Copyright WILEY-VCH Verlag GmbH \& Co. KGaA, 69469 Weinheim, Germany, 2005.
Supporting Information for Macromol. Chem. Phys. 2005, 206, 1231.

Novel High and Ultrahigh Molecular Weight Poly(propylene) Plastomers by Asymmetric Hafnocene Catalysts

Cecilia Cobzaru, ${ }^{1}$ Sandra Deisenhofer, ${ }^{1}$ Andrew Harley, ${ }^{1}$ Carsten Troll, ${ }^{1}$ Sabine Hild, ${ }^{2}$ Bernhard Rieger* ${ }^{1}$
${ }^{1}$ Inorganic Chemistry II, Department of Material Science and Catalysis, University of Ulm, Ulm D-89069, Germany

Fax: (+49)-731-502-3039; E-mail: bernhard.rieger@chemie.uni-ulm.de
${ }^{2}$ Department of Experimental Physics, University of Ulm, Albert-Einstein-Allee 11, 89069 Ulm, Germany

Crystal structure of catalyst 7b

Figure 10 Schematic illustration of relevant bond angles

The $\mathrm{Cp}^{\mathrm{Flu}}-\mathrm{Hf}-\mathrm{Cp}^{\text {Ind }}$ angle ($\delta: 128.51^{\circ}$, Table 6 Supp. Inf.) is in between those of the complexes $\mathbf{6 b}{ }^{[11]}\left(\delta: 128.04^{\circ}\right)$ and $\mathbf{6 a}{ }^{[5]}\left(\delta: 128.6^{\circ}\right)$. The γ-angles, slightly smaller than $180^{\circ}\left(\gamma^{\mathrm{Flu}}=\right.$ $171.51^{\circ}, \gamma^{\text {Ind }}=178.6^{\circ}$, are in good agreement with the results previously reported for other bridged indenyl and fluorenyl complexes. ${ }^{[11]}$ The Hf-fluorenyl centroid bond of $\mathbf{7 b}(2.59 \AA)$ is distinctly longer than the distance between $\mathrm{Hf}(\mathrm{V})$ and the indenyl centroid ($2.50 \AA$) leading to a non-symmetric positioning of the $\mathrm{Hf}(\mathrm{IV})$-center between the two Cp planes. A $\beta^{\text {Ind }}$ value of 87.14° points toward a nearly ideal η^{5}-coordination of the indenyl ring to $\mathrm{Hf}(\mathrm{IV})$. This is different for the fluorenyl fragment. The value of $\beta^{\text {Flu }}$ close to $80^{\circ}\left(80.42^{\circ}\right)$ and the corresponding Hf-C distances (ranging from 2.405 to $2.707 \AA$) clearly indicate a reduced hapticity of the fluorenyl fragment toward η^{3} coordination. Therein, complex 7b exhibits a structural characteristic that was also observed for unbridged and bridged bisfluorenyl zirconium complexes.

Table 5 Summary of Crystal Data and Structure Refinement Parameters for 7b

chemical formula	$\mathrm{C}_{27} \mathrm{H}_{24} \mathrm{Cl}_{2} \mathrm{Hf}$
Fw	597.85
cryst color and form	yellow plate
cryst syst	monoclinic
space group	$\mathrm{P} 21 / n$
$\mathrm{a}(\mathrm{A})$	12.1940(12)
$\mathrm{b}(\mathrm{A})$	15. 2188(11)
$\mathrm{c}(\AA)$	12.2284(13)
α (deg)	90.0
β (deg)	102.066
γ (deg)	90.0
$\mathrm{V}\left(\AA^{3}\right)$	2219.2(4)
Z	4
$\mathrm{D}_{\mathrm{C}}\left(\mathrm{Mg} / \mathrm{m}^{3}\right)$	1.789
Abs coeff $\mu\left(\mathrm{mm}^{-1}\right)$	4.953
F(000)	1168
cryst size (mm)	$0.34 \times 0.28 \times 0.24$
scan mode	29/ ω
$\theta_{\text {max }}$ (deg)	25.92
index ranges	$0 \leq h \leq 11$
	$-17 \leq k \leq 17$
	$-10 \leq l \leq 10$
no. of unique/all reflns	4284/4284
no. of params	272
goodness-of-fit on $\mathrm{S}\left(F^{2}\right)^{\text {a }}$	1.038
final R indices $[\mathrm{I}>2 \sigma(\mathrm{I})]^{\text {b }}$	$\mathrm{R}_{1}=0.0340, \mathrm{wR}_{2}=0.0807$
R indices (all data) ${ }^{\text {b }}$	$\mathrm{R}_{1}=0.0429, \mathrm{wR}_{2}=0.0841$
Largest differential peak and hole (e/ $/ \mathrm{A}^{3}$)	2.299 and -2.915

${ }^{\mathrm{a}} \mathrm{S}=\left[\Sigma\left[\mathrm{w}\left(\mathrm{F}_{\mathrm{o}}{ }^{2}-\mathrm{F}_{\mathrm{c}}{ }^{2}\right)^{2}\right] /(\mathrm{n}-\mathrm{p})\right]^{1 / 2}$, where n is the number of reflections and p is the number of refined parameters. ${ }^{\mathrm{b}} \mathrm{R}(\mathrm{F})=\Sigma| | \mathrm{F}_{\mathrm{o}}\left|-\left|\mathrm{F}_{\mathrm{c}}\right|\right| / \Sigma\left|\mathrm{F}_{\mathrm{o}}\right| ; \mathrm{wR}\left(\mathrm{F}^{2}\right)=\left[\Sigma\left(\mathrm{w}\left(\mathrm{F}_{\mathrm{o}}{ }^{2}-\mathrm{F}_{\mathrm{c}}{ }^{2}\right)^{2} / \Sigma \mathrm{wF}_{\mathrm{o}}\right]^{1 / 2}\right.$.

Table 6 Relevant Geometrical Parameters for 7b

$\beta^{\text {Flu }}$	$80.42(5)$
$\beta^{\text {Ind }}$	$87.14(5)$
$\gamma^{\text {Flu }}$	$171.51(5)$
$\gamma^{\text {Ind }}$	$178.6(5)$
ϕ	$62.93(5)$
δ	$128.51(5)$
Cl-Hf-Cl	$97.14(4)$
Hf-Cl(1)	$2.3909(12)$
Hf-Cl(2)	$2.4027(12)$
av. Hf-centroid(Cp $\left.{ }^{\text {Flu }}\right)^{\mathrm{a}}$	$2.582(6)$
av. Hf-centroid(Cp $\left.p^{\text {Ind }}\right)^{\mathrm{a}}$	$2.508(4)$
Hf1-C4 $\left(\mathrm{Cp}^{\mathrm{Flu}}\right)$	$2.707(5)$
Hf1-C5 $\left(\mathrm{Cp}^{\mathrm{Flu}}\right)$	$2.533(5)$
Hf1-C7 $\left(\mathrm{Cp}^{\mathrm{Flu}}\right)$	$2.688(5)$
Hf1-C8 $\left(\mathrm{Cp}^{\mathrm{Flu}}\right)$	$2.560(5)$
Hf1-C9 $\left(\mathrm{Cp}^{\mathrm{Flu}}\right)$	$2.405(5)$
Hf1-C14 $\left(\mathrm{Cp}^{\text {Ind }}\right)$	$2.537(4)$
Hf1-C19 $\left(\mathrm{Cp}^{\text {Ind }}\right)$	$2.584(5)$
Hf1-C20 $\left(\mathrm{Cp}^{\text {Ind }}\right)$	$2.484(5)$
Hf1-C21 $\left(\mathrm{Cp}^{\text {Ind }}\right)$	$2.477(4)$
Hf1-C22 $\left(\mathrm{Cp}^{\text {Ind }}\right)$	$2.458(4)$

