1H), 7.58-7.59 (m, 2H), 7.69 (d, $J=$ $8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.06(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 24.1,51.1(\mathrm{~d}, J=171 \mathrm{~Hz}), 118.9,120.2(\mathrm{~d}, J=$ $4.4 \mathrm{~Hz}), 120.1(\mathrm{~d}, J=4.4 \mathrm{~Hz}), 123.2,125.0(\mathrm{~d}, J=3.2 \mathrm{~Hz}), 125.3,125.7,126.1,127.0,128.7,129.2,129.5$, $130.0,131.1(\mathrm{~d}, J=7.1 \mathrm{~Hz}), 133,136.8,150.0(\mathrm{~d}, J=9.6 \mathrm{~Hz}), 150.4(\mathrm{~d}, J=10.0 \mathrm{~Hz}), 156.2,159.3 ;{ }^{31} \mathrm{P}$ NMR (CDCl_{3}) $\delta 13.7 ; \operatorname{IR}(\mathrm{KBr}) 3172,1590,1489,1337,1183,949,775 \mathrm{~cm}^{-1} ;$ APCIMS m/z $545.1[\mathrm{M}+\mathrm{H}] ;$ HPLC (CHIRALPAK ${ }^{\circledR}$ IA, hexane $/ \mathrm{CHCl}_{3}=50: 50,1.5 \mathrm{ml} / \mathrm{min}$) $t_{R} 7.39$ (major), $t_{S} 9.14$ (minor) min.

(R)-Diphenyl [(6-methyl-2-pyridinesulfonyl)amino-(2-naphtyl)-methyl] phosphonate (9)

The reaction was carried out as described in the typical procedure except for using $10(40.0 \mathrm{mg}, 0.129 \mathrm{mmol})$, (-)-hydroquinidine ($4.20 \mathrm{mg}, 0.0129 \mathrm{mmol}$), toluene (1.6 mL), and diphenyl phosphite ($32 \mu \mathrm{l}, 0.167 \mathrm{mmol}$). Usual work-up gave the crude product which was purified by column chromatography (silica gel, hexane/ethyl acetate $=50 / 50)$ to give $9(70.2 \mathrm{mg}, 99 \%, 92 \%$ ee $)$ as a white solid. Single recrystallization of $\mathbf{9}(92 \%$ ee) afforded 96% ee of $\mathbf{9}$.
$[\alpha]_{\mathrm{D}}{ }^{24}-44.7$ (c 0.94, $\mathrm{CHCl}_{3}, ~ 96 \%$ ee); m.p 151.2-153.4 ${ }^{\circ} \mathrm{C} ; \mathrm{R}_{f}=0.30$ (hexane/ethyl acetate $=50 / 50) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 2.09(\mathrm{~s}, 3 \mathrm{H}), 5.39-5.45(\mathrm{dd}, J=10.2,10.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.59$ (br, 1H), $6.68(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{~d}, ~ J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.02-7.05(\mathrm{~m}, 1 \mathrm{H}), 7.10-7.13(\mathrm{~m}, 2 \mathrm{H}), 7.15-7.22$ (m, 4H), 7.25-7.30 (m, 2H), 7.36-7.38 (m, 2H), 7.42-7.47 (m, 2H), 7.52-7.54 (m, 2H), 7.64-7.72 (m, 2H); ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 23.6,55.7(\mathrm{~d}, J=160 \mathrm{~Hz}$), 118.8, $120.3(\mathrm{~d}, J=4.2 \mathrm{~Hz}), 120.7(\mathrm{~d}, J=4.2 \mathrm{~Hz})$, $125.3,125.5,125.9,126.2,126.5,127.3,127.9,128.2,128.2,129.5,129.7$ (d, $J=7.7 \mathrm{~Hz}$), 132.7, 132.8 , 137.0, $149.9(\mathrm{~d}, J=9.5 \mathrm{~Hz}), 150.2(\mathrm{~d}, J=9.8 \mathrm{~Hz}), 156.4,159.4 ;{ }^{31} \mathrm{P} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 13.6 ; \operatorname{IR}(\mathrm{KBr}) 3219$, 1592, 1489, 1334, 1213, $943,778 \mathrm{~cm}^{-1}$; APCIMS m/z $545.4[\mathrm{M}+\mathrm{H}] ;$ HPLC (CHIRALPAK ${ }^{\circledR}$ IA, hexane $/ \mathrm{CHCl}_{3}=50: 50,1.5 \mathrm{ml} / \mathrm{min}$) $t_{R} 7.75$ (major), $t_{S} 9.28$ (minor) min.

(R)-Diphenyl [(6-methyl-2-pyridinesulfonyl)amino-(3-phenylpropenylidene)-methyl] phosphonate (10)

The reaction was carried out as described in the typical procedure except for using 1p ($40.0 \mathrm{mg}, 0.140 \mathrm{mmol}$), (-)-hydroquinine ($4.5 \mathrm{mg}, 0.0140 \mathrm{mmol}$), toluene (1.8 mL), and diphenyl phosphite ($34 \mu \mathrm{l}, 0.182 \mathrm{mmol}$). Usual work-up gave the crude product which was purified by column chromatography (silica gel, hexane/ethyl acetate $=50 / 50)$ to give $10(72.8 \mathrm{mg}, 99 \%, 85 \% \mathrm{ee})$ as a white solid. Single recrystallization of $\mathbf{1 0}$ (85% ee) afforded 92% ee of $\mathbf{1 0}$.
$[\alpha]_{\mathrm{D}}{ }^{24}+3.4\left(c \quad 1, \mathrm{CHCl}_{3}, 92 \%\right.$ ee); m.p $177.0-178.8{ }^{\circ} \mathrm{C} ; \mathrm{R}_{f}=0.30$ (hexane/ethyl acetate $\left.=60 / 40\right) ;{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.46(\mathrm{~s}, 3 \mathrm{H}), 4.89-4.96(\mathrm{~m}, 1 \mathrm{H}), 5.94-5.99(\mathrm{~m}, 1 \mathrm{H}), 6.02(\mathrm{br}, 1 \mathrm{H}), 6.43(\mathrm{dd}, J=3.6,3.6$ $\mathrm{Hz}, 2 \mathrm{H}), 7.04-7.06(\mathrm{~m}, 3 \mathrm{H}), 7.12-7.18(\mathrm{~m}, 6 \mathrm{H}), 7.21-7.22(\mathrm{~m}, 3 \mathrm{H}), 7.24-7.30(\mathrm{~m}, 4 \mathrm{H}), 7.54(\mathrm{t}, J=7.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.73(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 24.2,54.1(\mathrm{~d}, J=162 \mathrm{~Hz}), 119.0,119.7(\mathrm{~d}, J$ $=2.4 \mathrm{~Hz}), 120.6(\mathrm{~d}, J=4.2 \mathrm{~Hz}), 120.7(\mathrm{~d}, J=2.7 \mathrm{~Hz}), 125.5(\mathrm{~d}, J=6.2 \mathrm{~Hz}), 126.5,126.6,128.4(\mathrm{~d}, J=5.3$ $\mathrm{Hz}), 129.8,135.3,135.4,135.5,137.7,150.0(\mathrm{~d}, J=9.5 \mathrm{~Hz}), 150.1(\mathrm{~d}, J=9.0 \mathrm{~Hz}), 156.9,160.0 ;{ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 13.5 ; \operatorname{IR}(\mathrm{KBr}) 3164,1590,1491,1333,1186,962,689 \mathrm{~cm}^{-1}$; APCIMS m/z $521.2[\mathrm{M}+\mathrm{H}] ;$ HPLC (CHIRALPAK ${ }^{\circledR}$ IA, hexane $/ \mathrm{CHCl}_{3}=50: 50,1.5 \mathrm{ml} / \mathrm{min}$) $t_{R} 6.57$ (minor), $t_{s} 7.74$ (major) min.

(S)-Diphenyl 1-amino-1-phenylmethylphosphonate (11)

A mixture of Mg powder ($221 \mathrm{mg}, 9.10 \mathrm{mmol}$), acetic acid (1.7 mL), and sodium acetate $(1.2 \mathrm{~g}, 14.3 \mathrm{mmol})$ in DMF $(4.0 \mathrm{~mL})$ was stirred for 10 min at $0^{\circ} \mathrm{C}$. Then, $(S)-2 \mathrm{i}(300 \mathrm{mg}$, 0.607 mmol) was added and the reaction mixture was stirred for 6 h at $0{ }^{\circ} \mathrm{C}$. After the addition of water, the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$ and the combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure to leave a oil which was purified by column chromatography (benzene/ethyl acetate $=75 / 25)$ to give $(S)-11(177 \mathrm{mg}, 86 \%, 99 \%$ ee $)$ as a oil.
$[\alpha]_{\mathrm{D}}{ }^{24}-9.1$ (c 0.9, $\mathrm{CHCl}_{3}, 99 \%$ ee); $\mathrm{R}_{f}=0.35$ (benzene/ethyl acetate $=75 / 25$); ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.31(\mathrm{br}, 2 \mathrm{H}), 4.65(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.91-6.93(\mathrm{~m}, 2 \mathrm{H}), 7.06-7.23(\mathrm{~m}, 6 \mathrm{H}), 7.26-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.32-$ $7.39(\mathrm{~m}, 3 \mathrm{H}), 7.54-7.56(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 54.3(\mathrm{~d}, J=150 \mathrm{~Hz}), 120.3(\mathrm{~d}, J=4.1 \mathrm{~Hz})$, $120.5(\mathrm{~d}, \mathrm{~J}=4.1 \mathrm{~Hz}), 125.0,125.1,128.0,128.1,128.2,128.3,128.6,128.7,129.5,129.6 ;{ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 19.3 ; \operatorname{IR}(\mathrm{KBr}) 1590,1487,1188,935 \mathrm{~cm}^{-1}$; ESIMS m$/ \mathrm{z} 362.1[\mathrm{M}+\mathrm{Na}] ;$ HPLC (CHIRALCEL ${ }^{\circledR}$ OJ-H, hexane $/{ }^{i} \mathrm{PrOH}=80: 20,0.5 \mathrm{ml} / \mathrm{min}$) $t_{R} 16.6$ (minor), $t_{S} 17.3$ (major) min.

(S)-Amino(phenyl)methylphosponic acid (12)

A mixture of $(S) \mathbf{- 1 1}(100 \mathrm{mg}, 0.29 \mathrm{mmol}), \mathrm{AcOH}(4 \mathrm{ml})$ and 40% aqueous $\mathrm{HBr}(7.5 \mathrm{ml})$ was refluxed at $120^{\circ} \mathrm{C}$ for 3 h , which was followed by removal of the low-boiling fraction under high vacuum for 3 h . The residue was dissolved in a minimum amount of hot EtOH (2 $\mathrm{ml})$. The solvent was cooled to room temperature, excess propylene oxide (1 ml) was then introduced, and the mixture was stirred for 3 h . The white solid was collected by filtration to afford (S)-12.
$[\alpha]_{\mathrm{D}}{ }^{21}-14.0\left(c 0.15,1.0 \mathrm{~N} \mathrm{NaOH}, 99 \%\right.$ ee); m.p 279.0-283.5 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($\left.600 \mathrm{MHz}, 0.5 \mathrm{~mol} / \mathrm{L} \mathrm{D}_{2} \mathrm{O}\right) \delta$ $3.67(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.14-7.17(\mathrm{~m}, 1 \mathrm{H}), 7.23-7.28(\mathrm{~m}, 4 \mathrm{H}){ }^{13} \mathrm{C}$ NMR ($\left.150 \mathrm{MHz}, 0.5 \mathrm{~mol} / \mathrm{L} \mathrm{D}_{2} \mathrm{O}\right) \delta$ $56.0(\mathrm{~d}, J=131 \mathrm{~Hz}), 126.6,128.0,128.4,145.5 ;{ }^{31} \mathrm{P}$ NMR ($0.5 \mathrm{~mol} / \mathrm{L} \mathrm{D}_{2} \mathrm{O}$) $\delta 19.6 ; \operatorname{IR}(\mathrm{KBr}) 3225,3000$, 2920, 1600, 1527, 1261, 1181, 1063, $915 \mathrm{~cm}^{-1}$; ESI-MS m/z 186.1 [M+Na].

Procedure for Preparation of N -Cbz dimethyl phosphonate derivative for \%ee determination by chiral HPLC.

A 4 mL glass vial was charged with $12(22.6 \mathrm{~g}, 0.128 \mathrm{mmol})$ and a magnetic stir bar. Water $(0.60 \mathrm{~mL})$ and dioxane $(0.60 \mathrm{~mL})$ were added. Triethylamine ($168 \mu \mathrm{~L}, 1.28$ mmol, 10 equiv.) was added and the stirring solution became homogeneous. Finally, benzyl chloroformate ($86 \mu \mathrm{~L}, 0.604 \mathrm{mmol}, 5$ equiv.) was added dropwise. After 16 h , the reaction mixture was transferred to a 30 mL separator funnel with a saturated aqueous solution of sodium carbonate (6 mL , to litmus blue) and washed with diethyl ether ($2 \times 7 \mathrm{~mL}$). The aqueous solution was acidified to $\mathrm{pH}<1$ (litmus red) by the dropwise addition of a concentrated solution of hydrochloric acid. The phosphonic acid precipitated out of solution and was extracted into ethyl acetate ($3 \times 7 \mathrm{~mL}$). The combined ethyl acetate solution was dried over sodium sulfate, filtered, and concentrated in vacuo to yield crude ($39.4 \mathrm{mg}, 96 \%$) as a white solid. This crude material was transferred to a 4 mL glass vial equipped with a magnetic stir bar, septum cap and nitrogen line. Methanol (1.1 mL) and dichloromethane (0.20 mL) were added. A 2.0 M solution of (trimethylsilyl)diazomethane in hexanes ($0.34 \mathrm{~mL}, 0.68 \mathrm{mmol}, 6$ equiv.) was added dropwise over 30 seconds. After 30 minutes, the reaction was concentrated in vacuo. The crude residue was purified by flash chromatography on silica gel (25:75 hexanes:ethyl acetate) to provide N -Cbz dimethyl phosphonate derivative of $12(16.1 \mathrm{mg}, 36 \%$ from 12$)$ as a white solid which was used directly for $\%$ ee determination by chiral HPLC. HPLC (CHIRALCEL ${ }^{\circledR} \mathrm{OD}-\mathrm{H}$, hexane $/{ }^{i} \mathrm{PrOH}=95: 5,0.5 \mathrm{ml} / \mathrm{min}$) t_{R} 15 (minor), $t_{S} 17$ (major) min.

Current Data Parameters NAME $\quad \mathrm{NH}-6-\mathrm{MePy}-\mathrm{Ph}-1 \mathrm{H}-1$ EXPNO

E2 - Acquisition Parameters
Date \quad Parame
Time- $\quad 14.33$ INSTRIM 14.33 PROBHD 5 mm BBO BB-1H

PULPROG	$2 g 30$
TD	65536

TD $\quad 65536$

NS DS SWH EIDRES
AQ
$R G$
$D W$
$D E$
$T E$
$D I$
DD

MeOH
22
8389.262 Hz 0.128010 Hz 3.9060552 sec
406.4
59.600 usec 6.00 usec 297.2 K 1.00000000 sec ======== CHANNEI

NUCI CHANNE
$=-\pi$
P1 11.00 usec

PFO1 600.133600 dB
F2 - Processing parameters SI 65536
600.1300076 MHz

EM
0
0.10 Hz

0
1.00

$0 y_{\mathrm{m}}$

$1 i$

1p

(

2h

current Data Parameters NAME NH-2-Qu-PO(OEt) $2-$ EXPNO PROCNO 1

E2 - Acquisition Parameters	
Date	20071126
Time	19.16
INSTRUM	drx600
PROBHD	5 mm BBO $\mathrm{BB}-1 \mathrm{H}$
PULPROG	$2 g 30$
TD	65536
SOLVENT	CDC13
NS	95
DS	4
SWH	8389.262 Hz
EIDRES	0.128010 Hz
AQ	3.9060552 sec
RG	724.1
DW	59.600 usec
DE	6.00 usec
TE	297.2 K
D1	1.00000000 sec
TDO	1

NUC1 1 H
$21 \quad 11.00$ usec
SEO1 600.133600 B MHz

E2 - Processing parameters $\begin{array}{ll}\text { SI } & 65536 \\ \text { SE } & 600.1300084 \mathrm{MHz}\end{array}$ WDW EM SSB GB

240	220	200	180	160	140	120	100	80	60	40	20

3

Current Data Parameters NAME NH-pMe-po(OPh) 2-C13 EXPNO EROCNO 1

E2 - Acquisition Parameters Time $\quad 1 \quad 16.42$ INSTRUM drx600 PROBHD 5 mm EBO $\mathrm{BB}-1 \mathrm{H}$ TD $\begin{array}{lr}\text { NS } & \text { CDCl } \\ \text { DS } & 453 \\ \text { SWH } & 4\end{array}$ $\begin{array}{lr}\text { FIDRES } & 0.346791 \mathrm{~Hz} \\ \text { AQ } & 1.4418530 \mathrm{se}\end{array}$ $\begin{array}{rr}\text { AQ } & 1.4418530 \\ \text { RG } & 3251 \\ \text { DW } & 11.000 \text { usec } \\ \text { DE } & 6.00 \text { usec } \\ \text { TE } & 297.3 \mathrm{~K}\end{array}$ 297.3 K
0.03000000 sec 0.50000000 sec TDO 0.5000000

$$
\quad 8.20 \mathrm{AB}
$$

$$
150.92236 .54 \mathrm{~dB}
$$

RURER

 Lobalailuasian

Current Data Parameters NAME $\mathrm{NH}-\mathrm{OOMe-PO}(\mathrm{OPh}) 2-\mathrm{H1}$ EXPNO

22 - Acquisition Parameters
E2 - Acquisition Parame
pate - 20071126
Time 17.36
PROBHD 5 mm BBO EB-1H

PROBHD
TD
SOLVENT
SOLV
NS
DS
FIDRES
AQ
DW
DE
TE
D1

$=======$ CHANNEL $\mathrm{f} 1 \mathrm{c}======$	
NUC1	1 H
P1	11.00 usec
PL1	-4.00 dB
SEOI	600.1336008 MHz

F2 - Processing parameters
SF $\quad 600.1300089 \mathrm{MHz}$
WDW EM

SSB
GB
.10
1.00

Current Data Parameters NH-pCl-PO(OPh)2-H EXPNO PROCNO

E2 - Acquisition Parameters	
Date_	20071126
Time	17.58
INSTRUM	drx600
PROBHD	5 mm BBO $\mathrm{BB}-1 \mathrm{H}$
PULPROG	2930
TD	65536
SOLVENT	CDC13
NS	23
DS	4
SWH	8389.262 Hz
FIDRES	0.128010
AQ	3.9060552
RG	256
DWec	
DE	59.600 usec
DE	6.00 usec
TE	297.1 K
D1	1.0000000 sec
TDO	1

$========$ CHANNEL $\mathrm{fl}========$	
NUC1	1 H
P1	11.00 usec
PL1	-4.00 dB
SFO1	600.1336008 MHz
F2 - Processing parameters	
SI	65536
SF	600.1300098 MHz
WDW	EM
SSB	0
LB	0.10 Hz
GB	0
PC	1.00

rex

current Data Parameters

F2 - Acquisition Parameters
Date 20071219

Time-
INSTRUM
INSTRUM PROBHD TD
SOLVENT
SOL
NS

DS
WH
IDR
AQ
RG
RG
DW
DE
E
TDO
$====$
NUC1
P1
PL1
SEOI
S2 -
SI
SF
WDW
SSB
LB
GB
PC

$=====m=m$	CHANNEL $\mathrm{fl}=======$
NUC1	1 H
P1	11.00 usec
PL1	-4.00 dB
SEOl	600.1336008 MHz
E2 - Processing parameters	
SI	65536
SE	600.1300102 MHz
WDW	EM
SSB	0
LB	0.10 Hz
GB	0
PC	1.00

drx600
mm BBO BB-1H
$2 g 30$
65536
65536
DC13
8389.262 Hz 0.128010 Hz 0.128010 Hz
406.4
59.600 usec 6.00 used 297.3 K

1. $00000000=0$
$1.000000{ }_{1}$
1H
1.00 usec
0.10 Hz
1.00

Current Data Parameters	
NAME	NH-1299-1-Naph-C
EXPNO	10
PROCNO	1
E2 - Acquisition Parameters	
Date_	20071219
Time	12.42
INSTRUM	drx600
PROBHD	5 mm BBO $\mathrm{BB}-1 \mathrm{H}$
PULPROG	zgpg 30
TD	131072
SOLVENT	CDC13
NS	506
DS	4
SWH	45454.547 Hz
FIDRES	0.346791 Hz
AQ	1.4418530 sec
RG	4096
DW	11.000 usec
DE	6.00 usec
TE	297.5 K
D1	0.60000002 sec
d11	0.03000000 sec
DELTA	0.50000000 sec
TDO	1
======== CHANNEL $\mathrm{f1}========$	
NUC1	13C
P1	8.20 usec
PLI	4.50 dB
SFOI	150.9223664 MHz
m=n=-=** CHANNEL f2 ======-=	
CPDPRG2	waltz16
NUC2	1H
PCPD2	82.00 usec
PL2	-4.00 dB
PL12	15.00 dB
PL13	15.00 dB
SFO2	600.1324005 MHz
F2 - Processing parameters	
SI	131072
SF $\quad 150.9028110 \mathrm{MHz}$	
WDW EM	
SSB	
LB $\quad 1.00 \mathrm{~Hz}$	
GB	
PC	1.40

inilit $1 / 17$

Current Data Parameters NAME NH-2-Naph-PO (OPh) 2-C EXPNO 10
1
F2 - Acquisition Parameter
Date 20071126

- 18.26 INSTRUM drx600
PROBHD 5 mm BBO BB-1H PULPROG TD SOLVENT SNS
DS
DS
SWH
FIDRES
AQ
RG
DW
DE
TE TDO

$=======$	
NUC1	CHANNEL $f 1=======$
P1	$1 H$
PLI	11.00 usec
SFO1	-4.00 dB
SOM	

E2 - Processing parameters
$\begin{array}{ll}\text { SI } & 65536 \\ \text { SF } & 600.1300131 \mathrm{MHz}\end{array}$
NDW
.10 Hz
0
0

Current Data Parameters NAME $\quad \mathrm{NH}-1298$ ($\mathrm{NH} 2 \mathrm{PO}(\mathrm{OH}) 2$ EXPNO
PROCNO

F2 - Acquisition Parameters
20071219

Time
INSTRUM PROBHD PULPROG TD NS SWH EIDRES FID
AQ RG DW
DE
TE TE D1
TDO

5 mm .
drx600 $2 g 30$
65536 65536
CDC13
17
8389.262 H
0.128010 H
3.9060552 sec

256
59.600 usec 6.00 use
297.2 K
1.00000000 sec

mom==== CHANNEL $f 1========$	
NUC1	1 H
P1	11.00 usec
PL1	-4.00 dB

SEO1 $\quad 600.1336008 \mathrm{MHz}$

E2 - Processing parameters 65536
600.1300123 MHz

EM
0.10 Hz

0
1.00

11

$\mathrm{P}_{\mathrm{O}}^{-\mathrm{OH}}$

12

Current Data Parameters NAME $\mathrm{NH}-\mathrm{NH} 2-\mathrm{PO}(\mathrm{OH})$ $\begin{array}{lr}\text { EXPNO } & 10 \\ \text { PROCNO } & 1\end{array}$

PL1 $\quad 4.50 \mathrm{~dB}$
-======= CHANNET $f 2$ - ======
 CPDPRG2
NUC2
PCPD2
PL2
PL12
$\begin{array}{cccccccccc}1 \\ 180 & 160 & 140 & 120 & 100 & 80 & 60 & 40 & 20 & 0\end{array}$
1 SEO2
$\begin{array}{lr}\text { E2 - Processing parameters } \\ \text { SI } & 131072 \\ \text { SE } & 150.9027490 \mathrm{MHz} \\ \text { WDW } & \text { EM } \\ \text { SSB } & 0 \\ \text { LB } & 1.00 \mathrm{~Hz} \\ \text { GB } & 0 \\ \text { PC } & 1.40\end{array}$

