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The following is a description of the procedure for modeling nanoparticle assembly, with 

emphasis on the statement of the problem, the assumptions used, and their expected limitations. 

 

Statement of the electrical problem 

 

To determine the electric fields produced by the both the applied potential and the fixed surface 

charge, the system we must solve is given by: 
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Equation (1) represents Gauss’s Law, while (2) and (3) specify the conservation equation for the 

ith species in the electrolyte.  Here, ci, Ni, Di and zi represent the concentration, flux, diffusivity 

and valence respectively, f  is the electric potential, F is the Faraday constant, R is the universal 



gas constant, T is the temperature, e is the permittivity and v is the fluid velocity.  In general, this 

system constitutes a complicated non-linear problem.  In order to proceed, we make several 

assumptions which make the problem tractable.  The solution that we obtain will be self-

consistent, but it will not be universally valid.  To begin, we assume that the electric potential 

can be written as the sum of a DC component and an AC (sinusoidal) component: f  = f DC + f AC.  

The DC component is associated with the fixed surface charge of the electrodes and substrate, 

while the AC term follows from the applied potential.  Additionally, we assume that each ci can 

be similarly decomposed into a DC and AC term.  Ignoring convection, the equations then 

become:  
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We may now divide equations (4) and (5) into time-dependent and time-independent equations.  

For (5), we have: 
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Splitting the equations in this way presents no simplification unless we assume that the applied 

AC potential is at a sufficiently low voltage and sufficiently high frequency that the AC 

concentration, ci
AC, tends towards zero.  Physically, this corresponds to a field changing so 

rapidly that ions in the fluid are unable to respond, driving the AC component of the 



concentration towards zero.  When this occurs, equations (6) and (7) decouple, and the DC 

concentration and potential can be determined by solving the Poisson-Boltzmann equation: 
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In equation (7), we also drop all terms involving ci
AC, except for the time derivative, which will 

not necessarily be small at very high frequencies.  This gives us: 
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Since the DC concentration is known from equation (8), equation (9) is now linear, allowing us 

to treat the AC potential and concentrations as being sinusoidal in time, such that ?/?t ?  j? .  

Substituting this result into equation (4) and considering only the AC terms, we have: 
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where the electrical conductivity, s , is defined by: 
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Using (8) to solve for the DC potential, ion concentrations, and conductivity, we are then able to 

solve equation (10) for the applied AC potential.  We note that the AC potential is not governed 

simply by Laplace’s equation, since the conductivity in the vicinity of the electrodes is made 

non-uniform by the (DC) ion distribution. 

 

As we have stated, the validity of our approach to this problem requires that the applied potential 

have sufficiently low amplitude and sufficiently high frequency.    Others [1] have shown that 



the primary time scale governing diffuse-charge dynamics is given by ?DL/D, where ?D denotes 

the Debye length, L denotes the geometric length scale, and D denotes the characteristic species 

diffusivity.  Using typical values for these parameters suggests that our treatment of the model 

should be reasonably accurate at frequencies over 100 kHz. 

 

 

 

 

 

 

 

 

 

 

 

 

Finite Element Models 

 

To solve for both the AC and DC potentials, we use the geometry depicted in figure S.1.  Here, 

we have exploited the symmetry of the structure in the planes both parallel (normal given by the 

x axis) and perpendicular (normal given by the y axis) to the electrode axis.  To solve for the 

electric fields associated with the fixed surface charge, we convert the assumed zeta potentials to 

an equivalent charge per unit area for the gold and the silicon dioxide surfaces.  The bounding 

 
Figure S.1: Domain for finite element model (1 = 10-6 m). 



walls are set as electrical insulation / symmetry, while the top surface is assumed to be 

sufficiently far away from the surface to serve as the bulk potential.  Because we do not know 

the precise ionic constitution of the solvent, we use the measured electrical conductivity of the 

water-nanoparticle solution to approximate the full Poisson-Boltzmann equation (the volume 

fraction of nanoparticle to solvent is such that we expect the particles themselves to contribute 

negligibly to the bulk electrical conductivity).  This gives us: 

2 0
,0 sinh

DCiz F DCN
DC RT

i i
i

FcF Fz c e
RT

−  
∇ = − −  

 
∑ ;

ϕ ϕ
ϕ

ε ε
 ( 12 ) 

For the effective bulk concentration, we use: 

0
0 22

RT
c

F D
=

σ
 ( 13 ) 

Here, s 0 (= 3.83*10-3 S/m) denotes the measured (bulk) electrical conductivity, and D (= 0.66*10-

9 m2/s) denotes the effective species diffusivity, taken to be that of citrate in water. 

 

Once we have solved equation (12) for the potential and ion distributions associated with the 

fixed surface charge, we proceed to calculate the fields resulting from the applied potential, using 

equation (10).  Since we assume that these high frequency fields have negligible effect on the ion 

distribution, the significance of the non-uniform ion distribution enters only through their local 

modification of the media conductivity. 

 

 

 

 



Calculating EP and DEP Forces 

 

Once we have solved for both AC and DC potentials throughout the fluid, we are able to 

determine the associated forces acting on a nanoparticle.  Although both AC and DC terms in the 

total electric field will exert an electrophoretic and dielectrophoretic force on the particle, we 

simplify the calculations by preserving only the electrophoretic contribution of the DC field and 

the dielectrophoretic contribution of the AC field.  Comparing the ratio of the EP and DEP forces 

associated with the DC field, we obtain: 
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Where C is a dimensionless constant ~3, ? denotes the zeta potentials of the nanoparticle (NP) 

and substrate, ?D is the Debye length, R is the effective particle radius, and z is the distance from 

the substrate.  For ?D ~ R, we see that even one Debye length from the substrate, the EP force 

associated with the DC potential is nearly one order of magnitude stronger than the DEP force.  

To simplify the force associated with the AC potential, we assume that the EP force will displace 

the particle a negligible distance over one period of the field, so that the time averaged 

contribution is essentially zero.  These assumptions lead us to treat the EP and DEP forces as 

being defined separately by the DC and AC electric field solutions.  Calculations of the DEP 

force are performed using a subset of the streamforce program described in [2]. 

 

 

 

 



Radius of Influence 

 

Given the EP and DEP forces associated with a particular electrode geometry, we determine the 

size of the region of influence (ROI).  To do this, we define thermal motion as being directed 

radially outwards with a magnitude of: 
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We then assign random starting positions to particles throughout the simulation domain and 

calculate their trajectories subject to EP, DEP and thermal motion.  If a particle comes in contact 

with the electrode or substrate inside the gap, it is counted as assembled.  Repeating this process 

10,000 times for each geometry and comparing the number of initialization points inside and 

outside the ROI gives us an estimate for the volume of the ROI, from which we extract an 

equivalent radius for further calculations.  

 

Behavior of particles in and around the ROI 

 

To predict the behavior of particles in the vicinity of the gap and more precisely define the 

concept of the ROI, we perform Monte Carlo simulations on a restricted domain close to the 

electrodes, yet extending beyond the ROI by about 1 µm.  In this domain, we compare capture 

times for particles acted upon by DEP alone with those acted upon by both DEP and randomly 

generated thermal motion.  Values for the x-, y-, and z-components of thermal motion are 

generated using Matlab’s ‘randn’ command, and scaled to have an RMS value equal to equation 

(15).  We perform a numerical integration in time to determine the trajectories of the particles, 



and the simulation terminates when the particles are immobilized on the substrate (z = 0) in or 

near the electrode gap.  For each point in which thermal motion is included, the times represent 

an average of capture times over 100 Monte Carlo simulations.  Particles are initialized at 

varying heights above the substrate (x-axis).  We find that when the initial displacement first 

exceeds the size of the ROI, there is a rapid divergence between DEP and DEP + thermal capture 

times (figure S.2).  This supports our model of particle transport as consisting of two regimes 

(diffusion dominant and DEP dominant) defined by the surface of the ROI. 

 

 

 

 

 

 

 

 

 

 

 

First Correction for Non-linear Effects 

 

The final component to our model is to introduce an approximate correction to nanoparticle 

assembly accounting for the interactions between particles in suspension and those previously 

assembled.  Since the particles are substantially more conductive than the surrounding solvent, 

Figure S.2:  Simulated capture times for particles 
initialized inside and outside the ROI and subjected 
to either DEP alone, or both DEP and a randomly 
varying thermal force. 
 



assembled particles tend to focus the electric field into a more confined region.  When a large 

number of particles have been assembled, it is expected that the field will no longer penetrate far 

into the fluid, but will instead be confined inside the more conductive path which the assembled 

particles provide.  In this way, assembly is a self-limiting process. 

 

To approximately account for the effects of previously captured particles on further particle 

assembly, we calculate the dipole field induced around a perfectly conducting particle assembled 

in the gap.  Adding this field to the applied field, we recalculate the DEP force and the ROI.  

Because the captured particles are conducting, the induced field will tend to oppose the applied 

field, resulting in a decrease in the size of the ROI.  We use this incremental decrease in a (ROI 

radius) with n (number of assembled particles) to obtain the linear term in a Taylor expansion for 

a(n):  
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In equation (16), we have introduced a new parameter, ? a/? n, which must be determined 

numerically.  Calculating the change in the ROI (? a) associated with a single assembled particle 

(? n = 1) completes the formulation of this model.  Because ? a will, in general, depend upon 

where in the gap the particle assembles, we determine ?a for a range of particle positions, and 

use the average in the final model. 

 

Of course, since n = n(t), this modification implies that a = a(t).  This means that the solution 

given by equation (9) in the main article no longer strictly satisfies the transient diffusion 

equation, since a is now a function of time.  Still, if we restrict our interest to cases where a 



changes sufficiently slowly with time, this serves as a reasonable approximation.  Requiring that 

the region of influence vary much less rapidly than the diffusion over the same length scale, a, 

leads to: 
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which we combine with equation (11) in the main article to obtain: 
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For all cases considered in this paper, this condition is very easily satisfied, with the left hand 

side typically on the order of 10-7. 
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