

Supporting Information

© Copyright Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2008

Supporting Information

Organocatalytic Enantioselective Hydrophosphonylation of Sulfonylimines Having Heteroarylsulfonyl Group as a Novel Stereocontroller

Shuichi Nakamura, * Hiroki Nakashima, Akiko Yamamura, Norio Shibata and Takeshi Toru*

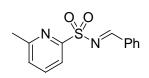
Department of Applied Chemistry, Graduate School of Engineering,

Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan

Table S1. Enantioselective Addition of phosphites to aldimine 1g using various cinchona alkaloids.

6-Me-2-I	PySO ₂ Ó ∭ <u>H−</u> P	st (10 mol%) (OPh) ₂ (1.5 ec ene, –40 °C, 1	uiv.)	O ₂ NH PO(OPh) ₂ H ★ Ph 2j
run	catalyst	Yiled (%)	Ee (%)	
1	Quinine	>99	92 (<i>S</i>)	
2	Quinidine	>99	88 (R)	
3	Cinconine	97	58 (S)	
4	Cinconidine	97	58 (R)	
5	Hydroquinine	>99	91 (<i>S</i>)	
6	Hydroquinidine	>99	92 (<i>R</i>)	
7	(DHQD) ₂ PYR	98	40 (<i>S</i>)	

2-PySO _{2`N} H Ph 1f		quinine (10 mol%) O $H-P(OR)_2$ toluene, temp, 24 h		ArSO ₂ NH PO(OR) ₂ H * Ph		
run	Imine	R	Temp	Yield	Ee (%)	
			(°C)	(%)		
1	1f	Et	rt	98	70 (<i>S</i>)	
2	1f	Et ^a	rt	90	0	
3	1f	Me	rt	89	60	
4	1f	<i>i</i> -Pr	rt	trace	-	
5 ^b	1f	Ph	rt	94	61	
6	1f	Et	-40	trace	-	
7^{b}	1f	Ph	-40	93	83 (<i>S</i>)	

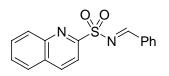

Table S2. Enantioselective hydrophosphonilation to Aldimines 1f using quinine.

^aTMSOP(OEt)₂ was used as a phosphite. ^b 60 min.

General. All reactions were performed in oven-dried glassware under a positive pressure of nitrogen. Solvents were transferred via syringe and were introduced into the reaction vessels though a rubber septum. All of the reactions were monitored by thin-layer chromatography (TLC) carried out on 0.25 mm Merck silicagel (60-F254). The TLC plates were visualized with UV light and 7% phosphomolybdic acid or p-anisaldehyde in ethanol/ heat. Column chromatography was carried out on a column packed with silicagel 60N spherical neutral size 63-210 μ m. The ¹H-NMR (200 or 600 MHz), ¹⁹F-NMR (188 MHz), and ¹³C-NMR (50.3 or150 MHz), ³¹P NMR (80.9 MHz) spectra for solution in CDCl₃, were recorded on a Varian Gemini-200 or Bruker AVANCE600. Chemical shifts (δ) are expressed in ppm downfield from internal TMS or CHCl₃. HPLC analyses were performed on a JASCO PU-2080 Plus or SHIMADZU LC-2010A HT using 4.6 x 250 mm CHIRALCEL OJ-H, CHIRALCEL IC column. Mass spectra were recorded on a SHIMADZU GCMS-QP5050A. APCI Mass spectra were recorded on a SHIMADZU LCMS-2050EV. Optical rotations were measured on a HORIBA SEPA-300. Infrared spectra were recorded on a JASCO FT/IR-200 spectrometer.

The known compounds 1a-e were prepared using same procedure for the preparation of 1f.

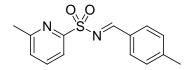
Typical Procedure for Preparation of *N***-Benzylidene-(6-methyl-2-pyridine)sulfonamide (1g)**:



A solution of 6-methyl-2-pyridinesulfonamide (500 mg, 2.90 mmo) in THF (10 mL) was added benzaldehyde (0.32 mL, 3.20 mmol)), triethylamine (1.20 mL, 8.70 mmol) and titanium(IV) chloride (2.90 mL, 2.90 mmol, 1.00 mol L^{-1} in CH₂Cl₂) at 0 °C, and the mixture was stirred for 2 h. The mixture was filtered through Celite[®] and washed with CH₂Cl₂. The combined organic solution was extracted with CH₂Cl₂, washed

saturated aqueous NH₄Cl and dried over Na₂SO₄, and concentrated under reduced pressure to leave a residue which was recrystallized with hexane/ethyl acetate to afford 1g (683 mg, 90%):

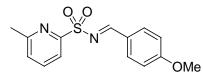
m.p. 118.8-122.6 °C; $R_f = 0.35$ (hexane/ethyl acetate = 60:40); ¹H NMR (600 MHz, CDCl₃) δ 2.61 (s, 3H), 7.37 (d, J = 7.8 Hz, 1H), 7.51 (t, J = 7.8 Hz, 2H), 7.65 (t, J = 7.2 Hz, 1H), 7.83 (t, J = 7.8 Hz, 1H), 7.99 (d, J = 7.2 Hz, 1H), 8.05 (d, J = 7.8 Hz, 1H), 9.25 (s, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 24.4, 120.5, 127.2, 129.2, 131.6, 132.4, 135.2, 137.9, 155.0, 160.3, 174.0; IR (KBr) 1606, 1324, 1123, 789, 637 cm^{-1;} APCIMS m/z 251.3 [M+H]; Anal. Calcd for C₁₃H₁₂N₂O₂S: C, 59.98; H, 4.65; N, 10.76. Found: C, 59.94; H, 4.81; N, 10.74.


N-Benzylidene-2-quinolinesulfonamide (1h)

The reaction was carried out as described in the typical procedure except for using 2-quinolinesulfonamide (500 mg, 2.40 mmol), benzaldehyde (0.26 mL, 2.64 mmol), triethylamine (1.00 mL, 7.20 mmol), and titanium(IV) chloride (1.00 mol L^{-1} in CH₂Cl₂, 2.40 mL, 2.40 mmol). Usual work-up gave the crude product which was recrystallized from hexane/ethyl acetate to afford **1h** (345 mg, 49%);

m.p. 147.2-150.8 °C; $R_f = 0.35$ (hexane/ethyl acetate = 60:40); ¹H NMR (200 MHz, CDCl₃) δ 7.44-7.51 (m, 2H), 7.59-7.99 (m, 6H), 8.23 (t, J = 8.4 Hz, 1H), 8.42 (d, J = 8.4 Hz, 1H), 9.31 (s, 1H); ¹³C NMR (50.3 MHz, CDCl₃) δ 118.6, 127.5, 128.9, 129.0, 129.1, 130.1, 130.8, 131.4, 132.1, 135.1, 138.5, 147.1, 154.8, 173.6 IR (KBr) 1605, 1564, 1329, 1174, 1130, 1095, 793 cm⁻¹; APCIMS m/z 297.1 [M+H]; Anal. Calcd for C₁₆H₁₂N₂O₂S: C, 64.85; H, 4.08; N, 9.45. Found: C, 65.09; H, 4.09; N, 9.33.

N-[(4-Methylphenyl)methylidene]-(6-methyl-2-pyridinesulfonamide) (1i)

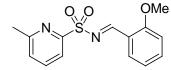


The reaction was carried out as described in the typical procedure except for using 6-methyl-2-pyridinesulfonamide (350 mg, 2.03 mmol), *p*-tolualdehyde (0.26 mL, 2.23 mmol), triethylamine (0.85 mL, 6.09 mmol), and titanium(IV) chloride (1.00 mol L⁻¹ in CH₂Cl₂, 2.03 mL, 2.03 mmol). Usual work-up gave

the crude product which was recrystallized from hexane/ethyl acetate to afford **1i** (460 mg, 83%);

mp 147.2-148.5 °C; $R_f = 0.30$ (hexane/ethyl acetate = 60:40); ¹H NMR (200 MHz, CDCl₃) δ 9.18 (s, 1H), 8.03 (d, J = 7.6 Hz, 1H), 7.77-7.87 (m, 3H), 7.28-7.37 (m, 3H), 2.60 (s, 3H), 2.44 (s, 3H); ¹³C NMR (50.3 MHz, CDCl₃) δ 22.2, 24.5, 120.2, 127.0, 129.6, 129.7, 131.5, 137.7, 146.5, 154.8, 159.9, 173.3 ; IR (KBr) 1596, 1562, 1455, 1324, 1175, 1122, 811, 763 cm⁻¹; APCIMS m/z 275.2 [M+H]; Anal. Calcd for C₁₄H₁₄N₂O₂S: C, 61.29; H, 5.14; N, 10.21. Found: C, 61.32; H, 5.19; N, 10.19.

N-[(4-Methoxyphenyl)methylidene]-(6-methyl-2-pyridinesulfonamide) (1j)

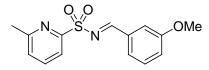


The reaction was carried out as described in the typical procedure except for using 6-methyl-2-pyridinesulfonamide (350 mg, 2.03 mmol), *p*-anisaldehyde (0.27 mL, 2.23 mmol), triethylamine (0.85 mL, 6.09 mmol), and titanium(IV) chloride (1.00 mol L⁻¹ in CH₂Cl₂, 2.03 mL, 2.03 mmol).

Usual work-up gave the crude product which was recrystallized from hexane/ethyl acetate to afford **1j** (478 mg, 81%);

mp 153.0-154.2 °C; $R_f = 0.35$ (hexane/ethyl acetate = 60:40); ¹H NMR (200 MHz, CDCl₃) δ 9.12 (s, 1H), 8.01 (d, J = 7.6 Hz, 1H), 7.92 (d, J = 8.8 Hz, 2H), 7.80 (dd, J = 7.6, 8.0 Hz, 1H), 7.34 (d, J = 8.0 Hz, 1H), 6.97 (d, J = 8.8 Hz, 2H), 3.89 (s, 3H), 2.60 (s, 3H); ¹³C NMR (50.3 MHz, CDCl₃) δ 24.5, 55.7, 114.5, 120.0, 125.0, 126.8, 133.8, 137.6, 155.1, 159.8, 165.2, 172.4; IR (KBr) 1590, 1551, 1317, 1172, 1110, 811, 614 cm⁻¹; APCIMS m/z 291.7 [M+H]; Anal. Calcd for C₁₄H₁₄N₂O₃S: C, 57.92; H, 4.86; N, 9.65. Found: C, 58.04; H, 4.89; N, 9.59.

N-[(2-Methoxyphenyl)methylidene]-(6-methyl-2-pyridinesulfonamide) (1k)

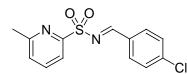


The reaction was carried out as described in the typical procedure except for using 6-methyl-2-pyridinesulfonamide (300 mg, 1.74 mmol), *o*-anisaldehyde (260 mg, 1.91 mmol), triethylamine (0.73 mL, 5.23 mmol), and titanium(IV) chloride (1.00 mol L⁻¹ in CH₂Cl₂, 1.74 mL, 1.74 mmol). Usual work-up gave the

crude product which was recrystallized from hexane/ethyl acetate to afford 1k (341 mg, 67%);

mp 129.9-131-9 °C; $R_f = 0.35$ (hexane/ethyl acetate = 60:40); ¹H NMR (200 MHz, CDCl₃) δ 9.70 (s, 1H), 7.99-8.08 (m, 2H), 7.80 (t, J = 7.8 Hz, 1H), 7.53-7.62 (m, 1H), 7.34 (d, J = 7.6 Hz, 1H), 6.93-7.00 (m, 2H), 3.93 (s, 3H), 2.61 (s, 3H); ¹³C NMR (50.3 MHz, CDCl₃) δ 24.5, 55.8, 111.4, 120.1, 120.6, 120.7, 126.8, 129.2, 137.1, 137.6, 155.0, 159.8, 161.6, 169.4; IR (KBr) 1594, 1565, 1324, 1257, 1150, 1121, 818, 768 cm⁻¹; APCIMS m/z 291.2 [M+H]; Anal. Calcd for C₁₄H₁₄N₂O₃S: C, 57.92; H, 4.86; N, 9.65. Found: C, 57.65; H, 5.02; N, 9.52.

N-[(3-Methoxyphenyl)methylidene]-(6-methyl-2-pyridinesulfonamide) (11)

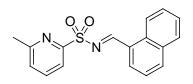


The reaction was carried out as described in the typical procedure except for using 6-methyl-2-pyridinesulfonamide (300 mg, 1.74 mmol), *m*-anisaldehyde (0.23 mL, 1.91 mmol), triethylamine (0.73 mL, 5.23 mmol), and titanium(IV) chloride (1.00 mol L⁻¹ in CH₂Cl₂, 1.74 mL, 1.74 mmol).

Usual work-up gave the crude product which was recrystallized from hexane/ethyl acetate to afford **1l** (359 mg, 71%);

mp 98.0-99.7 °C; $R_f = 0.30$ (hexane/ethyl acetate = 60:40); ¹H NMR (600 MHz, CDCl₃) δ 9.20 (s, 1H), 8.04 (d, J = 7.8 Hz, 1H), 7.84 (t, J = 7.8 Hz, 1H), 7.34-7.52 (m, 4H), 7.16-7.20 (m, 1H), 3.84 (s, 3H), 2.61 (s, 3H); ¹³C NMR(150 MHz, CDCl₃) δ 24.4, 55.5, 113.3, 120.5, 122.6, 125.8, 127.2, 130.1, 133.7, 137.9, 155.0, 160.1, 160.3, 173.9; IR (KBr) 1596, 1569, 1321, 1275, 1174, 1118, 823, 639 cm⁻¹; APCIMS m/z 290.3 [M+H]; Anal. Calcd for C₁₄H₁₄N₂O₃S: C, 57.92; H, 4.86; N, 9.65. Found: C, 57.99; H, 4.97; N, 9.65.

N-[(4-Chlorophenyl)methylidene]-(6-methyl-2-pyridinesulfonamide) (1m)

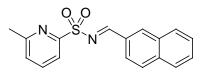


The reaction was carried out as described in the typical procedure except for using 6-methyl-2-pyridinesulfonamide (350 mg, 2.03 mmol), *p*-chlorobenzaldehyde (313 mg, 2.23 mmol), triethylamine (0.85 mL, 6.09 mmol), and titanium(IV) chloride (1.00 mol L^{-1} in CH₂Cl₂, 2.03 mL, 2.03

mmol). Usual work-up gave the crude product which was recrystallized from hexane/ethyl acetate to afford **1m** (434 mg, 73%);

mp 175.8-178.0 °C; $R_f = 0.35$ (hexane/ethyl acetate = 60:40); ¹H NMR (200 MHz, CDCl₃) δ 9.19 (s, 1H), 8.04 (d, J = 7.8 Hz, 1H), 7.87-7.93 (m, 2H), 7.80 (d, J = 7.8 Hz, 1H), 7.48 (d, J = 8.6 Hz, 2H), 7.37 (d, J = 7.6 Hz, 1H), 2.60 (s, 3H); ¹³C NMR (50.3 MHz, CDCl₃) δ 24.8, 120.4, 127.2, 129.4, 130.6, 132.4, 137.8, 141.6, 154.5, 160.1, 172.1; IR (KBr) 1591, 1561, 1325, 1179, 1122, 783 cm⁻¹; APCIMS m/z 295.1 [M+H]; Anal. Calcd for C₁₃H₁₁ClN₂O₂S: C, 52.97; H, 4.76; N, 9.50. Found: C, 52.92; H, 4.77; N, 9.46.

N-(1-Naphtylmethylidene)-(6-methyl-2-pyridinesulfonamide) (1n)

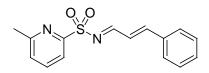


The reaction was carried out as described in the typical procedure except for using 6-methyl-2-pyridinesulfonamide (350 mg, 2.03 mmol), 1-naphthaldehyde (0.30 mL, 2.23 mmol), triethylamine (0.85 mL, 6.09 mmol), and titanium(IV) chloride (1.00 mol L^{-1} in CH₂Cl₂, 2.03 mL, 2.03 mmol). Usual work-up gave the crude product which was recrystallized from hexane/ethyl acetate to afford

1n (389 mg, 62%);

mp 154.5-155.0 °C; $R_f = 0.35$ (hexane/ethyl acetate = 60:40); ¹H NMR (200 MHz, CDCl₃) δ 9.78 (s, 1H), 8.98 (d, J = 8.6 Hz, 1H), 8.06-8.22 (m, 3H), 7.78-7.93 (m, 2H), 7.53-7.70 (m, 3H), 7.34 (d, J = 8.1 Hz, 1H), 2.59 (s, 3H); ¹³C NMR (50.3 MHz, CDCl₃) δ 24.6, 120.2, 124.2, 124..9, 126.8, 127.0, 127.5, 128.8, 131.6, 133.5, 135.4, 136.2, 137.7, 154.9, 160.0, 173.3; IR (KBr) 1596, 1564, 1325, 1120, 740 cm⁻¹; APCIMS m/z 311.2 [M+H]; Anal. Calcd for C₁₇H₁₄N₂O₂S: C, 65.79; H, 4.55; N, 9.03. Found: C, 65.72; H, 4.50; N, 9.01.

N-(2-Naphtylmethylidene)-(6-methyl-2-pyridinesulfonamide) (10)

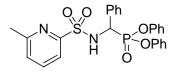


The reaction was carried out as described in the typical procedure except for using 6-methyl-2-pyridinesulfonamide (350 mg, 2.03 mmol), 2-naphthaldehyde (348 mg, 2.23 mmol), triethylamine (0.85 mL, 6.09 mmol), and titanium(IV) chloride (1.00 mol L^{-1} in CH₂Cl₂, 2.03 mL, 2.03 mmol).

Usual work-up gave the crude product which was recrystallized from hexane/ethyl acetate to afford **1o** (451 mg, 72%);

mp 153.9-155.6 °C; $R_f = 0.35$ (hexane/ethyl acetate = 60:40); ¹H NMR (200 MHz, CDCl₃) δ 9.36 (s, 1H), 8.38 (s, 1H), 7.78-8.09 (m, 6H), 7.52-7.68 (m, 2H), 7.35 (d, J = 7.8 Hz, 1H), 2.60 (s, 3H); ¹³C NMR (50.3 MHz, CDCl₃) δ 24.6, 120.3, 124.0, 127.0, 127.8, 128.9, 129.4, 129.8, 132.3, 136.4, 137.7, 154.7, 160.0, 173.4 ; IR (KBr) 1602, 1590, 1323, 1122, 824, 750 cm⁻¹; APCIMS m/z 311.2 [M+H]; Anal. Calcd for C₁₇H₁₄N₂O₂S: C, 65.79; H, 4.55; N, 9.03. Found: C, 65.94; H, 4.57; N, 9.04.

N-(3-phenylpropenylidene)-(6-methyl-2-pyridinesulfonamide) (1p)

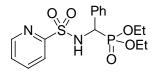


The reaction was carried out as described in the typical procedure except for using 6-methyl-2-pyridinesulfonamide (350 mg, 2.03 mmol), transcinnamaldehyde (0.28 ml, 2.23 mmol), triethylamine (0.85 mL, 6.09 mmol), and titanium(IV) chloride (1.00 mol L⁻¹ in CH₂Cl₂, 2.03 mL, 2.03 mmol).

Usual work-up gave the crude product which was recrystallized from hexane/ethyl acetate to afford 1p (388 mg, 67%);

mp 151.0-153.9 °C; $R_f = 0.40$ (hexane/ethyl acetate = 60:40); ¹H NMR (600 MHz, CDCl₃) δ 2.63 (s, 3H), 7.03-7.07 (dd, J = 7.8, 9.6 Hz, 1H), 7.37 (d, J = 7.8 Hz, 1H), 7.43-7.47 (m, 3H), 7.58-7.60 (m, 3H), 7.82 (t, J) = 7.8 Hz, 1H), 8.02 (d, J = 7.8 Hz, 1H), 8.98 (d, J = 9.6 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 24.4, 120.4, 124.7, 127.2, 128.8, 129.2, 131.8, 134.1, 137.9, 154.9, 155.2, 160.3, 174.5; IR (KBr) 1617, 1552, 1320, 1175, 1122, 791 cm⁻¹; APCIMS m/z 287.2 [M+H]; Anal. Calcd for C₁₅H₁₄N₂O₂S: C, 62.92; H, 4.93; N, 9.78. Found: C, 62.86; H, 4.81; N, 9.71.

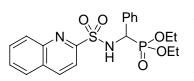
General procedure for the enantioselective hydrophosphonylation of imines: (S)-Diphenyl (6-methyl-2-pyridysulfonylamino-phenyl)methylphosphonate (2j):



To a solution of 1g (40 mg, 0.154 mol) and (-)-hydroquinine (5.0 mg, 0.0154 $S_{\text{N}} \rightarrow OPh_{\text{H}} OPh_{\text{OPh}} OPh_{\text{$ the reaction mixture, and aqueous layer was extracted with CHCl₃. The

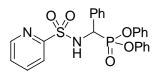
combined organic extracts were dried over Na₂SO₄ filtered, and concentrated under reduced pressure to give the crude product which was purified by column chromatography (silica gel, hexane/ethyl acetate = 50/50) to give 2j (73.9 mg, 99%, 98% ee). Single recrystallization of 2j (98% ee) afforded 99.4% ee of 2j.

 $[\alpha]_D^{20}$ +50.1 (*c* 1.0, CHCl₃, 99% ee); m.p. 164.8-166.5 °C; R_f = 0.30 (hexane/ethyl acetate = 50/50); ¹H NMR (200 MHz, CDCl₃) δ 2.32 (s, 3H), 5.26 (dd, *J* = 8.6, 9.0 Hz, 1H), 6.54 (d, *J* = 6.6 Hz, 1H), 6.76-6.80 (m, 2H), 6.97-7.32 (m, 14H), 7.38-7.53 (m, 2H); ¹³C NMR (600 MHz, CDCl₃) δ 24.0, 55.6 (d, J = 160 Hz), 57.2, 118.5, 120.1 (d, J = 4.4 Hz), 120.5 (d, J = 4.4 Hz), 125.0 (d, J = 10.4 Hz), 125.9, 127.9, 128.0, 128.1, 128.2, 129.4 (d, J = 8.3 Hz), 132.1, 137.1, 149.7, 159.1; ³¹P NMR (CDCl₃) δ 13.6; IR(KBr) 3202, 1489, 1334, 1222, 947, 697 cm⁻¹; APCIMS m/z 495.4 [M+H]; Anal. Calcd for C₂₅H₂₃N₂O₅PS : C, 60.72; H, 4.69; N, 5.67. Found: C, 61.02; H, 4.79; N, 5.56. HPLC (CHIRALPAK[®] IA, hexane/CHCl₃=50:50, 1.5 ml/min) t_R 7.07 (minor), t_{s} 7.98 (major) min.


(S)-Diethyl [(2-pyridylsulfonyl)amino-phenyl-methyl] phosphonate (2f)

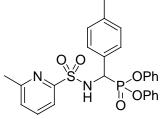
The reaction was carried out as described in the typical procedure except for using 1f (40.0 mg, 0.162 mmol), (-)-quinine (5.2 mg, 0.0162 mmol), toluene (2.0 mL), and diethyl phosphite (27 µl, 0.211 mmol). Usual work-up gave the crude product which was purified by column chromatography (silica gel, hexane/ethyl acetate = 10/90) to give **2f** (61.0 mg, 98%, 70% ee) as a white solid.

 $[\alpha]_{D}^{25}$ +1.1 (c 1, CHCl₃, 70% ee); m.p. 121.2-123.4 °C; R_f = 0.25 (hexane/ethyl acetate = 10/90); ¹H NMR (200NHz, CDCl₃) δ 1.04 (t, J = 7.2 Hz, 3H), 1.08-1.38 (m, 3H), 3.55-3.74 (m, 1H), 3.80-3.99 (m, 1H), 4.114.28 (m, 2H), 4.87 (dd, J = 9.6, 9.6 Hz, 1H), 6.66 (br, 1H), 6.99-7.26 (m, 6H), 7.52-7.64 (m, 2H), 8.41-8.44 (m, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 16.5 (d, J = 5.7 Hz), 16.8 (d, J = 5.9 Hz), 55.8 (d, J = 154 Hz), 64.0 (d, J = 6.8 Hz), 64.3 (d, J = 7.2 Hz), 122.2, 126.6, 128.3, 128.6, 133.7, 137.7, 137.7, 150.2, 157.9; ³¹P NMR (CDCl₃) δ 20.9; IR(KBr) 3119, 1461, 1334, 1178, 1022, 702 cm⁻¹; APCIMS m/z 385.2 [M+H]; Anal. Calcd for C₁₆H₂₁N₂O₅PS: C, 49.99; H, 5.51; N, 7.29. Found: C, 50.00; H, 5.40; N, 6.99. HPLC (CHIRALCEL[®] OJ-H, hexane/ⁱPrOH =80:20, 1.0 ml/min) t_R 5.59 (major), t_S 11.5 (minor) min.


Diethyl [(2-quinolinesulfonyl)amino-phenyl-methyl] phosphonate (2h)

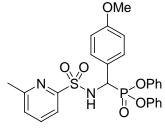
The reaction was carried out as described in the typical procedure except for using **1h** (40.0 mg, 0.135 mmol), (–)-quinine (4.4 mg, 0.0135 mmol), toluene (1.7 mL), and diethyl phosphite (21 μ l, 0.176 mmol). Usual work-up gave the crude product which was purified by column chromatography (silica gel, hexane/ethyl acetate = 10/90) to give **2h** (41.0 mg, 86%, 49% ee) as a white solid.

[α]_D²⁰ +45.5 (*c* 1.2, CHCl₃, 49% ee); m.p 146.2-148.4 °C; R_f = 0.30 (hexane/ethyl acetate = 10/90); ¹H NMR (600 MHz, CDCl₃) δ 1.00 (t, *J* = 7.2 Hz, 3H), 1.31 (t, *J* = 7.2 Hz, 3H), 3.57-3.64 (m, 1H), 3.84-3.90 (m, 1H), 4.18-4.23 (m, 2H), 4.88-4.94 (m, 1H), 6.17 (br, 1H), 6.83 (m, 3H), 7.10 (d, *J* = 4.2, 2H), 7.61-7.63 (m, 1H), 7.71 (d, *J* = 8.4, 1H), 7.75-7.77 (m, 2H), 8.00 (d, *J* = 8.4, 1H), 8.06 (d, *J* = 8.4, 1H); ¹³C NMR (50.3 MHz, CDCl₃) δ 16.2 (d, *J* = 5.6 Hz), 16.6 (d, *J* = 5.6 Hz), 55.6 (d, *J* = 155 Hz), 63.6 (d, *J* = 6.8 Hz), 64.0 (d, *J* = 7.2 Hz), 117,5, 127.2, 127.4, 127.6 (d, *J* = 2.0 Hz), 127.8, 127.9, 128.2, 128.4, 129.7, 130.3, 133.3, 137.6, 146.5, 156.7; ³¹P NMR (CDCl₃) δ 21.0; IR(KBr) 3103, 1498, 1330, 1177, 1025, 653 cm⁻¹; APCIMS m/z 435.1 [M+H]; Anal. Calcd for C₂₀H₂₃N₂O₅PS: C, 55.29; H, 5.34; N, 6.45. Found: C, 55.09; H, 5.57; N, 6.27; HPLC (CHIRALCEL[®] OJ-H, hexane/ⁱPrOH =80:20, 1.0 ml/min) *t_R* 5.88 (major), *t_S* 11.1 (minor) min.


(S)-Diphenyl [(2-pyridylsulfonyl)amino-phenyl-methyl] phosphonate (2i)

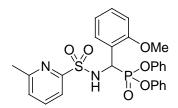
The reaction was carried out as described in the typical procedure except for using **1f** (40.0 mg, 0.162 mmol), (–)-quinine (5.3 mg, 0.0162 mmol), toluene (2.0 mL), and diphenyl phosphite (41 μ l, 0.211 mmol). Usual work-up gave the crude product which was purified by column chromatography (silica gel, hexane/ethyl acetate = 50/50) to give **2i** (74.7 mg, 96%, 88% ee) as a white solid.

[α]_D²⁰ +12.3 (*c* 1.0, CHCl₃, 89% ee); m.p. 203.8-205.2 °C; R_f = 0.25 (hexane/ethyl acetate = 50/50); ¹H NMR (200 MHz, CDCl₃) δ 5.30 (dd, *J* = 10, 10 Hz, 1H), 6.76-6.73 (m, 3H), 7.05-7.26 (m, 14H), 7.53 (d, *J* = 7.6 Hz, 1H), 7.62 (d, *J* = 7.6 Hz, 1H), 8.36 (d, *J* = 4.6 Hz, 1H); ¹³C NMR (50.3 MHz, CDCl₃) δ55.6 (d, *J* = 160 Hz), 120.1 (d, *J* = 4.4 Hz), 120.5 (d, *J* = 4.4 Hz), 121.6, 125.2 (d, *J* = 10.8 Hz), 126.3, 128.2, 128.4, 129.4 (d, *J* = 9.6 Hz), 132.1, 137.1, 149.4; ³¹P NMR (CDCl₃) δ 13.4; IR(KBr) 3283, 3185, 1587, 1489, 1346, 1204, 943, 916 cm⁻¹; APCIMS m/z 481.3 [M+H]; Anal. Calcd for C₂₄H₂₁N₂O₅PS: C, 59.99; H, 4.41; N, 5.83. Found: C, 59.90; H, 4.31; N, 5.56.; HPLC (CHIRALPAK[®] IA, hexane/CHCl₃=50:50, 1.5 ml/min) *t_R* 11.8 (minor), *t_S* 13.1 (major) min.


(S)-Diphenyl [(6-methyl-2-pyridinesulfonyl)amino-(4-methylphenyl)-methyl] phosphonate (3)

The reaction was carried out as described in the typical procedure except for using **1i** (40.0 mg, 0.146 mmol), (–)-hydroquinine (4.77 mg, 0.0146 mmol), toluene (1.8 mL), and diphenyl phosphite (37 μ l, 0.190 mmol). Usual work-up gave the crude product which was purified by column chromatography (silica gel, hexane/ethyl acetate = 50/50) to give **3** (74.2 mg, 99%, 92% ee) as a white solid. Single recrystallization of **3** (92% ee) afforded 99% ee of **3**.

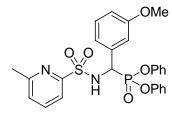
 $[\alpha]_D^{20}$ +35.9 (*c* 1.0, CHCl₃, 98% ee); m.p 173.2-176.0 °C; R_f = 0.30 (hexane/ethyl acetate = 50/50); ¹H NMR (600 MHz, CDCl₃) δ 2.37 (s, 3H), 3.71 (s, 3H), 5.16-5.22 (dd, *J* = 9.0, 9.0 Hz, 1H), 6.27 (br, 1H), 6.59 (d, *J* = 8.4 Hz, 2H), 6.83-6.85 (m, 2H), 7.04 (d, *J* = 7.2 Hz, 1H), 7.07-7.10 (m, 1H), 7.13-7.19 (m, 7H), 7.30 (t, *J* = 7.8 Hz, 2H), 7.48 (t, *J* = 7.8 Hz, 1H), 7.53 (d, *J* = 7.8 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 24.0, 55.3, 54.9 (d, *J* = 161 Hz), 113.7 (d, *J* = 1.5 Hz), 118.8, 120.4 (d, *J* = 4.2 Hz), 120.7 (d, *J* = 4.0 Hz), 124.4, 125.3, 125.4, 126.1, 129.5, 129.7 (d, *J* = 5.2 Hz), 137.4, 150.0 (d, *J* = 9.6 Hz), 150.1 (d, *J* = 10 Hz), 156.6, 159.5; ³¹P NMR (CDCl₃) δ 13.8; IR(KBr) 3177, 1490, 1335, 1197, 957 cm⁻¹; APCIMS m/z 507.1 [M-H]; HPLC (CHIRALPAK[®] IA, hexane/CHCl₃=50:50, 1.5 ml/min) *t_R* 6.88 (minor), *t_S*7.79 (major) min.


(S)-Diphenyl [(6-methyl-2-pyridinesulfonyl)amino-(4-methoxyphenyl)-methyl] phosphonate (4)

The reaction was carried out as described in the typical procedure except for using **1j** (40.0 mg, 0.138 mmol), (–)-hydroquinine (4.50 mg, 0.0138 mmol), toluene (1.7 mL), and diphenyl phosphite (34.4 μ l, 0.180 mmol). Usual work-up gave the crude product which was purified by column chromatography (silica gel, hexane/ethyl acetate = 50/50) to give **4** (72.4 mg, 99%, 94% ee) as a white solid. Single recrystallization of **4** (94% ee) afforded 98% ee of **4**.

 $[\alpha]_D^{20}$ +46.8 (*c* 1.0, CHCl₃, 98% ee); m.p 158.2-160.4 °C; R_f = 0.30 (hexane/ethyl acetate = 50/50); ¹H NMR (600MHz, CDCl₃) δ 2.21 (s, 3H), 2.34 (s, 3H), 5.17-5.23 (dd, *J* = 9.6, 9.6 Hz, 1H), 6.30 (d, *J* = 6.6 Hz, 1H), 6.84 (d, *J* = 7.8 Hz, 2H), 6.87 (d, *J* = 7.8 Hz, 2H), 7.03 (d, *J* = 7.8 Hz, 1H), 7.07-7.11 (m, 3H), 7.14-7.18 (m, 5H), 7.29 (t, *J* = 7.8 Hz, 2H), 7.46 (t, *J* = 7.8 Hz, 1H), 7.53 (d, *J* = 7.8 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 21.0, 23.8, 55.3 (d, *J* = 161 Hz), 118.8, 120.4 (d, *J* = 4.2 Hz), 120.7 (d, *J* = 4.2 Hz), 125.2, 125.4, 125.9, 128.2, 128.3, 128.8 (d, *J* = 1.8 Hz), 129.4, 129.5, 129.7, 137.3, 138.1 (d, *J* = 2.9 Hz), 149.9 (d, *J* = 9.8 Hz), 150.1 (d, *J* = 10.0 Hz), 156.5, 159.5; ³¹P NMR (CDCl₃) δ 13.8; IR(KBr) 3213, 1488, 1345, 1159, 943 cm⁻¹; APCIMS m/z 525.3 [M+H]; HPLC (CHIRALPAK[®] IA, hexane/CHCl₃=50:50, 1.5 ml/min) *t_R* 7.99 (minor), *t_S* 9.30 (major) min.

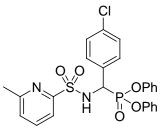
(S)-Diphenyl [(6-methyl-2-pyridinesulfonyl)amino-(2-methoxyphenyl)-methyl] phosphonate (5)



The reaction was carried out as described in the typical procedure except for using **1k** (40.0 mg, 0.138 mmol), (–)-hydroquinine (4.5 mg, 0.0138 mmol), toluene (1.7 mL), and diphenyl phosphite (37.4 μ l, 0.200 mmol). Usual work-up gave the crude product which was purified by column chromatography (silica gel, hexane/ethyl acetate = 50/50) to give **5** (72.3 mg, 99%, 85% ee) as a white solid.

Single recrystallization of 5 (85% ee) afforded 96% ee of 5.

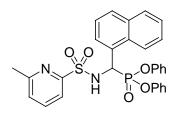
[α]_D²⁴ +41.9 (*c* 1.0, CHCl₃, 96% ee); m.p 88.2-89.5 °C; R_f = 0.30 (hexane/ethyl acetate = 50/50); ¹H NMR (600 MHz, CDCl₃) δ 2.31 (s, 3H), 3.63 (s, 3H), 5.52-5.58 (dd, J = 10.8, 10.8 Hz, 1H), 6.45 (d, J = 9.6 Hz, 1H), 6.58 (d, J = 8.4 Hz, 1H), 6.71 (t, J = 7.2 Hz, 1H), 6.87-6.88 (m, 2H), 7.00 (d, J = 7.8 Hz, 1H), 7.06-7.10 (m, 2H), 7.14-7.20 (m, 6H), 7.29-7.32 (m, 2H), 7.48 (t, J = 7.8 Hz, 1H), 7.58 (d, J = 7.2 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 24.0, 55.4, 110.6, 118.9, 120.2 (d, J = 4.4 Hz), 120.5, 120.6 (d, J = 4.2 Hz), 120.8, 125.0, 125.2, 126.1, 129.4, 129.6, 129.8 (d, J = 2.7 Hz), 129.9, 137.1, 150.1 (d, J = 9.5 Hz), 150.4 (d, J = 9.9 Hz), 156.3, 156.7 (d, J = 5.7 Hz), 159.4; ³¹P NMR (CDCl₃) δ 13.7; IR(KBr) 3185, 1492, 1340, 1253, 949, 757 cm⁻¹; APCIMS m/z 525.1 [M+H]; HPLC (CHIRALPAK[®] IA, hexane/CHCl₃=70:30, 1.0 ml/min) t_R 33.3 (minor), t_S 34.7 (major) min.


(*R*)-Diphenyl [(6-methyl-2-pyridinesulfonyl)amino-(3-methoxyphenyl)-methyl] phosphonate (6)

The reaction was carried out as described in the typical procedure except for using **11** (40.0 mg, 0.138 mmol), (–)-hydroquinidine (4.5 mg, 0.0138 mmol), toluene (1.7 mL), and diphenyl phosphite (37.4 μ l, 0.200 mmol). Usual work-up gave the crude product which was purified by column chromatography (silica gel, hexane/ethyl acetate = 50/50) to give **6** (72.3 mg, 99%, 88% ee) as a white solid. Single recrystallization of **6** (89% ee) afforded 93% ee of **6**.

[α]_D²⁵ -41.5 (*c* 1, CHCl₃, 93% ee); m.p 137.2-140.4 °C; R_f = 0.30 (hexane/ethyl acetate = 50/50); ¹H NMR (600 MHz, CDCl₃) δ 2.35 (s, 3H), 3.57 (s, 3H), 5.21-5.26 (dd, J = 10.2, 10.2 Hz, 1H), 6.48 (br, 1H), 6.63 (d, J = 8.4 Hz, 1H), 6.75 (s, 1H), 6.80 (d, J = 7.2 Hz, 1H), 6.84 (d, J = 7.8 Hz, 2H), 6.98 (t, J = 7.8 Hz, 1H), 7.02 (d, J = 7.8 Hz, 1H), 7.07 (t, J = 7.2 Hz, 1H), 7.16-7.17 (m, 5H), 7.28-7.31 (m, 2H), 7.45 (t, J = 7.8 Hz, 1H), 7.54 (d, J = 7.2 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 24.0, 55.0, 55.5 (d, J = 160 Hz), 113.3 (d, J = 6.3 Hz), 114.5, 118.8, 120.3 (d, J = 4.4 Hz), 120.7 (d, J = 4.2 Hz), 120.9 (d, J = 6.8 Hz), 125.3, 125.5, 126.1, 129.2, 129.5, 129.7, 133.7, 137.3, 150.1 (d, J = 9.8 Hz), 150.1 (d, J = 10.5 Hz), 156.6, 159.4, 159.5; ³¹P NMR (CDCl₃) δ 13.4; IR(KBr) 3213, 1591, 1490, 1257, 948, 759 cm⁻¹; APCIMS m/z 525.1 [M+H]; HPLC (CHIRALPAK[®] IA, hexane/CHCl₃=50:50, 1.5 ml/min) t_R 6.45 (major), t_S 7.25 (minor) min.

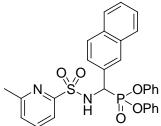
(S)-Diphenyl [(6-methyl-2-pyridinesulfonyl)amino-(4-chlorophenyl)-methyl] phosphonate (7)



The reaction was carried out as described in the typical procedure except for using **1m** (40.0 mg, 0.136 mmol), (–)-hydroquinine (4.4 mg, 0.0136 mmol), toluene (1.7 mL), and diphenyl phosphite (34 μ l, 0.272 mmol). Usual work-up gave the crude product which was purified by column chromatography (silica gel, hexane/ethyl acetate = 50/50) to give 7 (71.9 mg, 99%, 87% ee) as a white solid. Single recrystallization of 7 (87% ee) afforded 98% ee of 7.

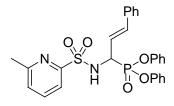
 $[\alpha]_D^{20}$ +40.3 (*c* 1.0, CHCl₃, 98% ee); m.p 153.3-155.4 °C; R_f = 0.30 (hexane/ethyl acetate = 50/50); ¹H NMR (600 MHz, CDCl₃) δ 2.35 (s, 3H), 5.24-5.28 (dd, *J* = 10.2, 10.2 Hz, 1H), 6.59 (br, 1H), 6.85-6.87 (m, 2H), 7.04 (d, *J* = 7.8 Hz, 2H), 7.08-7.14 (m, 4H), 7.17-7.20 (m, 5H), 7.25-7.32 (m, 2H), 7.37-7.54 (m, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 24.0, 55.0 (d, *J* = 160 Hz), 118.8, 120.2 (d, *J* = 4.4 Hz), 120.6 (d, *J* = 4.2 Hz), 125.5, 125.6, 126.2, 128.3 (d, *J* = 1.8 Hz), 129.7, 129.8, 129.8, 131.3, 134.3 (d, *J* = 3.3 Hz), 137.5, 149.8 (d, *J* = 9.5 Hz), 150.0 (d, *J* = 10.1 Hz), 156.5, 159.6; ³¹P NMR (CDCl₃) δ 13.0; IR(KBr)

3220, 1591, 1489, 1338, 1187, 945, 767 cm⁻¹; APCIMS m/z 529.2 [M+H]; HPLC (CHIRALPAK[®] IA, hexane/CHCl₃=50:50, 1.5 ml/min) t_R 9.14 (minor), t_S 10.5 (major) min.


(R)-Diphenyl [(6-methyl-2-pyridinesulfonyl)amino-(1-naphtyl)-methyl] phosphonate (8)

The reaction was carried out as described in the typical procedure except for using **1n** (40.0 mg, 0.129 mmol), (–)-hydroquinidine (4.20 mg, 0.0129 mmol), toluene (1.6 mL), and diphenyl phosphite (32 μ l, 0.167 mmol). Usual work-up gave the crude product which was purified by column chromatography (silica gel, hexane/ethyl acetate = 50/50) to give **8** (70.2 mg, 99%, 91% ee) as a white solid. Single recrystallization of **8** (91% ee) afforded 99% ee of **8**.

[α]_D²⁵ -107.1 (c 0.82, CHCl₃, 99% ee); m.p 154.9-155.5 °C; R_f = 0.30 (hexane/ethyl acetate = 50/50); ¹H NMR (600 MHz, CDCl₃) δ 2.07 (s, 3H), 6.09-6.14 (m, 1H), 6.33 (br, 1H), 6.60-6.61 (m, 2H), 6.73 (d, J = 7.8 Hz, 1H), 6.98 (t, J = 7.2 Hz, 1H), 7.04 (t, J = 7.8 Hz, 2H), 7.09 (t, J = 7.8 Hz, 1H), 7.18-7.23 (m, 2H), 7.26-7.28 (m, 3H), 7.34-7.37 (m, 2H), 7.42-7.45 (m, 1H), 7.49-7.51 (m, 1H), 7.58-7.59 (m, 2H), 7.69 (d, J = 8.4 Hz, 1H), 8.06 (d, J = 7.2 Hz, 1H); ¹³C NMR (CDCl₃) δ 24.1, 51.1 (d, J = 171 Hz), 118.9, 120.2 (d, J = 4.4 Hz), 120.1 (d, J = 4.4 Hz), 123.2, 125.0 (d, J = 3.2 Hz), 125.3, 125.7, 126.1, 127.0, 128.7, 129.2, 129.5, 130.0, 131.1 (d, J = 7.1 Hz), 133, 136.8, 150.0 (d, J = 9.6 Hz), 150.4 (d, J = 10.0 Hz), 156.2, 159.3; ³¹P NMR (CDCl₃) δ 13.7; IR(KBr) 3172, 1590, 1489, 1337, 1183, 949, 775 cm⁻¹; APCIMS m/z 545.1 [M+H]; HPLC (CHIRALPAK[®] IA, hexane/CHCl₃=50:50, 1.5 ml/min) t_R 7.39 (major), t_S 9.14 (minor) min.


(*R*)-Diphenyl [(6-methyl-2-pyridinesulfonyl)amino-(2-naphtyl)-methyl] phosphonate (9)

The reaction was carried out as described in the typical procedure except for using **10** (40.0 mg, 0.129 mmol), (–)-hydroquinidine (4.20 mg, 0.0129 mmol), toluene (1.6 mL), and diphenyl phosphite (32 μ l, 0.167 mmol). Usual work-up gave the crude product which was purified by column chromatography (silica gel, hexane/ethyl acetate = 50/50) to give **9** (70.2 mg, 99%, 92% ee) as a white solid. Single recrystallization of **9** (92% ee) afforded 96% ee of **9**.

 $[\alpha]_D^{24} -44.7 (c 0.94, CHCl_3, 96\% ee); m.p 151.2-153.4 °C; R_f = 0.30 (hexane/ethyl acetate = 50/50); ¹H NMR (CDCl_3) <math>\delta$ 2.09 (s, 3H), 5.39-5.45 (dd, J = 10.2, 10.2 Hz, 1H), 6.59 (br, 1H), 6.68 (d, J = 7.8 Hz, 1H), 6.85 (d, J = 7.8 Hz, 2H), 7.02-7.05 (m, 1H), 7.10-7.13 (m, 2H), 7.15-7.22 (m, 4H), 7.25-7.30 (m, 2H), 7.36-7.38 (m, 2H), 7.42-7.47 (m, 2H), 7.52-7.54 (m, 2H), 7.64-7.72 (m, 2H); ¹³C NMR (150 MHz, CDCl_3) δ 23.6, 55.7 (d, J = 160 Hz), 118.8, 120.3 (d, J = 4.2 Hz), 120.7 (d, J = 4.2 Hz), 125.3, 125.5, 125.9, 126.2, 126.5, 127.3, 127.9, 128.2, 128.2, 129.5, 129.7 (d, J = 7.7 Hz), 132.7, 132.8, 137.0, 149.9 (d, J = 9.5 Hz), 150.2 (d, J = 9.8 Hz), 156.4, 159.4; ³¹P NMR (CDCl_3) δ 13.6; IR(KBr) 3219, 1592, 1489, 1334, 1213, 943, 778 cm⁻¹; APCIMS m/z 545.4 [M+H]; HPLC (CHIRALPAK[®] IA, hexane/CHCl_3=50:50, 1.5 ml/min) t_R 7.75 (major), t_S 9.28 (minor) min.

(*R*)-Diphenyl [(6-methyl-2-pyridinesulfonyl)amino-(3-phenylpropenylidene)-methyl] phosphonate (10)

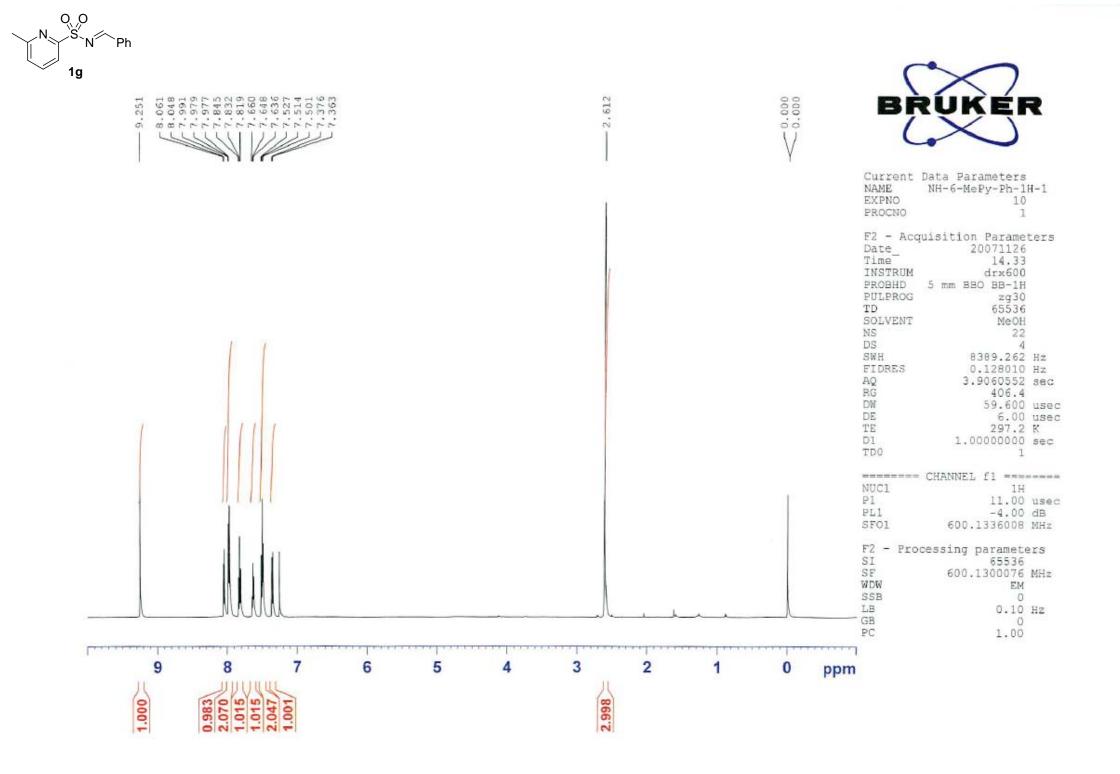
The reaction was carried out as described in the typical procedure except for

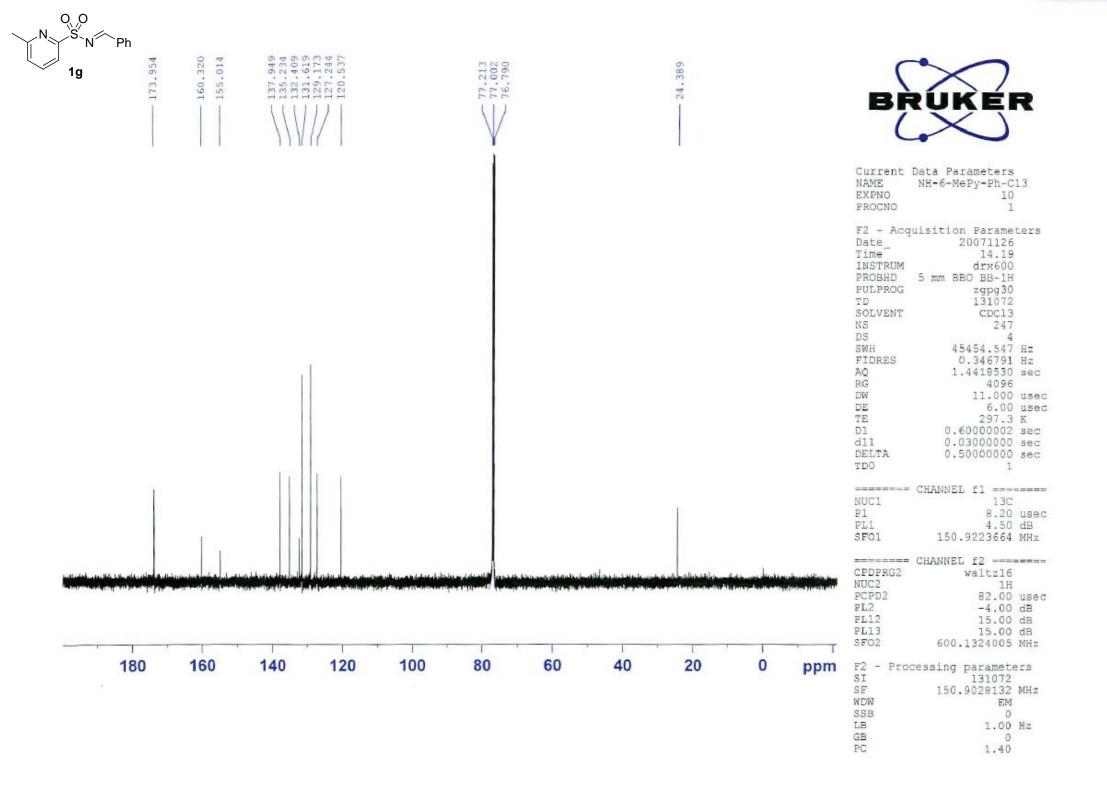
 $[\alpha]_D^{24}$ +3.4 (c 1, CHCl₃, 92% ee); m.p 177.0-178.8 °C; R_f = 0.30 (hexane/ethyl acetate = 60/40); ¹H NMR $(600 \text{ MHz}, \text{CDCl}_3) \delta 2.46 \text{ (s, 3H)}, 4.89-4.96 \text{ (m, 1H)}, 5.94-5.99 \text{ (m, 1H)}, 6.02 \text{ (br, 1H)}, 6.43 \text{ (dd, } J = 3.6, 3.6 \text{ (br, 2H)})$ Hz, 2H), 7.04-7.06 (m, 3H), 7.12-7.18 (m, 6H), 7.21-7.22 (m, 3H), 7.24-7.30 (m, 4H), 7.54 (t, J = 7.8 Hz, 1H), 7.73 (d, J = 7.8 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 24.2, 54.1 (d, J = 162 Hz), 119.0, 119.7 (d, J = 162 Hz), 119.0, 119.0 (d, J = 162 Hz), 119.0 (d, J = = 2.4 Hz), 120.6 (d, J = 4.2 Hz), 120.7 (d, J = 2.7 Hz), 125.5 (d, J = 6.2 Hz), 126.5, 126.6, 128.4 (d, J = 5.3 Hz), 129.8, 135.3, 135.4, 135.5, 137.7, 150.0 (d, J = 9.5 Hz), 150.1 (d, J = 9.0 Hz), 156.9, 160.0; ³¹P NMR (CDCl₃) δ 13.5; IR(KBr) 3164, 1590, 1491, 1333, 1186, 962, 689 cm⁻¹; APCIMS m/z 521.2 [M+H]; HPLC (CHIRALPAK[®] IA, hexane/CHCl₃=50:50, 1.5 ml/min) t_R 6.57 (minor), t_S 7.74 (major) min.

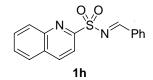
(S)-Diphenyl 1-amino-1-phenylmethylphosphonate (11)

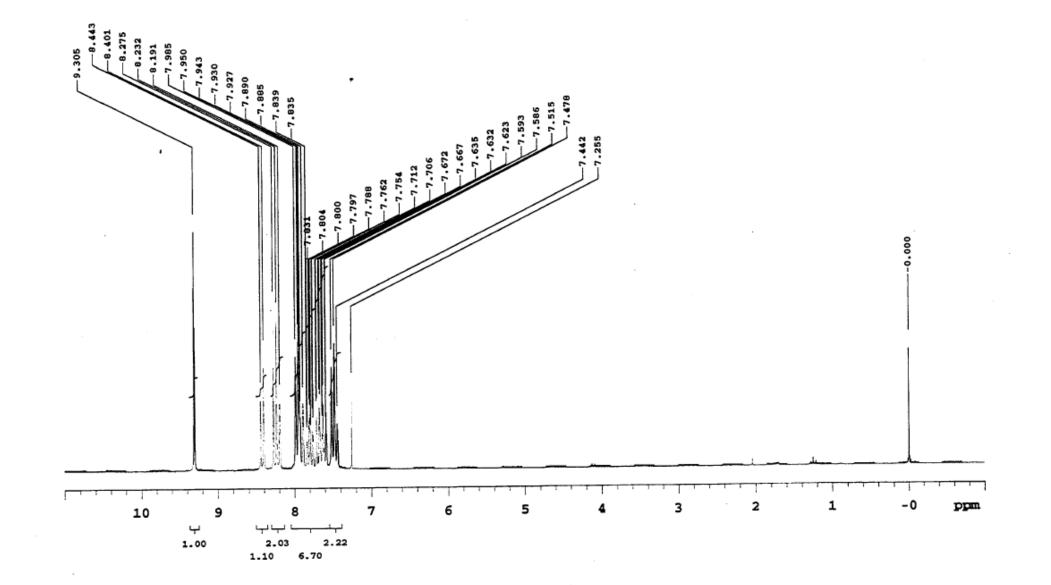
A mixture of Mg powder (221 mg, 9.10 mmol), acetic acid (1.7 mL), and sodium acetate H_2N H_2N H_2N H_2OPh (1.2 g, 14.3 mmol) in DMF (4.0 mL) was stirred for 10 min at 0 °C. Then, (S)-2i (300 mg, 0.607 mmol) was added and the reaction mixture was stirred for 6 h at 0 °C. After the addition of water, the aqueous layer was extracted with Et₂O and the combined organic extracts were dried over Na₂SO₄ and concentrated under reduced pressure to leave a oil which was purified by column chromatography (benzene/ethyl acetate=75/25) to give (S)-11 (177 mg, 86%, 99% ee) as a oil.

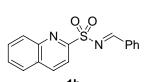
 $[\alpha]_D^{24}$ –9.1 (*c* 0.9, CHCl₃, 99% ee); R_f = 0.35 (benzene/ethyl acetate = 75/25); ¹H NMR (600 MHz, CDCl₃) δ 2.31 (br, 2H), 4.65 (d, *J* = 15.6 Hz, 1H), 6.91-6.93 (m, 2H), 7.06-7.23 (m, 6H), 7.26-7.29 (m, 2H), 7.32-7.39 (m, 3H), 7.54-7.56 (m, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 54.3 (d, J = 150 Hz), 120.3(d, J = 4.1 Hz), 120.5(d, J = 4.1 Hz), 125.0, 125.1, 128.0, 128.1, 128.2, 128.3, 128.6, 128.7, 129.5, 129.6; ³¹P NMR (CDCl₃) δ 19.3; IR(KBr) 1590, 1487, 1188, 935 cm⁻¹; ESIMS m/z 362.1 [M+Na]; HPLC (CHIRALCEL[®]) OJ-H, hexane/^{*i*}PrOH =80:20, 0.5 ml/min) t_R 16.6 (minor), t_S 17.3 (major) min.

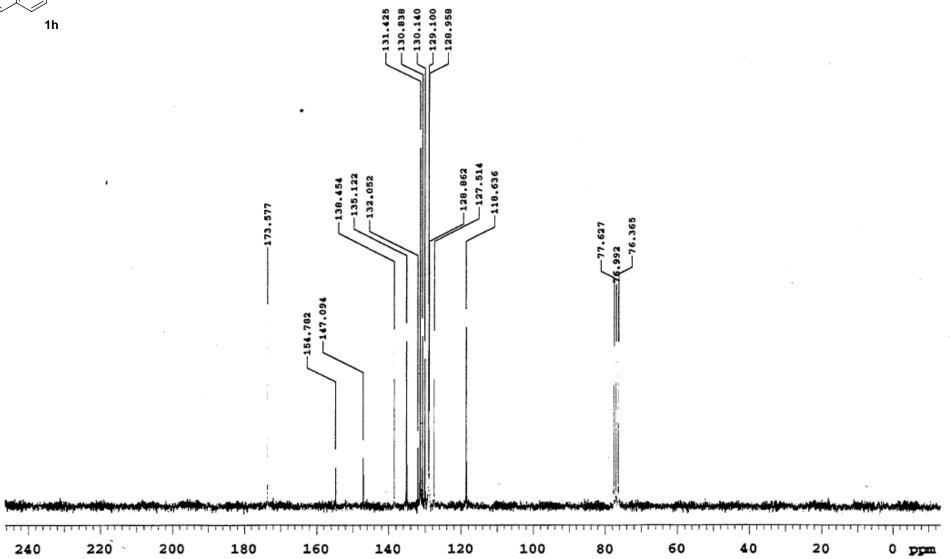

(S)-Amino(phenyl)methylphosponic acid (12)

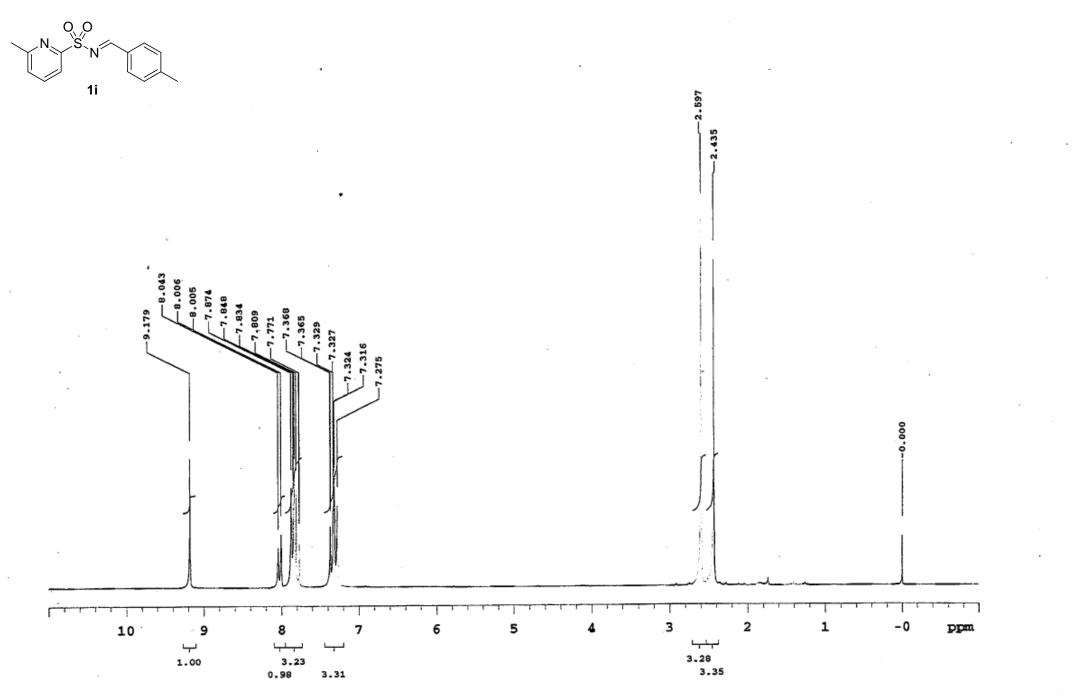

A mixture of (S)-11 (100 mg, 0.29 mmol), AcOH (4 ml) and 40% aqueous HBr (7.5 ml) H_2N H_2N H_2N H_2OH was refluxed at 120 °C for 3 h, which was followed by removal of the low-boiling fraction under high vacuum for 3 h. The residue was dissolved in a minimum amount of hot EtOH (2) ml). The solvent was cooled to room temperature, excess propylene oxide (1 ml) was then introduced, and the mixture was stirred for 3 h. The white solid was collected by filtration to afford (S)-12.

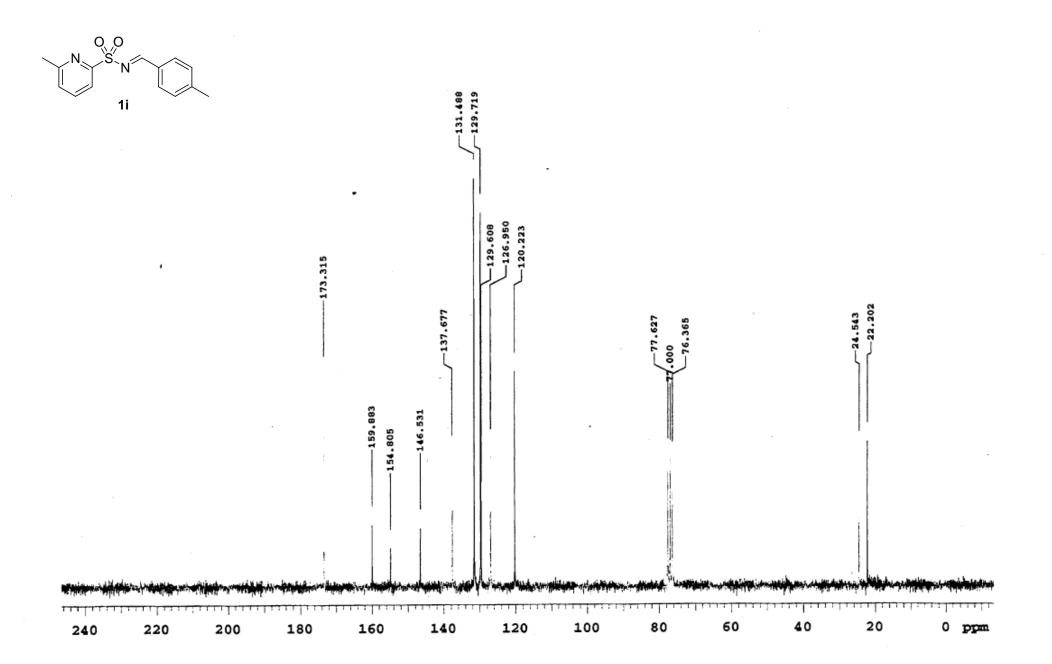

 $[\alpha]_D^{21}$ –14.0 (*c* 0.15, 1.0 N NaOH, 99% ee); m.p 279.0-283.5 °C; ¹H NMR (600 MHz, 0.5 mol/L D₂O) δ 3.67 (d, *J* = 15.6 Hz, 1H), 7.14-7.17 (m, 1H), 7.23-7.28 (m, 4H); ¹³C NMR (150 MHz, 0.5 mol/L D₂O) δ 56.0 (d, *J* = 131 Hz), 126.6, 128.0, 128.4, 145.5; ³¹P NMR (0.5 mol/L D₂O) δ 19.6; IR(KBr) 3225, 3000, 2920, 1600, 1527, 1261, 1181, 1063, 915 cm⁻¹; ESI-MS m/z 186.1 [M+Na].

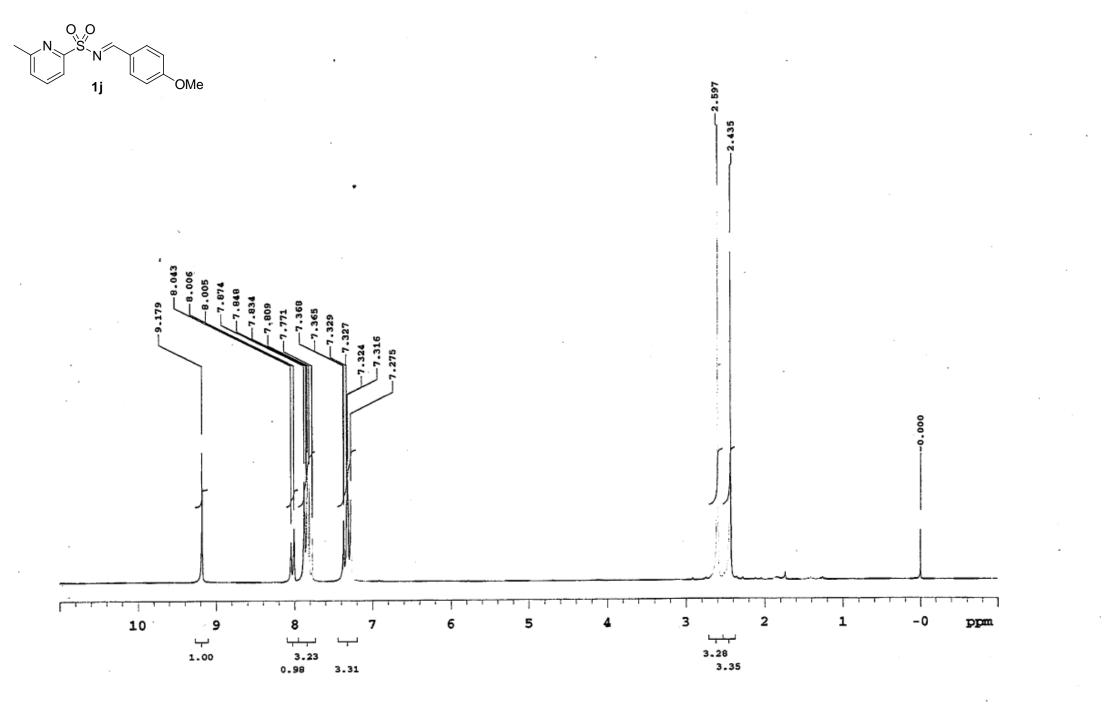

Procedure for Preparation of *N*-Cbz dimethyl phosphonate derivative for *%ee* determination by chiral HPLC.

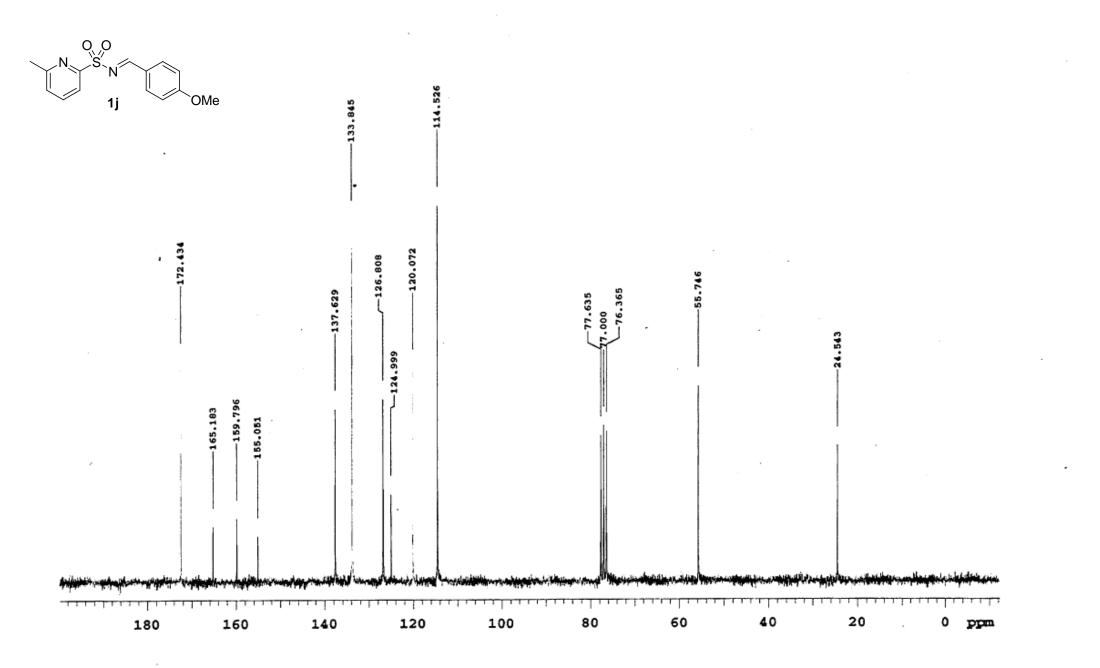

the reaction mixture was transferred to a 30 mL separator funnel with a saturated aqueous solution of sodium carbonate (6mL, to litmus blue) and washed with diethyl ether (2 x 7 mL). The aqueous solution was acidified to pH<1 (litmus red) by the dropwise addition of a concentrated solution of hydrochloric acid. The phosphonic acid precipitated out of solution and was extracted into ethyl acetate (3 x 7 mL). The combined ethyl acetate solution was dried over sodium sulfate, filtered, and concentrated *in vacuo* to yield crude (39.4 mg, 96%) as a white solid. This crude material was transferred to a 4 mL glass vial equipped with a magnetic stir bar, septum cap and nitrogen line. Methanol (1.1 mL) and dichloromethane (0.20 mL) were added. A 2.0 M solution of (trimethylsilyl)diazomethane in hexanes (0.34 mL, 0.68 mmol, 6 equiv.) was added dropwise over 30 seconds. After 30 minutes, the reaction was concentrated *in vacuo*. The crude residue was purified by flash chromatography on silica gel (25:75 hexanes:ethyl acetate) to provide *N*-Cbz dimethyl phosphonate derivative of **12** (16.1 mg, 36% from **12**) as a white solid which was used directly for %*ee* determination by chiral HPLC. HPLC (CHIRALCEL[®] OD-H, hexane/^{*i*}PrOH =95:5, 0.5 ml/min) *t_R* 15 (minor), *t_s* 17 (major) min.

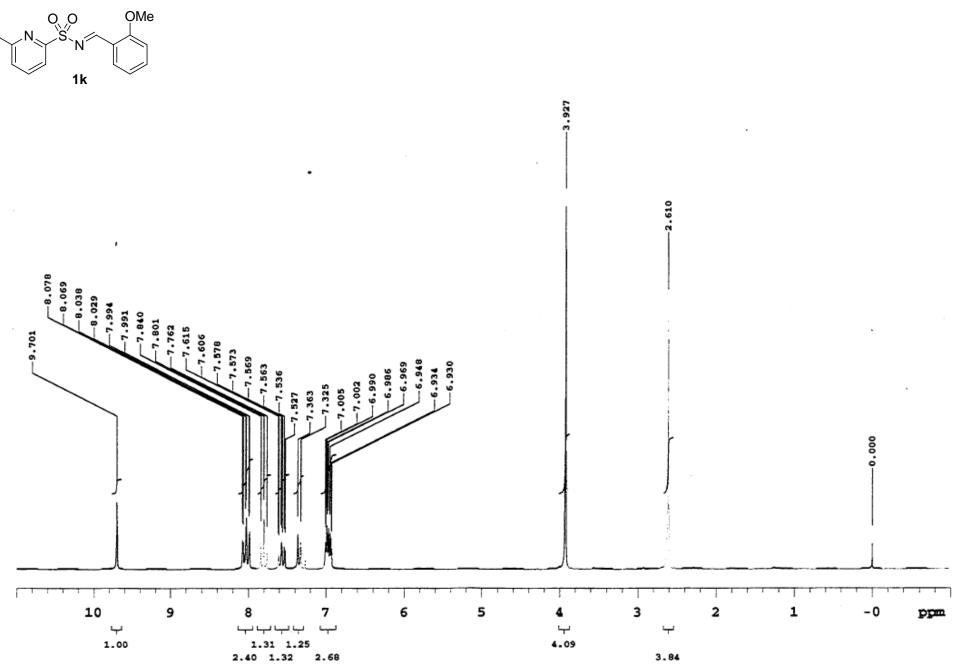


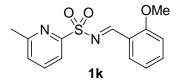




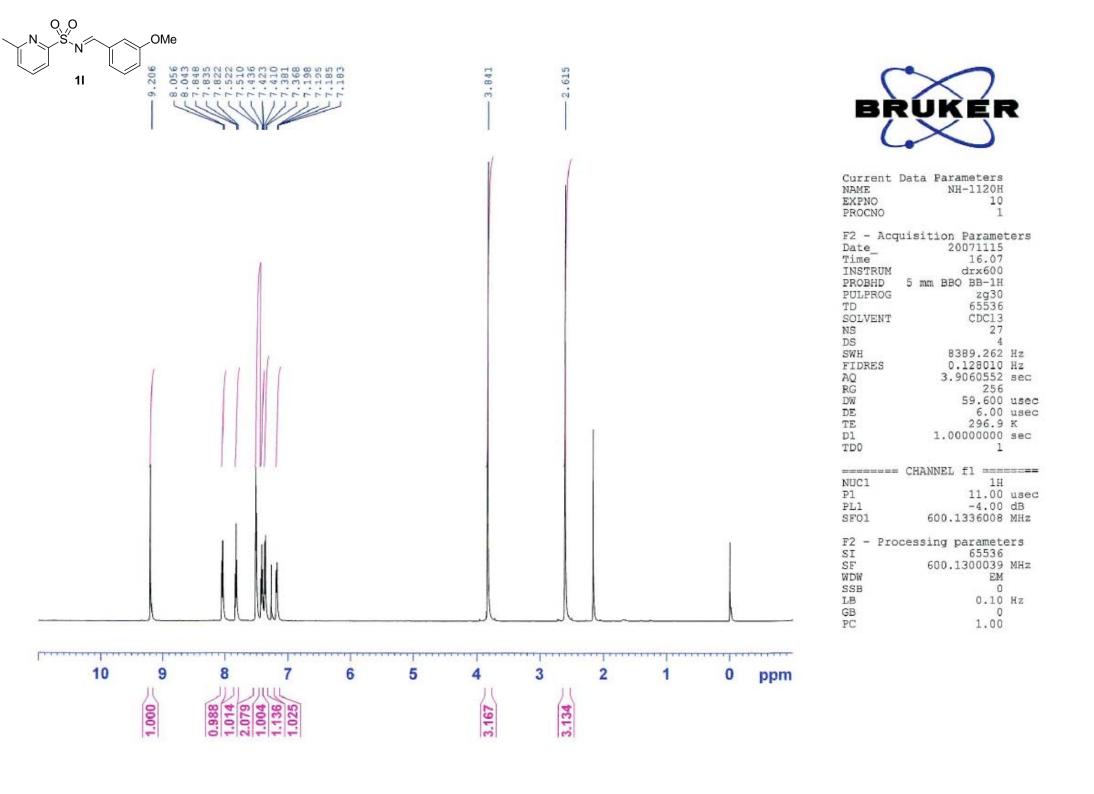

2

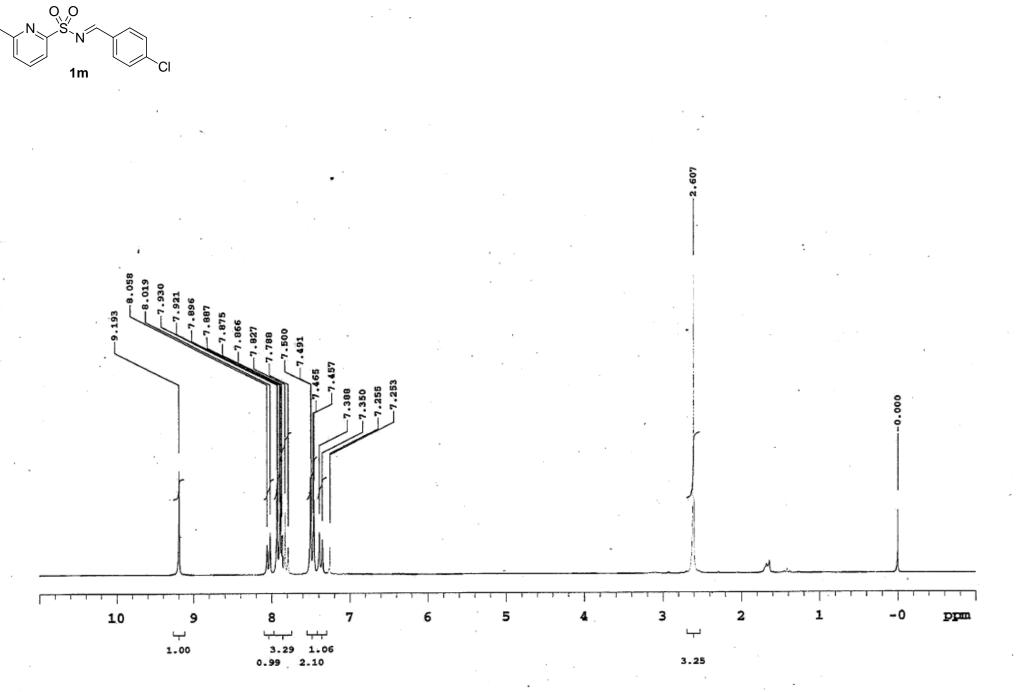


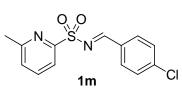


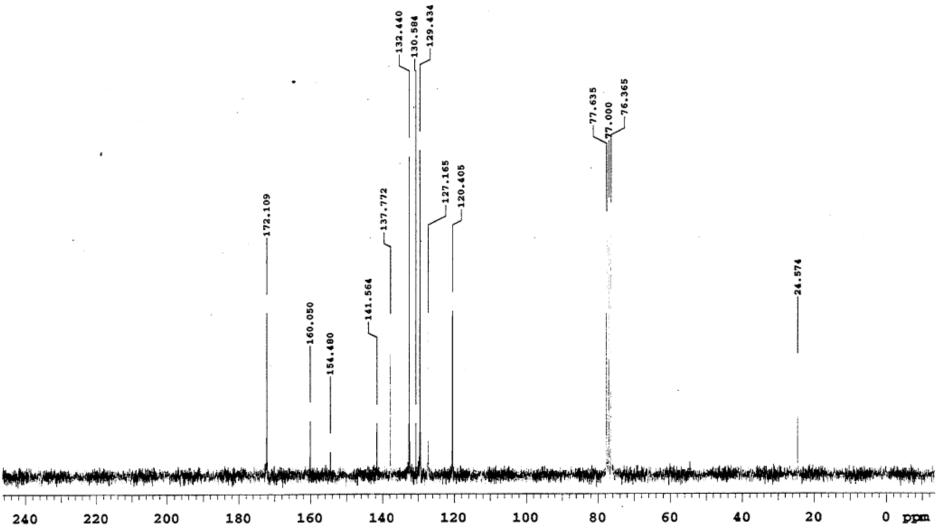

•

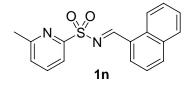


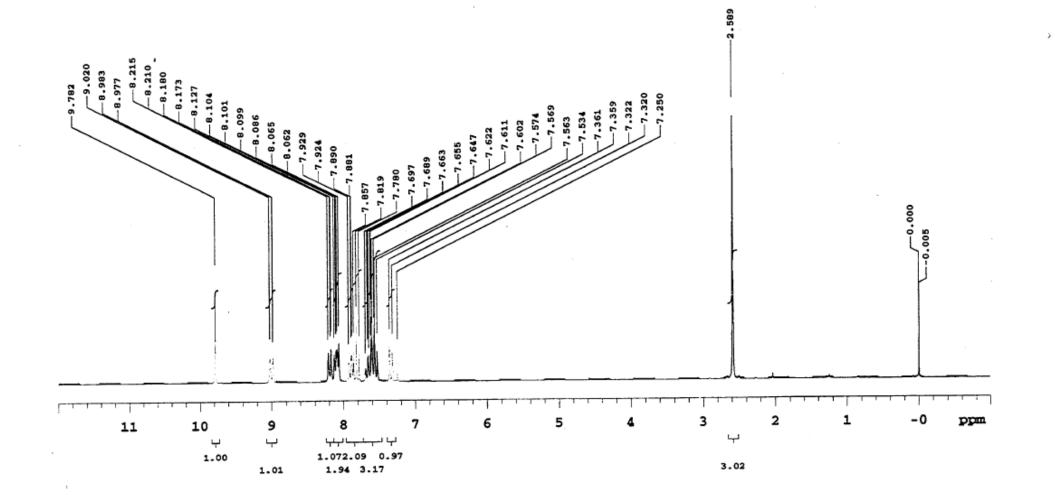


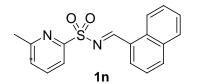


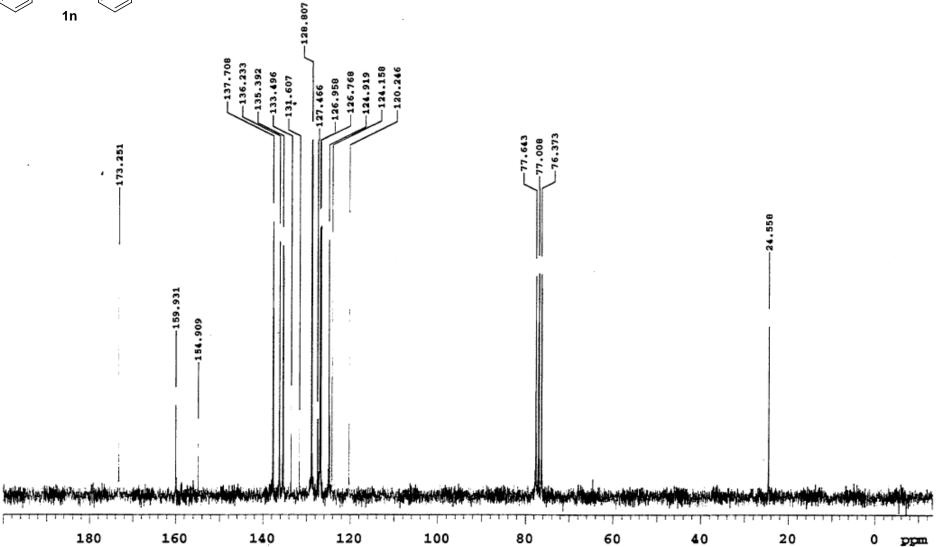


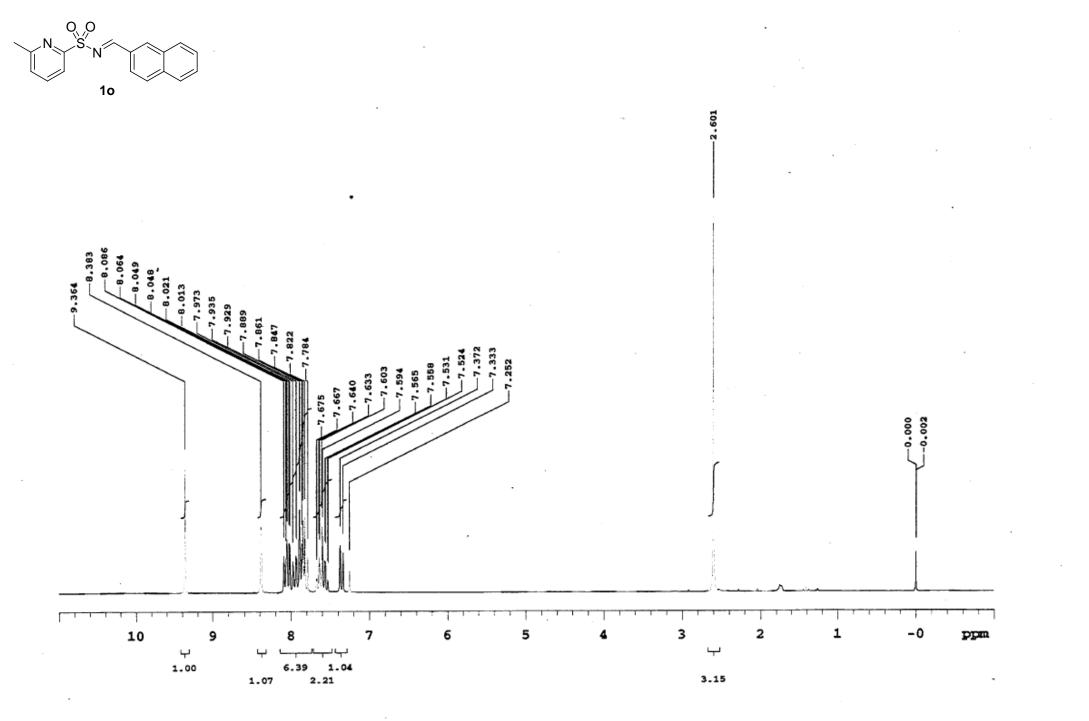




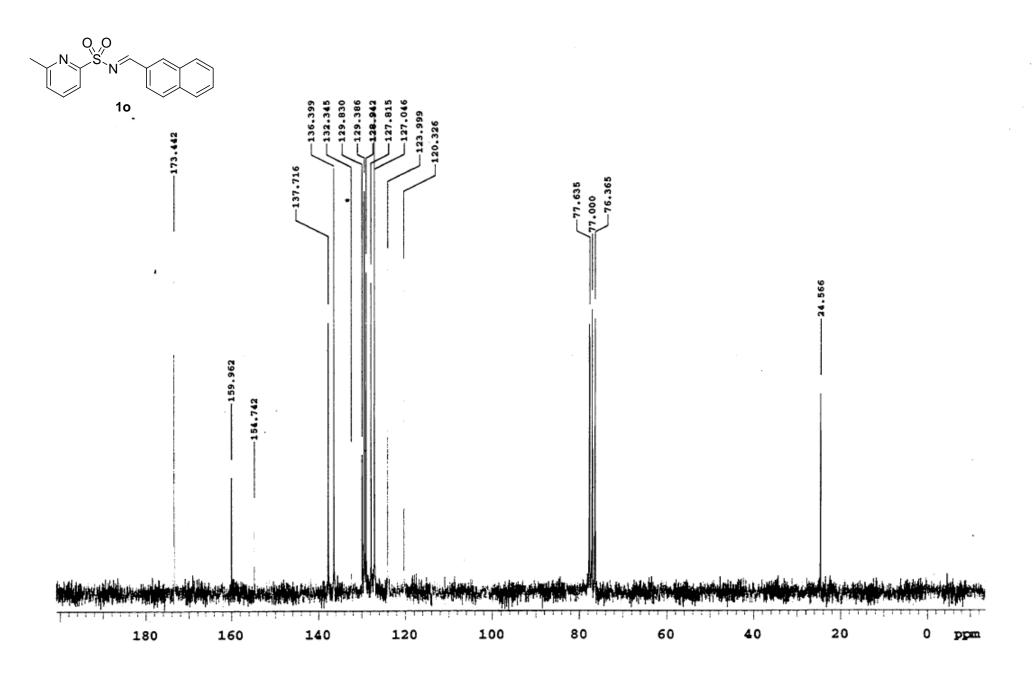

O O N S'N OMe 11	173,922	160.322 160.051 154.950	137.941 133.660 130.105 127.253 122.631 122.631 113.327	77.213	55,530	24.369		BRUKER
								Current Data Parameters NAME NH-1120C EXPNO 10 PROCNO 1 F2 - Acquisition Parameters Date_ 20071115 Time 16.17 INSTRUM drx600 PROBHD 5 mm BBO BB-1H PULPROG zgpg30 TD 131072 SOLVENT CDC13 NS 52 DS 4 SWH 45454.547 Hz FIDRES 0.346791 Hz AQ 1.4418530 sec RG 3649.1 DW 11.000 usec DE 6.00 usec TE 297.2 K D1 0.60000002 sec
addite and the solid to be a first of the solid to be a solid to be a solid to be a solid to be a solid to be a The first of the solid to be a solid to be	an son sjoeder	Ginilay Street La state of		in de la paratera i den transferia Ante i paratera i den transferia de la paratera de	. Said a Sain &	and shares and a local of a special sp		dl1 0.03000000 sec DELTA 0.50000000 sec TD0 1
200 1	80	160	140 120 10	0 80 6	i0 · ·	40 20	0 ppm	FL12 15.00 dB PL13 15.00 dB SF02 600,1324005 MHz F2 - Processing parameters SI 131072 SF 150.9028160 MHz WDW EM SSB 0 LB 1.00 Hz GB 0 PC 1.40

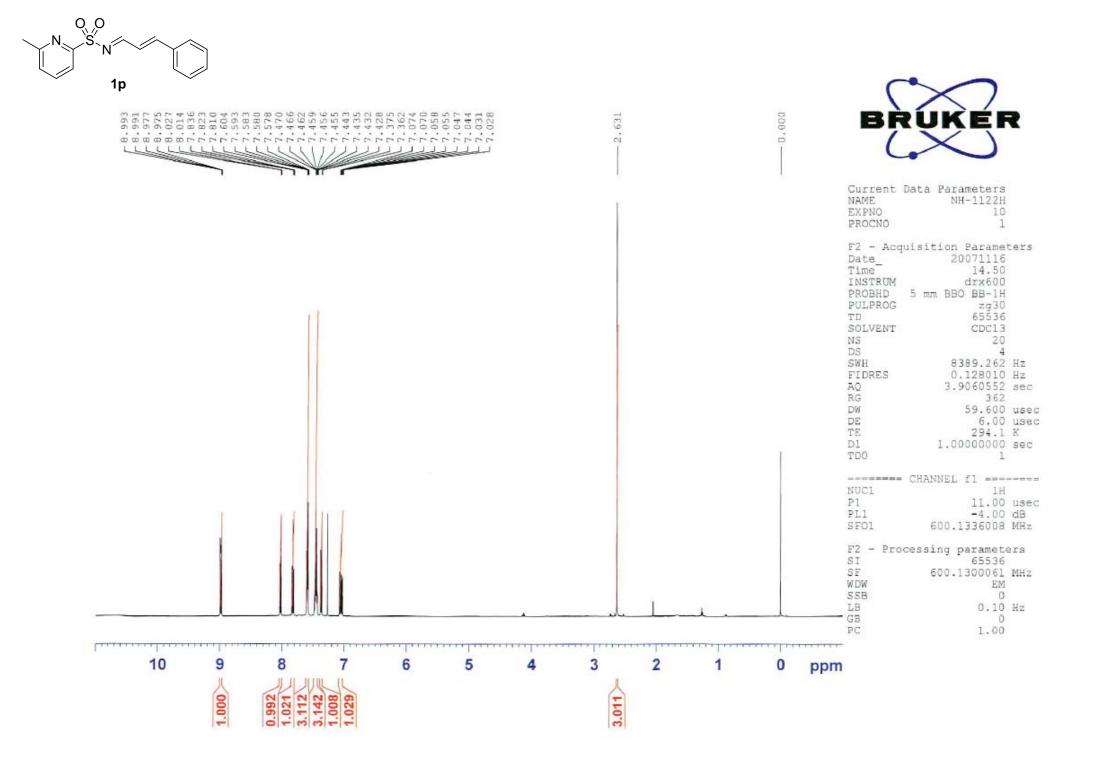


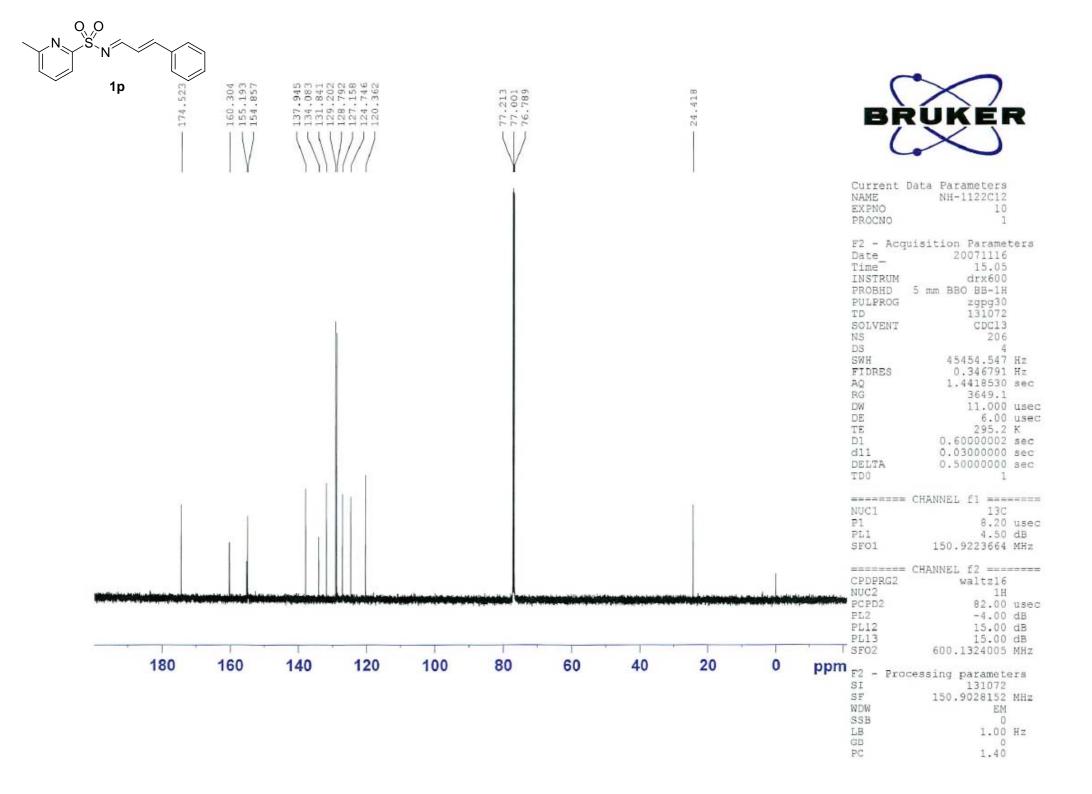


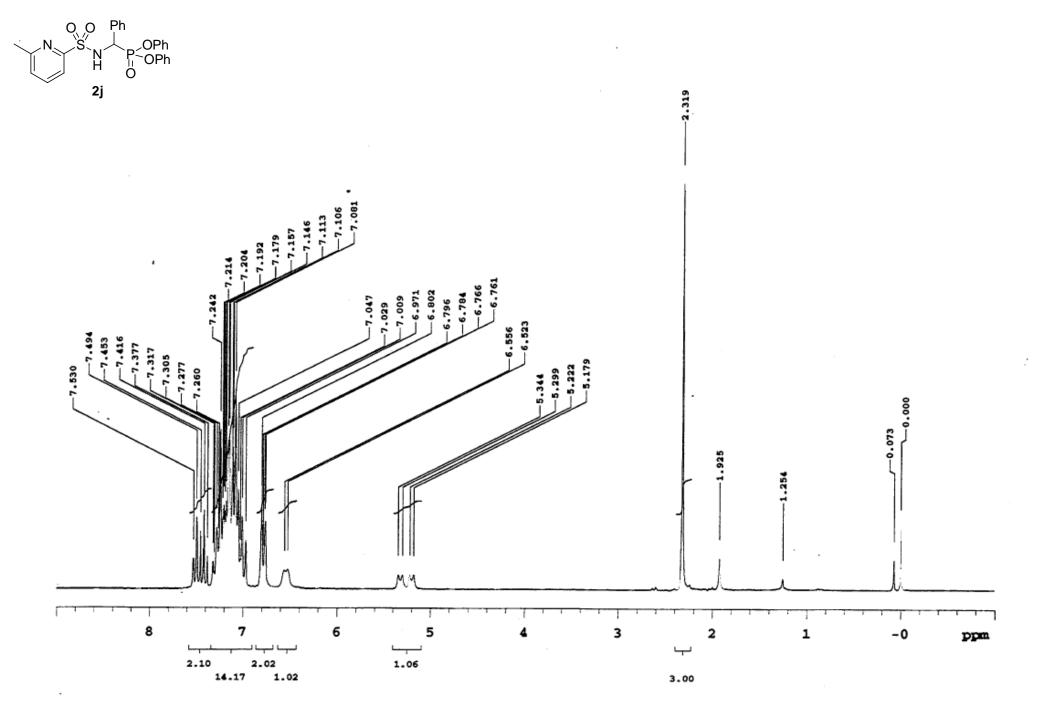

٠

.

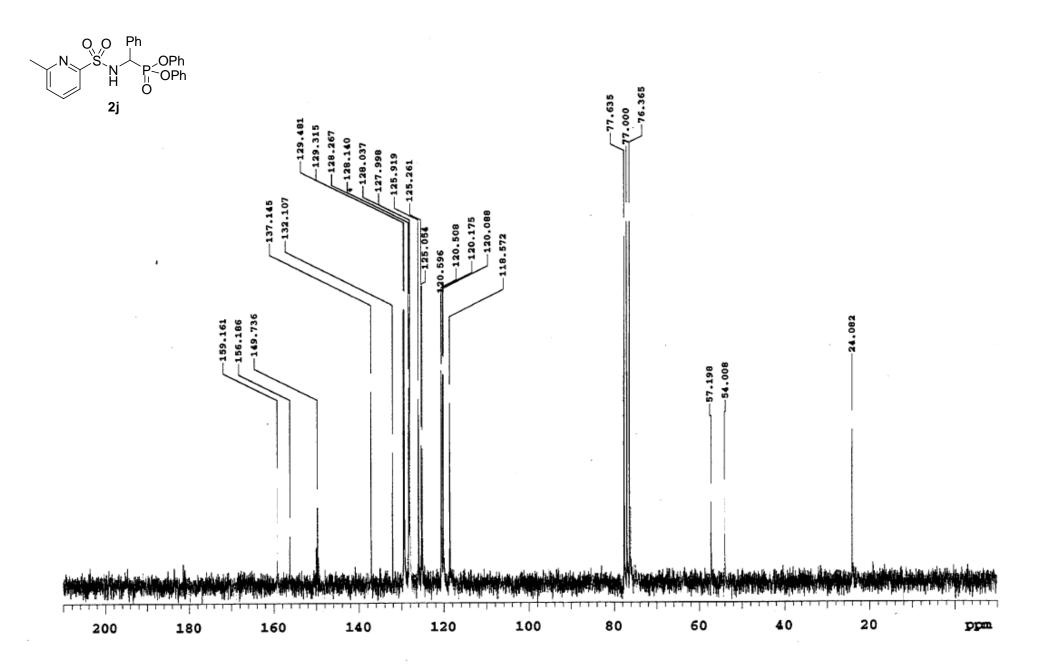


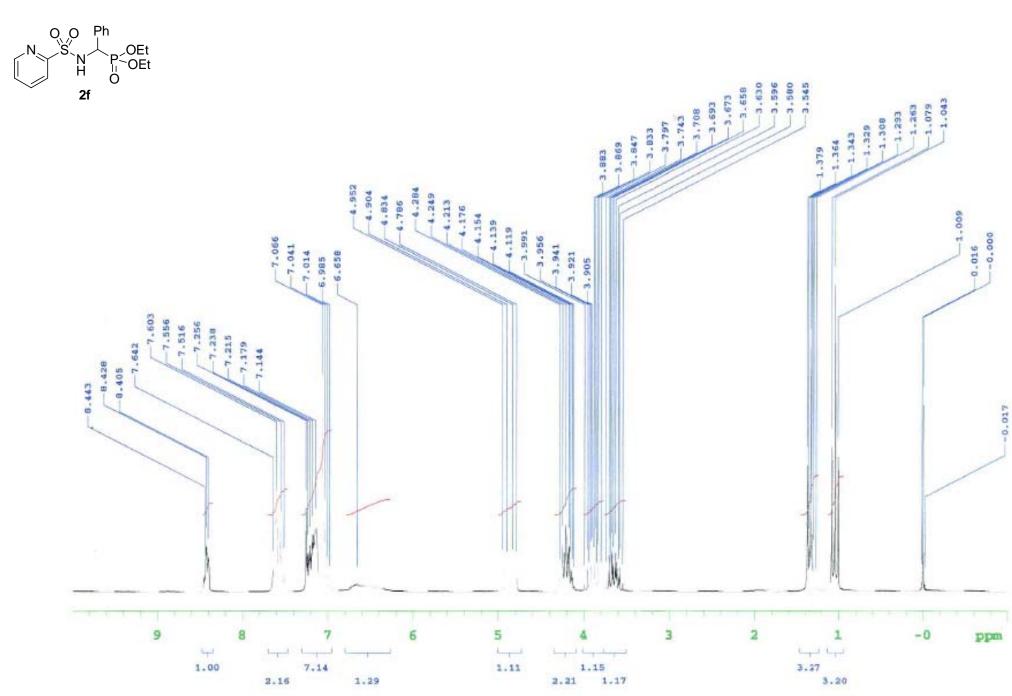


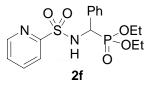

- -- -

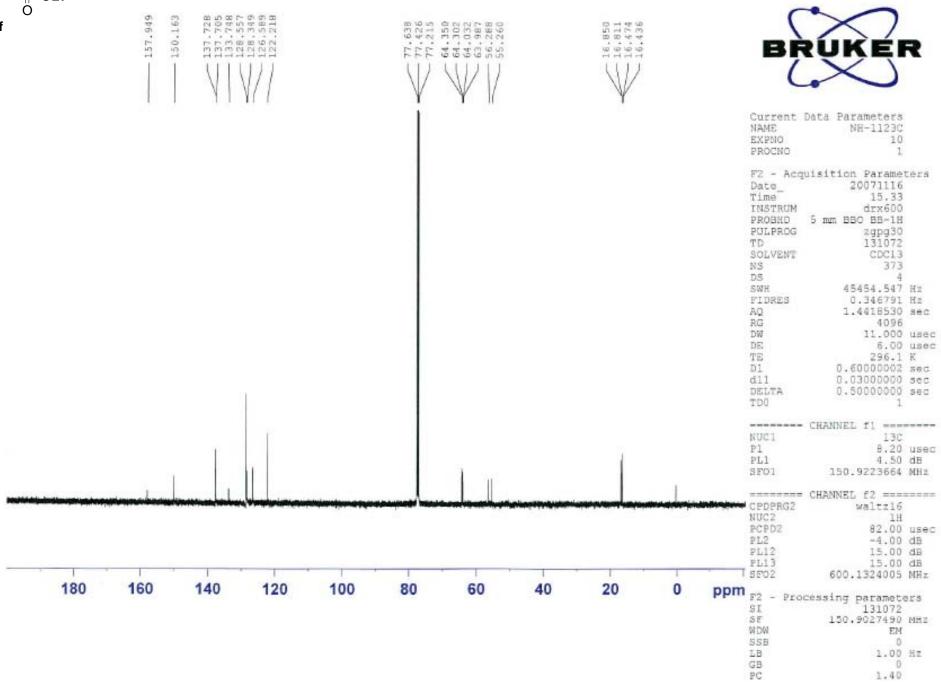


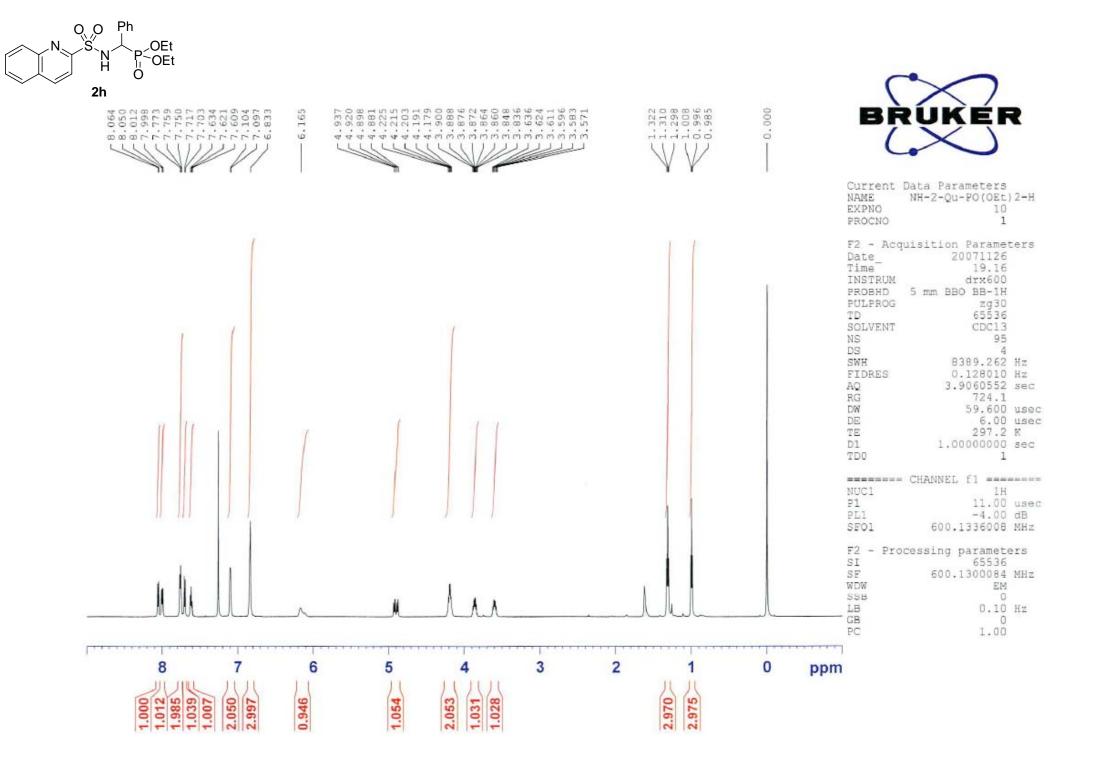
 \sim

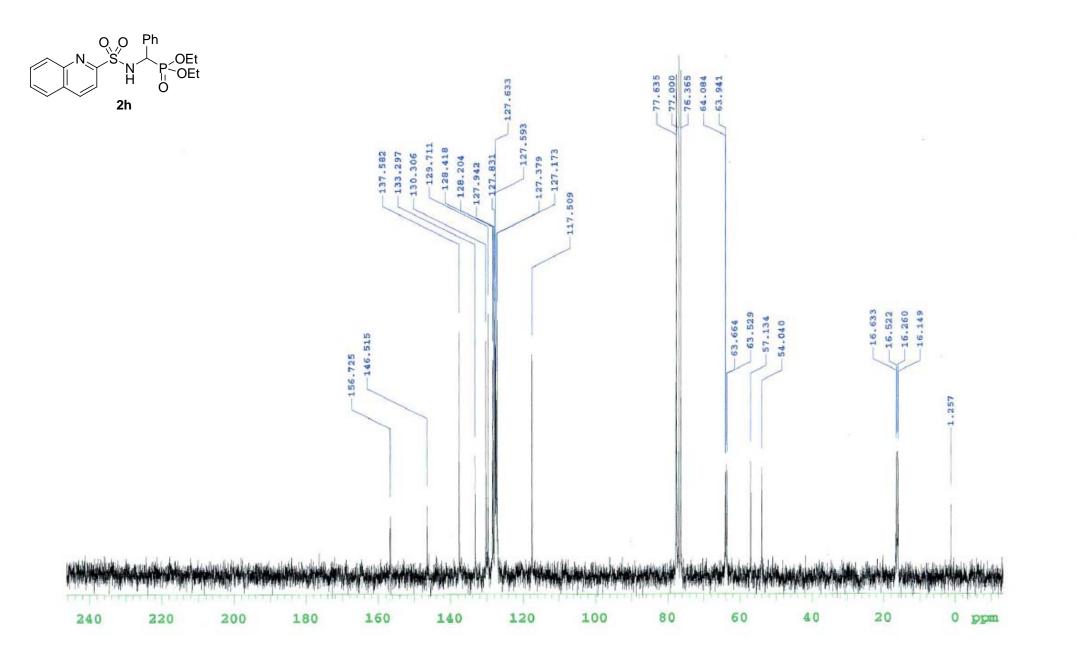


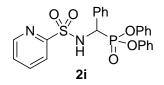


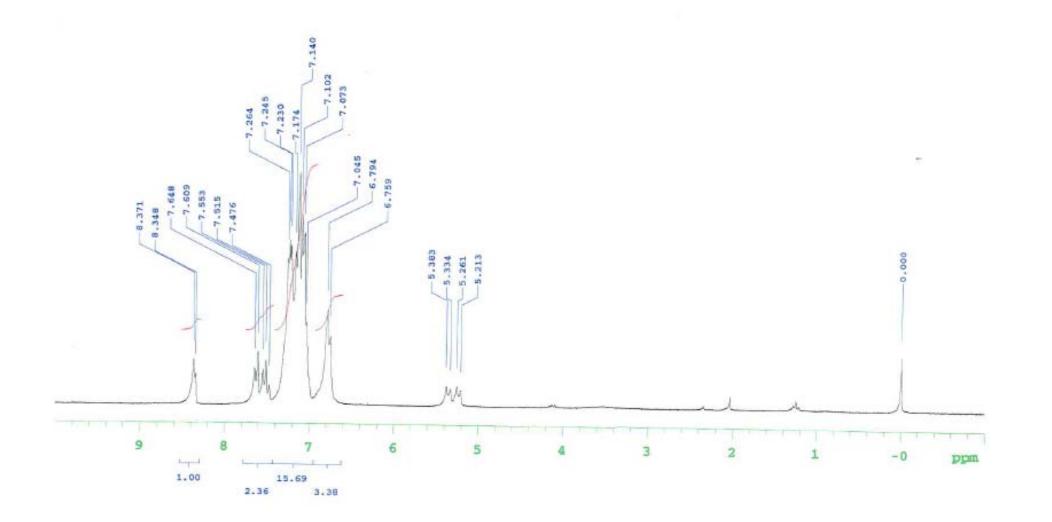


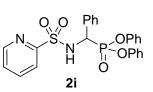


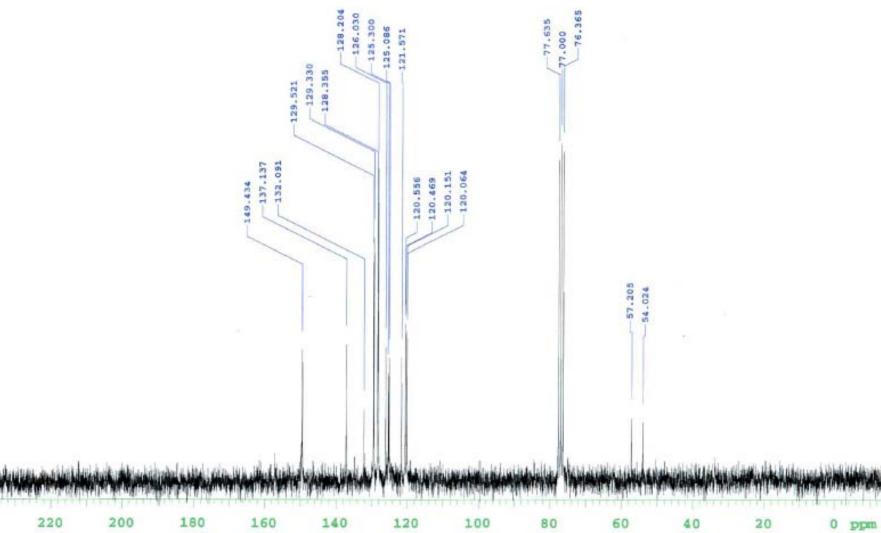

. . . .

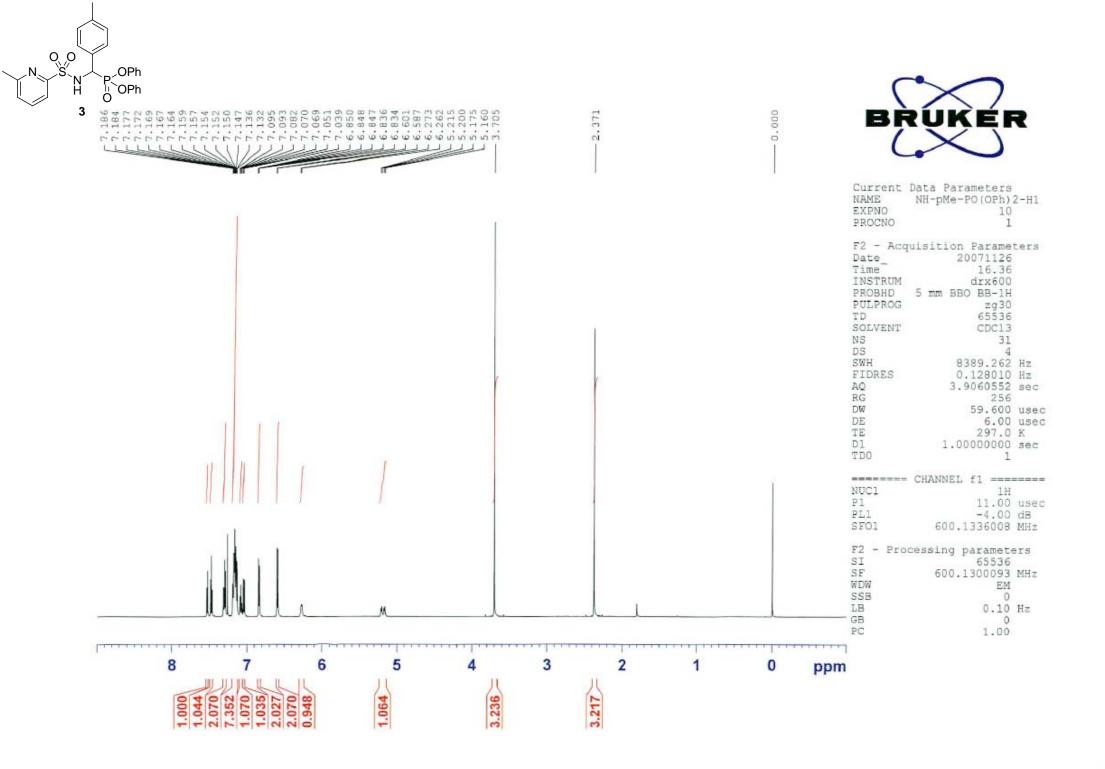


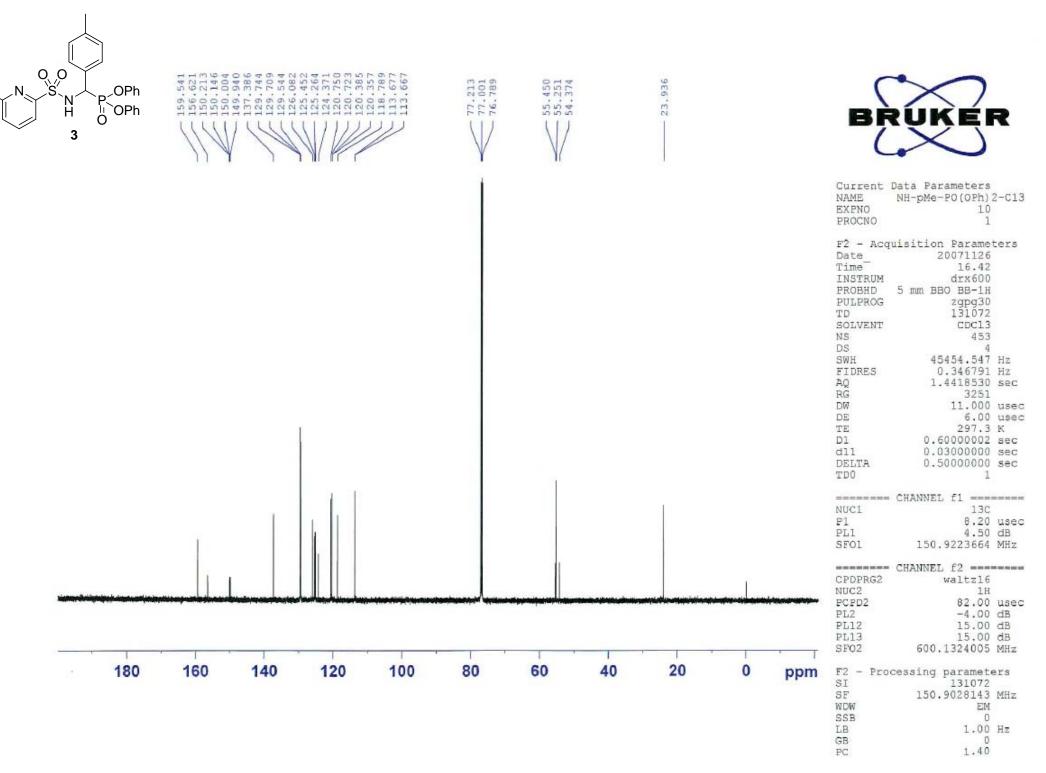


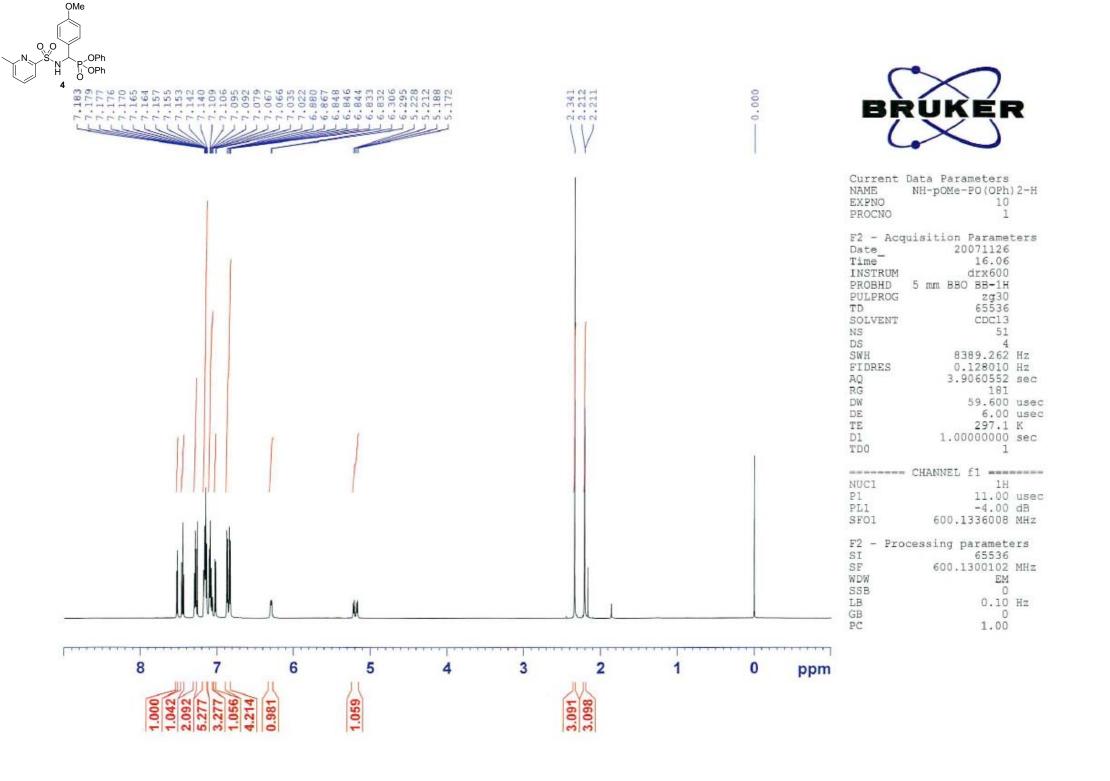


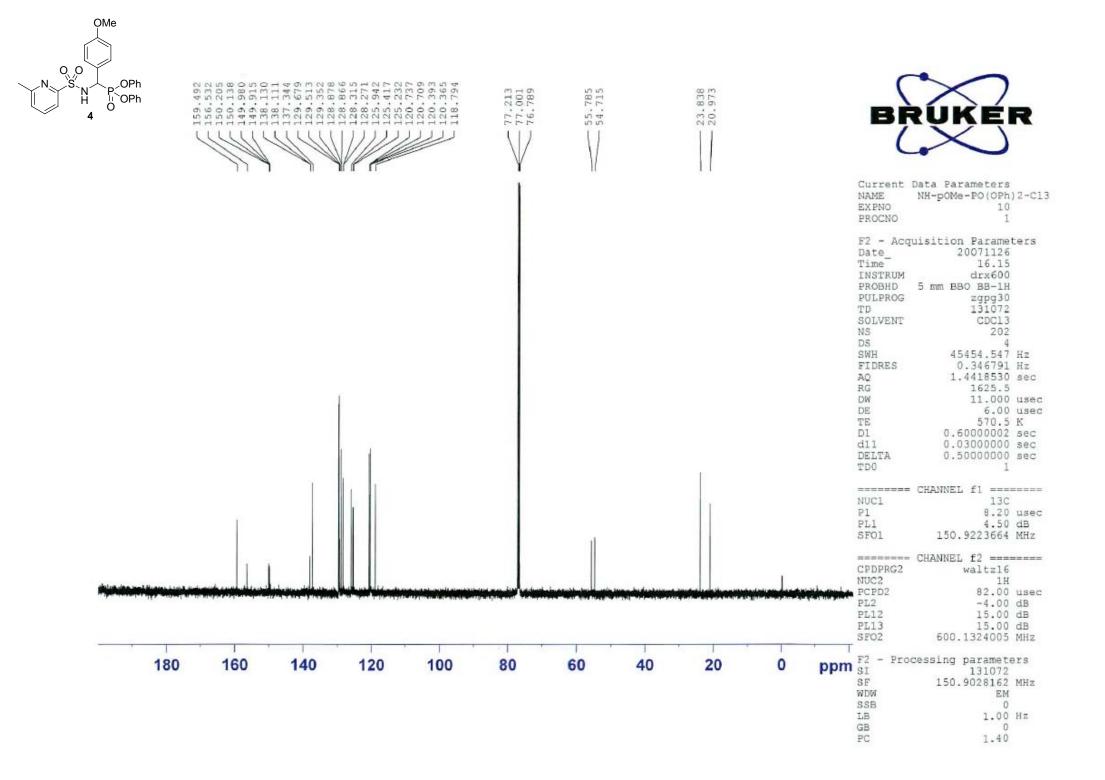


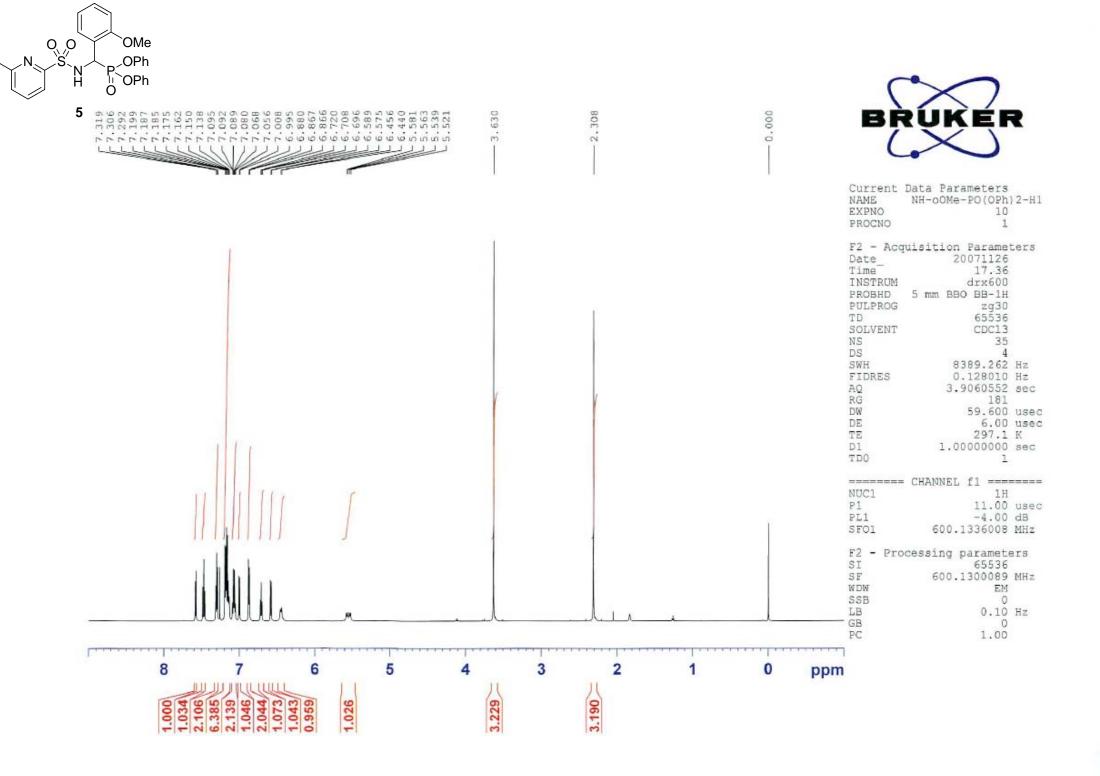


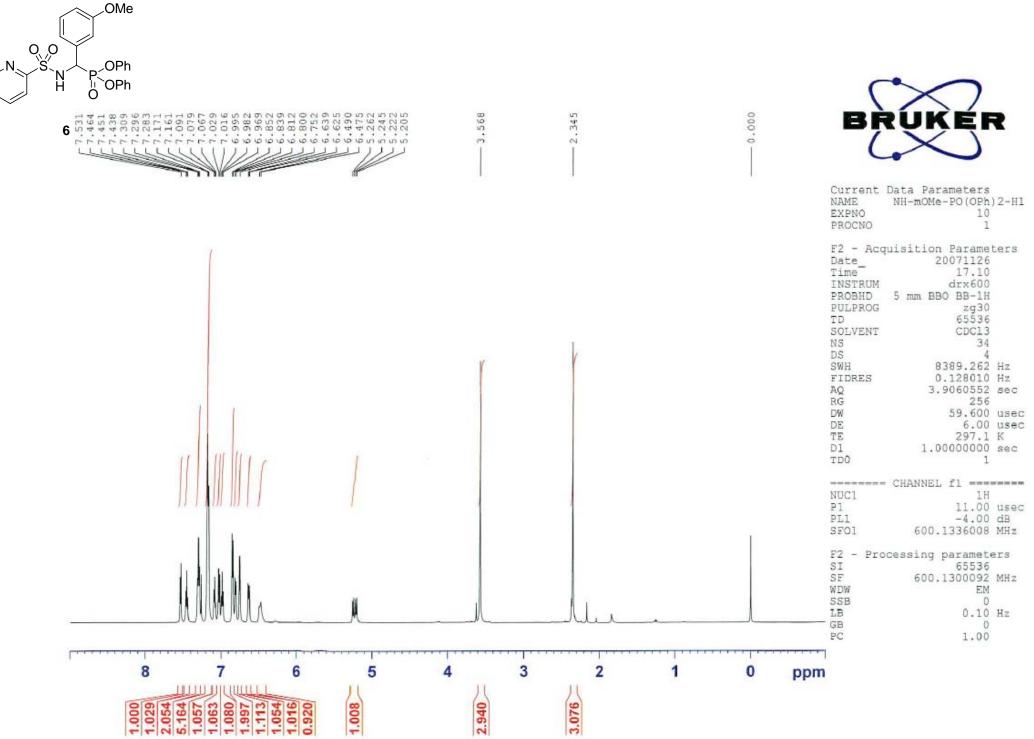


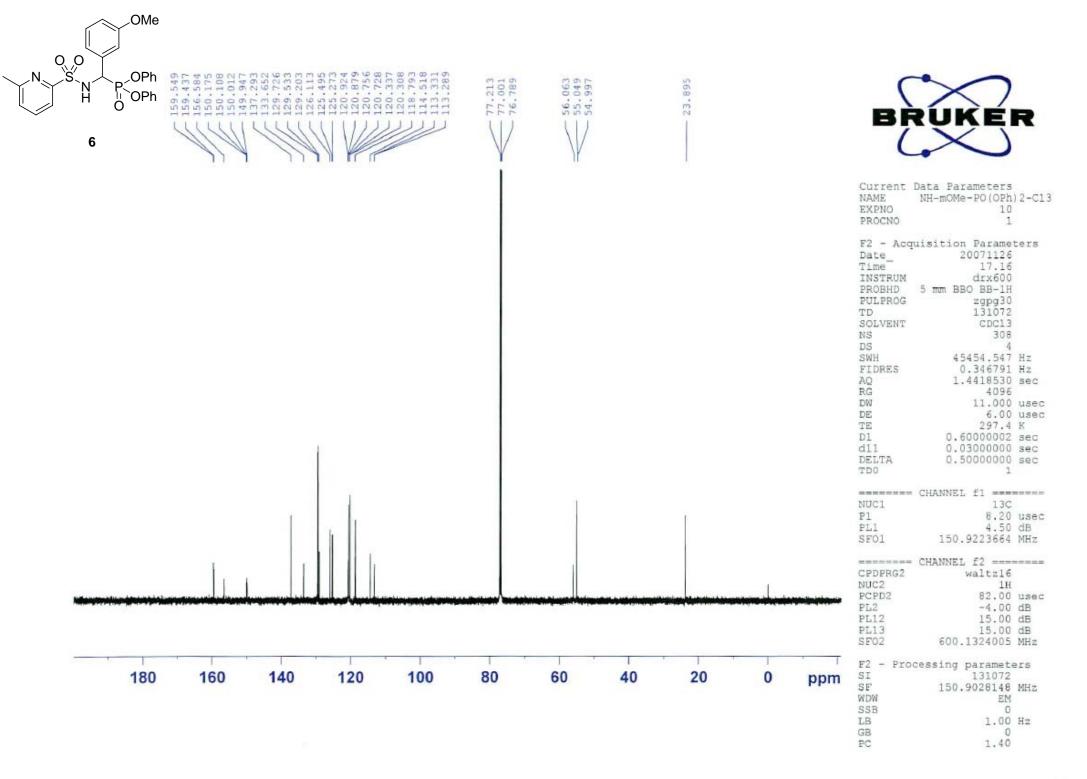

3.6

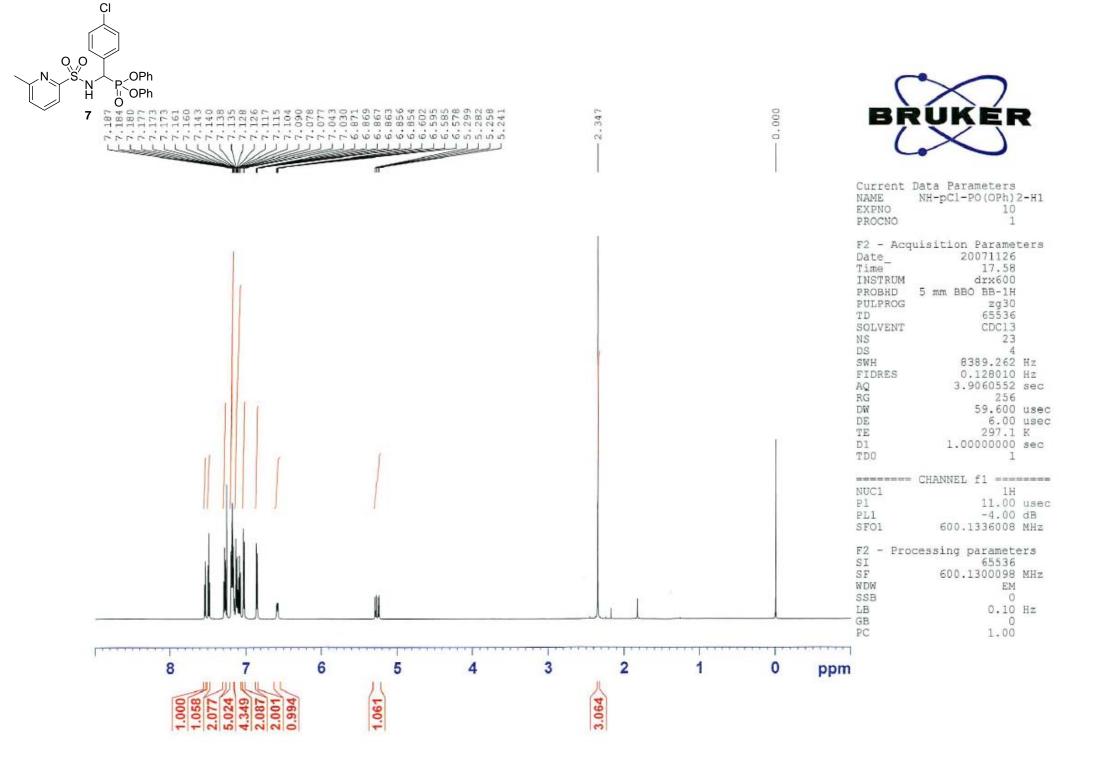

10

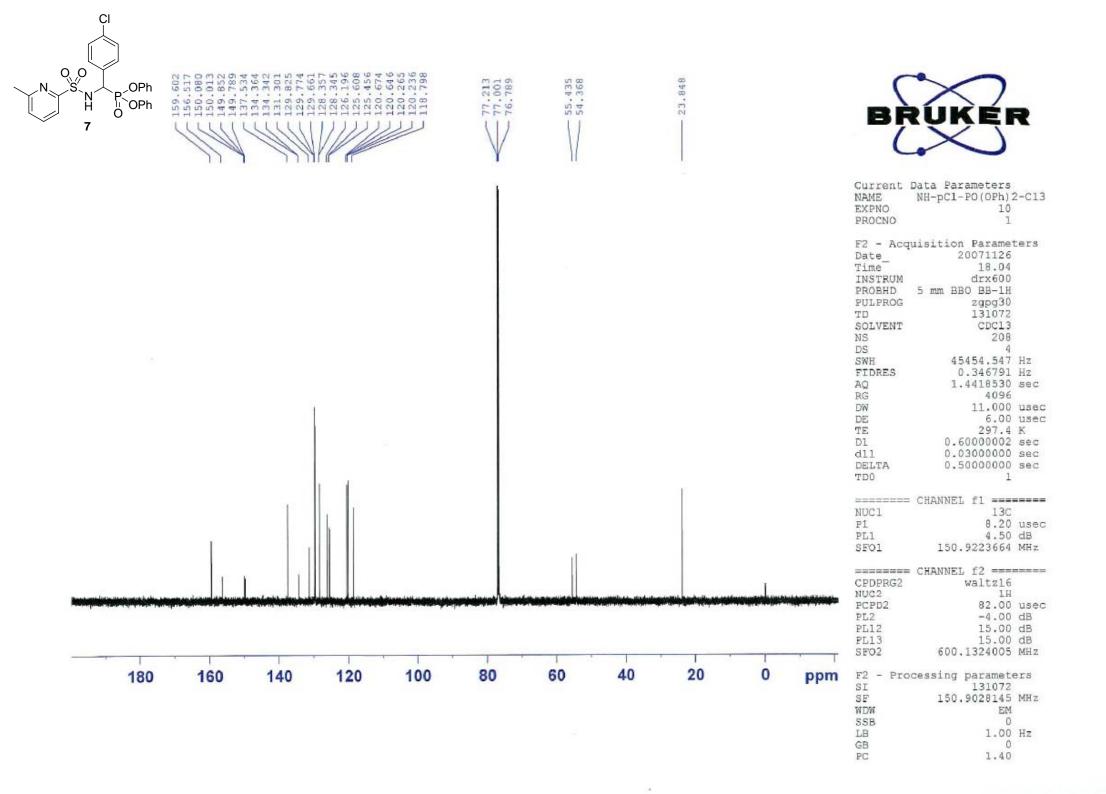


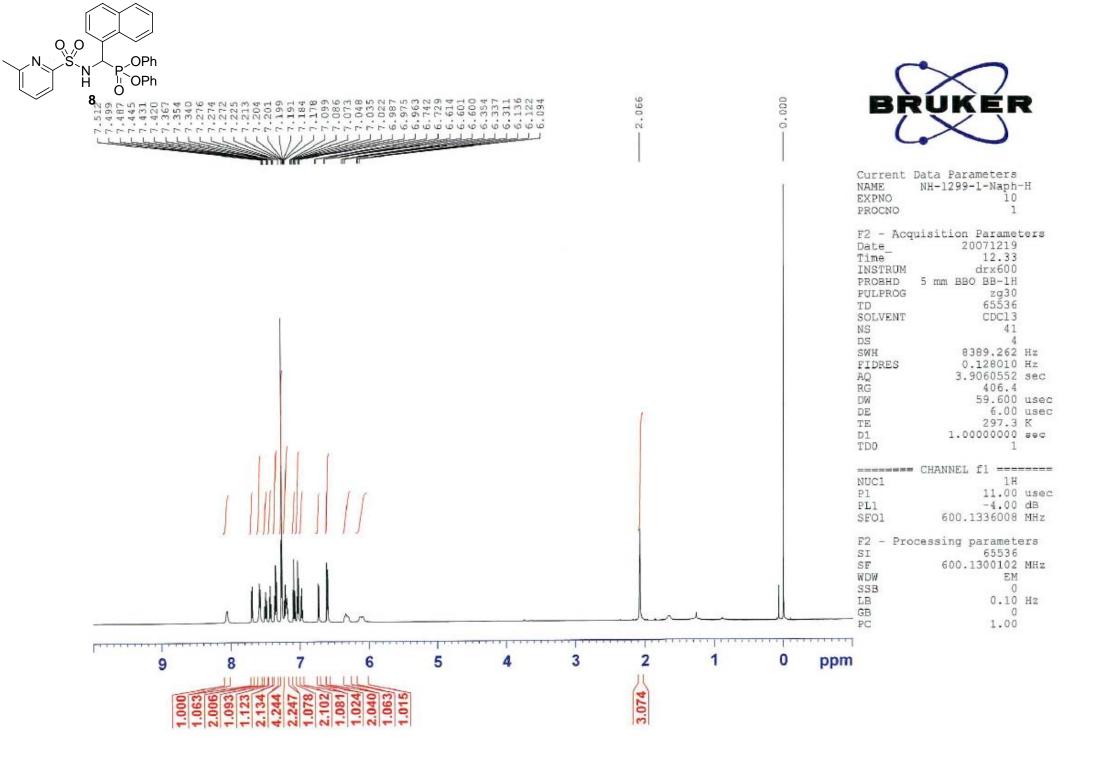


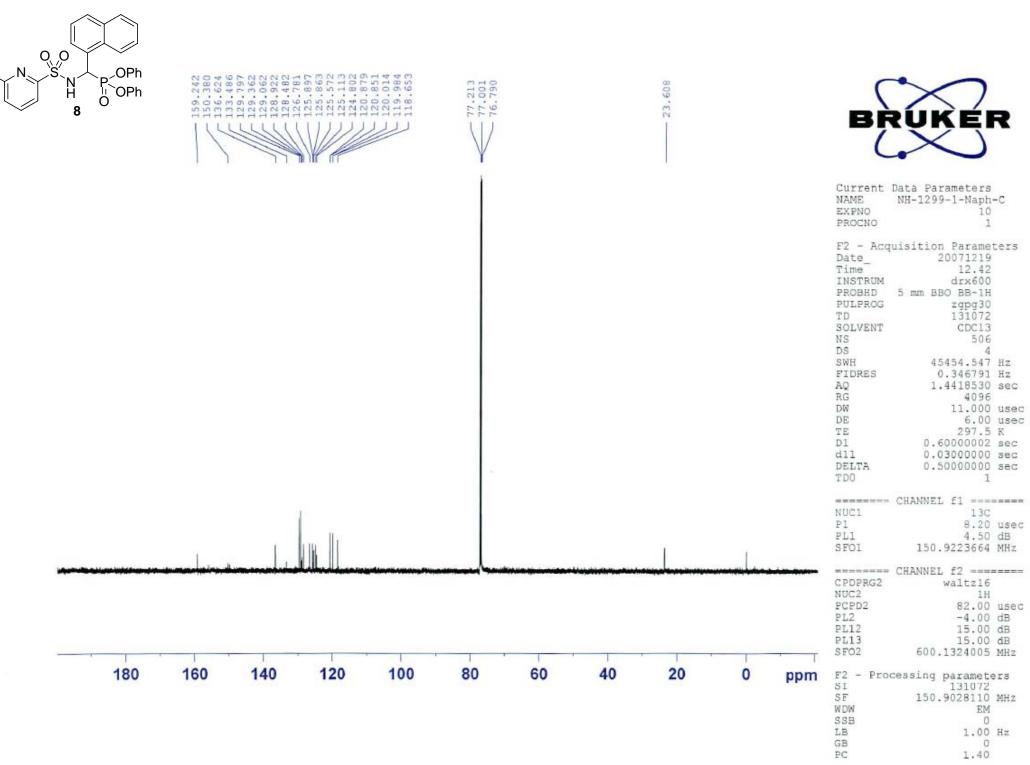


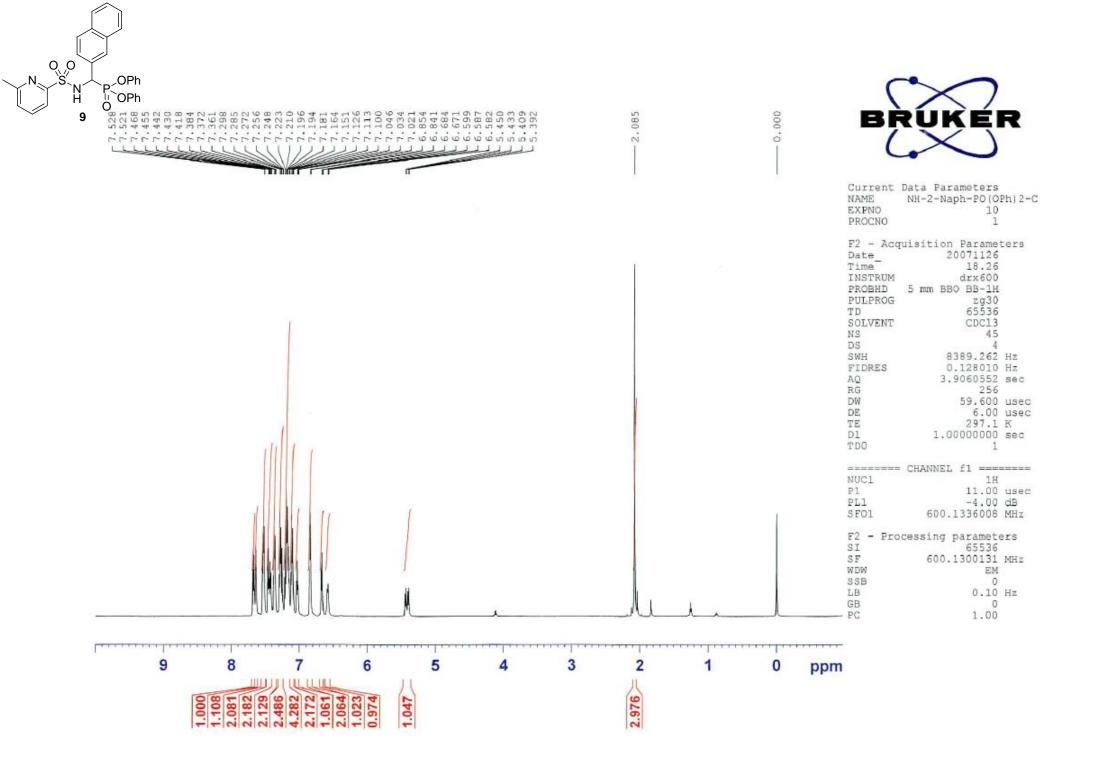


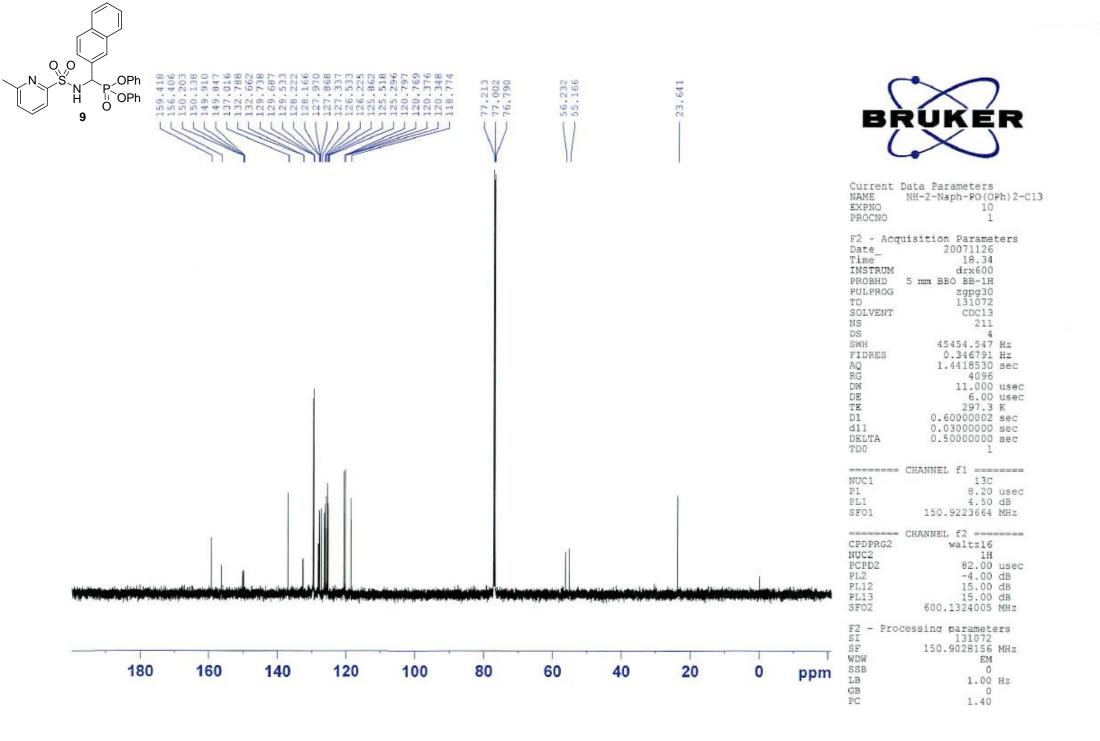


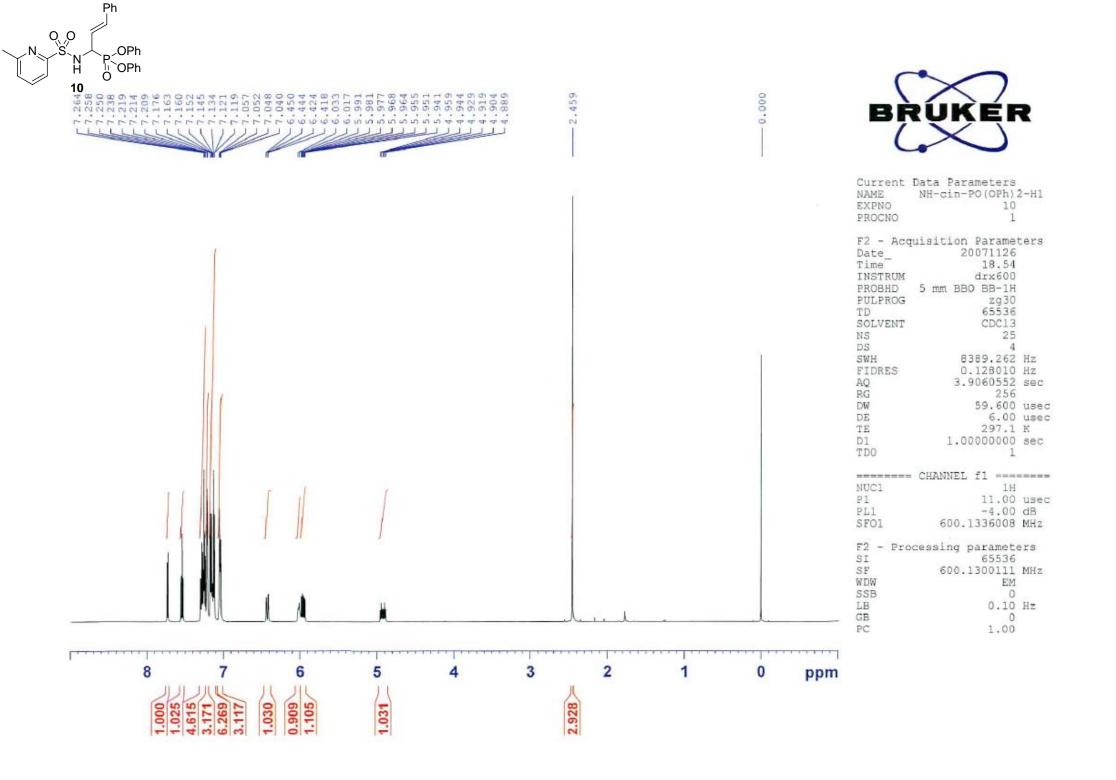


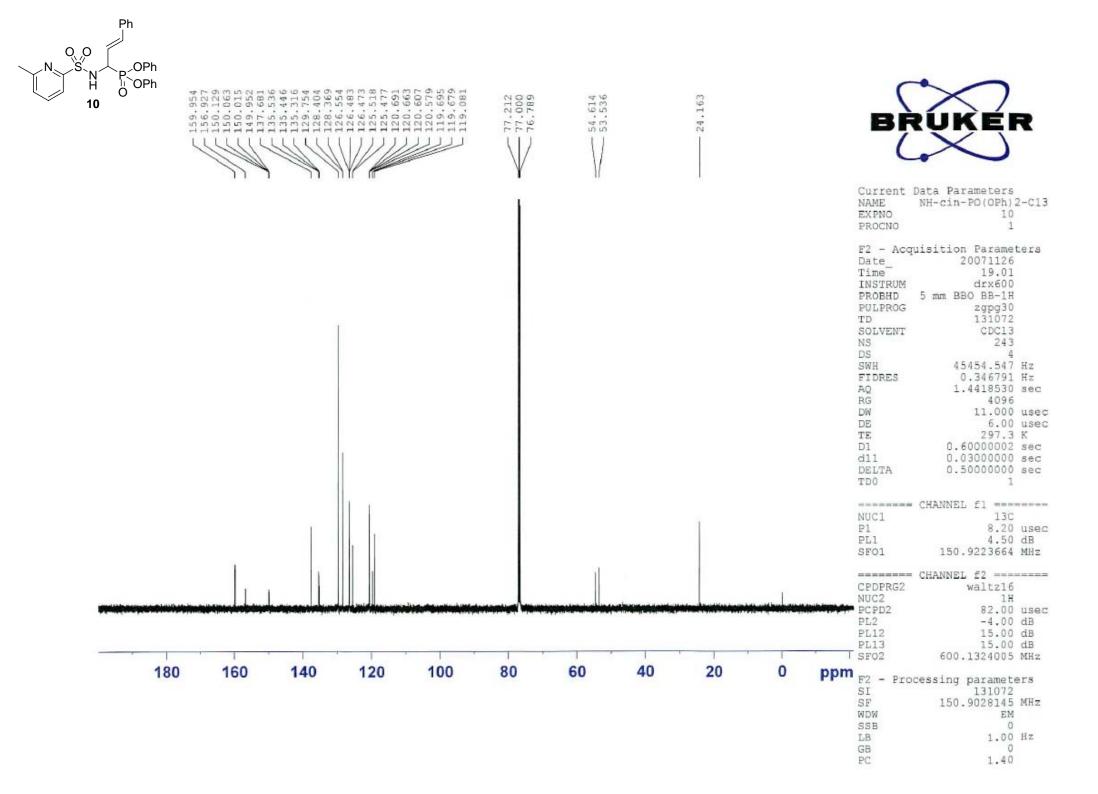

OMe N OPh N OPh H OPh 5 5 5 5 5 5 5 5 5 5 5 5 5	. 77.213 77.213 76.789	55.438	23, 970	BRUKER
				Current Data Parameters NAME NH-oOMe-PO(OPh)2-C13 EXPNO 10 PROCNO 1 F2 - Acquisition Parameters
				Date 20071126 Time 17.42 INSTRUM drx600 PROBHD 5 mm BBO BB-1H PULPROG zgpg30 TD 131072 SOLVENT CDC13 NS 207 DS 4 SWH 45454.547 FIDRES 0.346791 AQ 1.4418530 RG 5792.6 DW 11.000 DE 6.00 DE 297.3 D1 0.6000002 d11 0.0300000 DELTA 0.5000000 TD0 1
				Plannel fl ====== NUC1 13C P1 8.20 usec PL1 4.50 dB SFO1 150.9223664 MHz
				CHANNEL f2 f2 CPDPRG2 waltz16 NUC2 1H PCPD2 82.00 usec PL2 -4.00 dB PL12 15.00 dB PL13 15.00 dB SFO2 600.1324005 MHz
180 160 140 120 100	80	60 40	20 0 ppm	F2 - Processing parameters SI 131072 SF 150.9028166 MHz WDW EM SSB 0 LB 1.00 Hz GB 0 PC 1.40

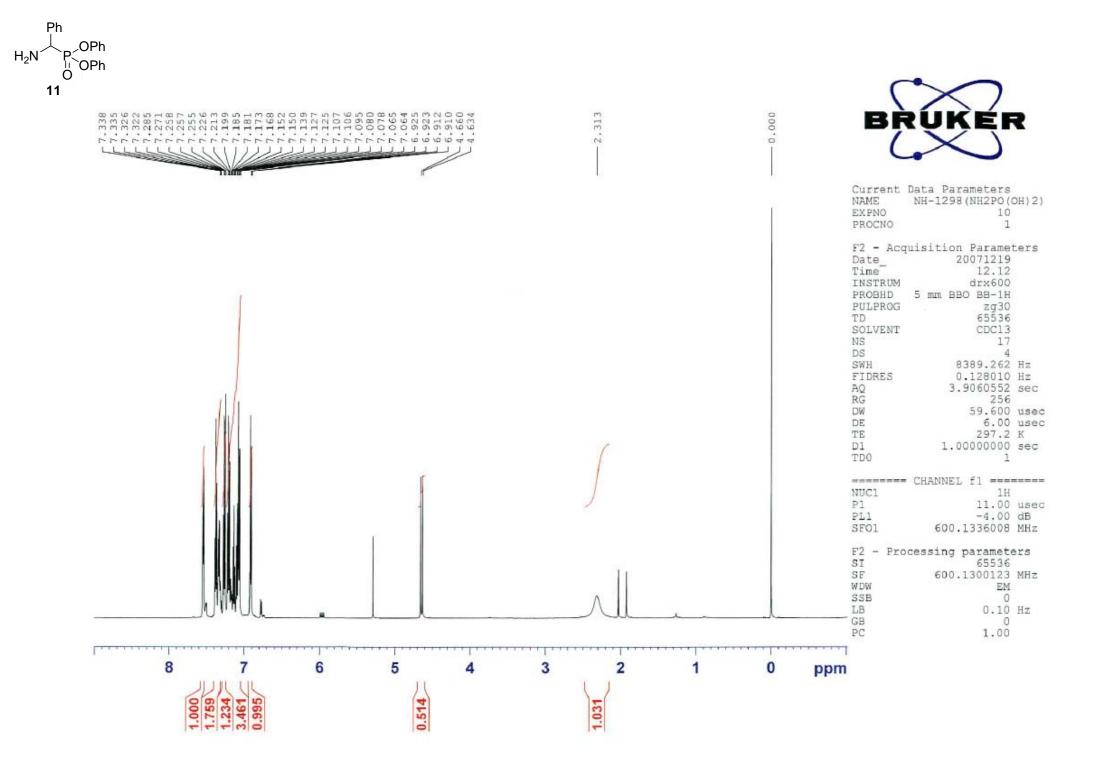


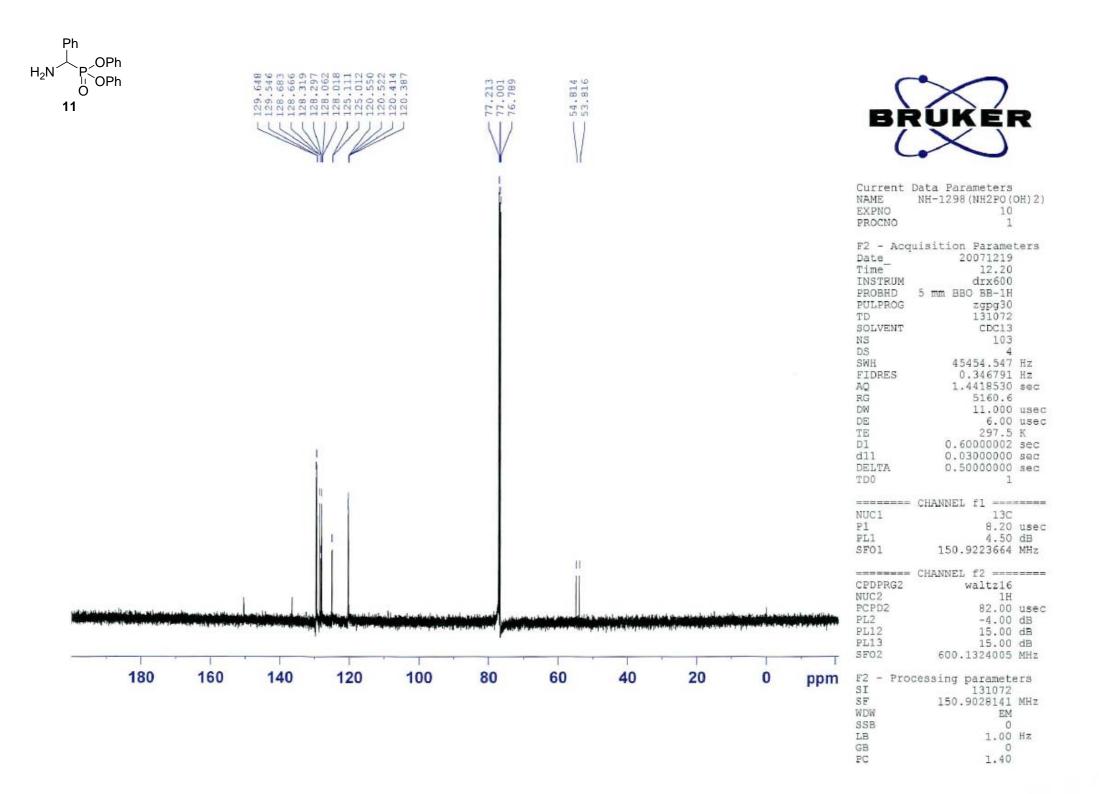


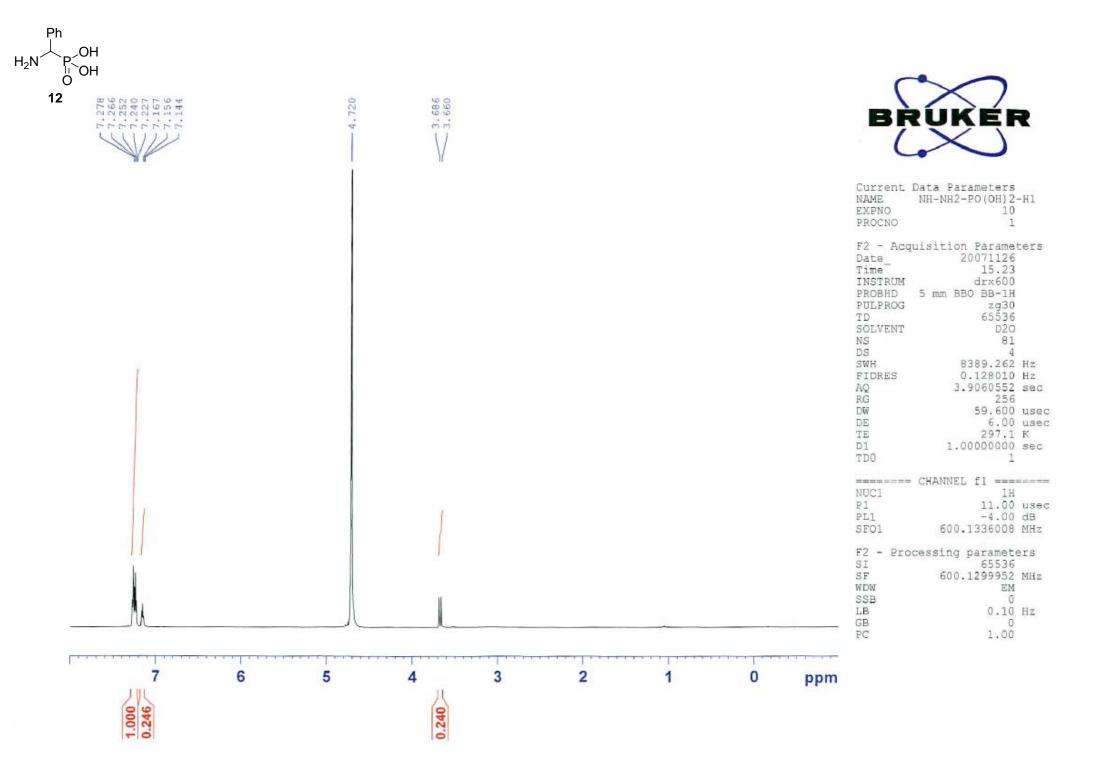












Ph N P-OH O OH 12		- 128.393	126.573			56.388				I	BF	UKER
										NAL	4E	Data Parameters NH-NH2-PO(OH)2-C13 10 1
										Dat Tir INS PRO PUI TD SOI SOI NS DS SWI	te_ ne STRUM DBHD LPROG LVENT I DRES	quisition Parameters 20071126 15.33 drx600 5 mm BBO BB-1H 2gpg30 131072 CDC13 419 4 45454.547 Hz 0.346791 Hz 1.4418530 sec 16384 11.000 usec 297.2 K 0.60000002 sec 0.03000000 sec 1
a x a		1.		T S					1 .	NUC Pl PL	:1 L	CHANNEL fl ===================================
unistrajų įtyris tripinos au paraktinis mariti įtyris tripinos au paraktinis	en en der Kristenen under Aller angertingenen gert	angen finden og de se al Angen finden og de se al	, daa Madinallar Mili tanga Ma	ulul dan dan dan da Katalan dan dan dari	uller quantitud	n fille her her her her her her her her her he	in a literation of the second		nadata na papagaban ka		DPRG2 22 202 21 12 13	150.9223664 MHz = CHANNEL f2 ===================================
180	160	140	120	100	80	60	40	20	0		- Pro	000.1324005 MHz 131072 150.9027490 MHz EM 0 1.00 Hz 0 1.40