John Wiley & Sons Operation and Control of Renewable Energy Systems Cover A comprehensive reference to renewable energy technologies with a focus on power generation and inte.. Product #: 978-1-119-28168-9 Regular price: $107.48 $107.48 Auf Lager

Operation and Control of Renewable Energy Systems

Ahmad, Mukhtar

Cover

1. Auflage Dezember 2017
384 Seiten, Hardcover
Wiley & Sons Ltd

ISBN: 978-1-119-28168-9
John Wiley & Sons

Jetzt kaufen

Preis: 115,00 €

Preis inkl. MwSt, zzgl. Versand

Weitere Versionen

epubpdf

A comprehensive reference to renewable energy technologies with a focus on power generation and integration into power systems

This book addresses the generation of energy (primarily electrical) through various renewable sources. It discusses solar and wind power--two major resources that are now in use in small as well as large-scale power production--and their requirements for effectively using advanced control techniques.In addition, the book looks at theintegration of renewable energy in the power grid and its ability to work in a micro grid.

Operation and Control of Renewable Energy Systems describes the numerous types of renewable energy sources available and the basic principles involving energy conversion, including the theory of fluid mechanics and the laws of thermodynamics. Chapter coverage includes the theory of power electronics and various electric power generators, grid scale energy storage systems, photovoltaic power generation, solar thermal energy conversion technology, horizontal and vertical wind turbines for power generation, and more.
* Covers integration into power systems with an emphasis on microgrids
* Introduces a wide range of subjects related to renewable energy systems, including energy storage, microgrids, and battery technologies
* Includes tutorial materials such as up-to-date references for wind energy, grid connection, and power electronics--plus worked examples and solutions

Operation and Control of Renewable Energy Systems is the perfect introduction to renewable energy technologies for undergraduate and graduate students and can also be very useful to practicing engineers.

Preface xvii

1 Sources of Energy and Technologies 1

1.1 Energy Uses in Different Countries 1

1.2 Energy Sources 3

1.2.1 Non-Renewable Energy Resources 3

1.2.2 Renewable Sources of Energy 3

1.3 Energy and Environment 5

1.3.1 Climate Change 7

1.4 Review of Technologies for Renewable Energy System 8

1.4.1 Fluid Dynamics 8

1.4.1.1 Conservation of Mass 8

1.4.1.2 Conservation of Momentum 9

1.4.1.3 Conservation of Energy 10

1.5 Thermodynamics 11

1.5.1 Enthalpy 12

1.5.2 Specific Heat 12

1.5.3 Zeroth Law 13

1.5.4 First Law 13

1.5.4.1 Limitations of First law 14

1.5.5 Second Law of Thermodynamics 14

1.5.5.1 Kelvin-Planck Statement 15

1.5.5.2 Clausius Statement 16

1.5.6 Third Law of Thermodynamics 16

1.6 Thermodynamic Power Cycles 16

1.6.1 Ideal Cycle (Carnot Cycle) 17

1.6.2 Rankine Cycle 18

1.6.3 Brayton Cycle 18

1.7 Summary 21

References 21

2 Power Electronic Converters 23

2.1 Types of Power Electronic Converters 23

2.2 Power Semiconductor Devices 23

2.2.1 Thyristor 25

2.2.1.1 Line Commutation 25

2.2.1.2 Load Commutation 26

2.2.1.3 Forced Commutation 26

2.2.2 Gate Turn-OffThyristor (GTO) 26

2.2.3 Power Bipolar Junction Transistor 27

2.2.4 Power MOSFET 29

2.2.5 Insulated Gate Bipolar Transistor (IGBT) 29

2.3 ac-to-dc Converters 30

2.3.1 Single-Phase Diode Bridge Rectifiers 31

2.3.2 Three-Phase Full-Wave Bridge Diode Rectifiers 32

2.3.3 Single-Phase Fully Controlled Rectifiers 32

2.3.4 Three-Phase Fully Controlled Bridge Converter 33

2.4 dc-to-ac Converters (Inverters) 34

2.4.1 Single-Phase Voltage Source Inverters 34

2.4.2 Square-Wave PWMInverter 34

2.4.3 Single-Pulse-WidthModulation 35

2.4.4 Multiple-Pulse-WidthModulation 36

2.4.5 Sinusoidal-Pulse-WidthModulation 36

2.4.6 Three-Phase Voltage Source Inverters 37

2.4.7 Single-Phase Current Source Inverters 39

2.4.7.1 Three-Phase Current Source Inverter 39

2.5 Multilevel Inverters 40

2.5.1 Diode-Clamped Multilevel Inverter 41

2.5.2 Flying-Capacitor Multilevel Inverter 42

2.5.3 Cascaded Multicell with Different dc Source Inverter 43

2.6 Resonant Converters 43

2.6.1 Series Resonant Converter 44

2.6.1.1 Discontinuous Conduction Mode 45

2.6.2 Parallel Resonant Inverter 45

2.6.3 ZCS Resonant Converters 45

2.6.4 ZVS Resonant Converter 46

2.6.5 Resonant dc-Link Inverters 46

2.7 Matrix Converters 47

2.8 Summary 48

References 48

3 Renewable Energy Generator Technology 51

3.1 Energy Conversion 51

3.2 Power Conversion and Control ofWind Energy Systems 51

3.2.1 Induction Generator 52

3.2.2 Permanent Magnet Synchronous Generator 53

3.2.3 Linear PM Synchronous Machine 53

3.3 Operation and Control of Induction Generators forWES 53

3.3.1 Equivalent Circuit 54

3.3.2 Wound-Rotor Induction Machine 55

3.3.3 Doubly Fed Induction Generator (DFIG) 57

3.3.3.1 Equivalent Circuit of DGIG 59

3.3.3.2 Braking System 60

3.4 PermanentMagnet Synchronous Generator 60

3.4.1 Modelling of PMSG 62

3.5 Wave Energy Conversion (WEC) Technologies 63

3.5.1 Linear Permanent Magnet Synchronous Machine 64

3.5.2 Tubular Permanent Magnet LinearWave Generator (TPMLWG) 66

3.5.3 Linear Induction Machines 67

3.6 Summary 67

References 68

4 Grid-Scale Energy Storage 69

4.1 Requirement of Energy Storage 69

4.2 Types of Energy Storage Technologies 69

4.3 Electromechanical Storage 70

4.3.1 Pumped Hydro Storage (PHS) System 70

4.3.2 Underground Pumped Hydro Energy Storage 71

4.3.3 Compressed Air Energy Storage 72

4.3.4 Flywheel Storage 73

4.3.4.1 Energy Stored in Flywheel 74

4.3.4.2 Motors for Flywheels 74

4.4 Superconducting Magnetic Energy Storage 75

4.5 Supercapacitors 76

4.5.1 Equivalent Circuit 79

4.6 Chemical Storage (Batteries) 79

4.6.1 Lead-acid Battery 80

4.6.2 UltraBattery 82

4.6.3 Lithium-ion Battery 84

4.6.4 Liquid metal battery 86

4.6.5 Flow Battery 86

4.6.6 Nickle-Based Battery 87

4.7 Thermal Storage 88

4.7.1 Sensible Heat Storage 89

4.7.2 Latent Heat Storage 90

4.7.3 Thermochemical Energy Storage (TES) 91

4.8 Hydrogen Energy Storage Technology 91

4.9 Summary 92

References 93

5 Solar Energy Systems 95

5.1 Sun as Source of Energy 95

5.2 Solar Radiations on Earth 95

5.2.1 Spectral Distribution of Solar Energy 96

5.3 Measurement of Solar Radiation 97

5.3.1 Pyrheliometer 97

5.3.2 Pyranometer 99

5.3.3 Sources of Errors in RadiationMeters 100

5.3.4 Sunshine Recorder 100

5.4 Solar Radiation on Different Surfaces 101

5.4.1 Zenith and Zenith Angle 101

5.4.2 Solar Time 102

5.4.3 Latitude (Ø) 102

5.4.4 Declination Angle ( ) 102

5.4.5 Hour Angle ( ) 102

5.4.6 Surface Azimuth Angle (Y) 103

5.4.7 Tilt Angle ( ) 103

5.4.8 Angle of Incidence 103

5.4.9 Solar Radiation on an Inclined Surface 104

5.5 Utilization of Solar Energy 104

5.6 Solar Thermal Systems 105

5.6.1 Flat-Plate Collectors 106

5.6.1.1 Thermal Performance of Collector 108

5.6.2 Evacuated Tube Collector 108

5.6.2.1 Direct-Flow Evacuated Tube Collector 109

5.6.2.2 Heat-Pipe Evacuated Tube Collector 109

5.6.3 Parabolic Collectors 111

5.6.4 Linear Fresnel Reflector (LFR) 112

5.6.5 Parabolic Trough Collector (PTC) 113

5.6.6 Cylindrical Trough Collector (CTC) 114

5.6.7 Parabolic Dish Reflector 115

5.6.8 Heliostat Field Collector (HFC) 116

5.7 Application of Solar Energy 117

5.7.1 SolarWater Heating 117

5.7.2 Passive Systems with Thermosiphon Circulation 117

5.7.3 Integrated Collector Storage Systems (Passive) 119

5.7.4 Active Solar Systems 119

5.7.4.1 Direct Circulation Systems 119

5.7.4.2 Indirect Circulation (Closed-Loop) Systems 120

5.7.5 Air Heating Systems 120

5.8 Solar Thermal Power Generation 122

5.9 Desalination ofWater 122

5.10 Steam Pressurization Systems Using Heat Energy 123

5.11 Summary 124

References 124

6 Photovoltaic Systems 125

6.1 PV Solar Cells and Solar Module 125

6.1.1 Semiconductor Technology 126

6.2 Solar Cell Characteristics 127

6.2.1 Equivalent Circuit 129

6.2.2 Solar PV Module 129

6.2.3 Series and Parallel Connections of Cells 129

6.2.4 Solar PV Panel 131

6.2.5 PV Array 132

6.2.5.1 Design of PV System 132

6.3 Maximizing Power Output of PV Array 133

6.3.1 Solar Tracking 134

6.3.2 Design of Simple Automatic Solar Tracker 134

6.3.3 Load Matching for Optimal Operation 135

6.4 Maximum Power Point Tracking Algorithm 135

6.4.1 Constant-VoltageMethod 136

6.4.2 Hill-Climbing/Perturb and Observe Techniques 136

6.4.2.1 Perturb and Observe 137

6.4.3 Incremental Conductance (IC) 137

6.5 Types of Solar Cells and Technologies 138

6.5.1 Crystalline Solar Cells 138

6.5.1.1 Monocrystalline Solar Cells 139

6.5.1.2 Polycrystalline Silicon Cells 140

6.6 Thin-Film Solar Cells 140

6.6.1 Amorphous Silicon Solar Cells (a-Si) 141

6.6.2 Cadmium Telluride (CdTe) 142

6.6.3 Copper Indium Gallium Diselenide (CIGS) 143

6.6.4 Copper Indium Selenide (CIS) 143

6.6.5 Crystalline Silicon (c-si)Thin-Film Solar Cells 144

6.7 Concentrating Photovoltaic Systems 144

6.8 New Emerging Technologies 144

6.9 Solar PV Systems 146

6.9.1 Grid-Connected PV System 147

6.9.2 Grid-Connected System without Battery Storage 147

6.9.3 Grid-Connected System with Battery Storage 148

6.10 Design and Control of Stand-Alone PV System 148

6.10.1 Battery Rating 149

6.11 Summary 150

References 150

7 Wind Energy 153

7.1 Wind as Source of Energy 153

7.1.1 Origin ofWind 153

7.1.2 Wind Power Potential 154

7.2 Power and Energy inWind 155

7.3 Aerodynamics ofWind Turbines 156

7.3.1 Momentum 157

7.4 Types ofWind Turbines 160

7.4.1 Horizontal-AxisWind Turbines 160

7.4.1.1 Horizontal-AxisWind Turbines withWake Rotation 161

7.4.2 Vertical-AxisWind Turbines 164

7.4.3 Main Components ofWind Turbine 166

7.4.3.1 Drive Train 167

7.5 Dynamics and Control ofWind Turbines 167

7.5.1 Pitch Control 168

7.5.2 Yaw Control 169

7.5.3 Passive and Active Stall Power Control 169

7.5.3.1 Passive Stall Control 169

7.5.3.2 Active Stall Control 169

7.6 Wind Turbine ConditionMonitoring 170

7.7 Wind Energy Conversion Systems (WECS) 171

7.7.1 Based on Capacity of Power Generation 171

7.7.2 Systems without Power Electronics 171

7.8 OffshoreWind Energy 174

7.8.1 OffshoreWind Turbines 174

7.8.2 Foundation 174

7.8.3 Electrical Connection and Installation 174

7.8.4 Operation and Maintenance 175

7.9 Advantages of OffshoreWind Energy Systems 175

7.10 Environmental Impact ofWind Energy Systems 175

7.10.1 Impact of Noise 175

7.10.2 Electromagnetic Interference 176

7.11 Combining theWind Power Generation System with Energy

Storage 176

7.12 Summary 176

References 176

8 Biomass Energy Systems 179

8.1 Biomass Energy 179

8.2 Biomass Production 181

8.2.1 Forest Industries 182

8.2.2 Forest Residues 182

8.2.2.1 ForestThinnings 183

8.2.3 Agriculture Residues 183

8.2.4 Energy Crops 183

8.2.5 Food and IndustrialWastes 184

8.3 Biomass Conversion Process 185

8.4 Thermochemical Conversion 185

8.4.1 Combustion 185

8.4.2 Gasification 186

8.4.2.1 Applications 190

8.4.3 Pyrolysis 190

8.4.3.1 Torrefaction 193

8.4.4 Liquefaction 194

8.5 Biochemical/Biological Conversion 194

8.5.1 Fermentation 195

8.5.2 Anaerobic Digestion 196

8.5.3 Anaerobic Digestion Technologies Suitable for Dairy Manure 198

8.6 Classification of Biogas Plants 199

8.7 Mechanical Extraction (with Esterification) 200

8.8 Municipal SolidWaste to Energy Conversion 201

8.9 The Production of Electricity fromWood and Other Solid Biomass 203

8.10 Summary 205

References 205

9 Geothermal Energy 207

9.1 The Origin of Geothermal Energy 207

9.2 Types of Geothermal Resources 208

9.3 Hydrothermal Resources 210

9.3.1 Vapour-Dominated Systems 211

9.3.2 Water-Dominated Systems 212

9.4 The Geopressured Resources 213

9.5 Hard Rock Resources 214

9.5.1 Solidified (Hot Dry Rock Resources) 214

9.5.2 Part Still Molten (Magma) 214

9.6 Energy Contents of Geothermal Resources 215

9.6.1 Hard Dry Rock Resources 215

9.7 Exploration of Geothermal Resources 216

9.8 Geophysical Methods in Geothermal Exploration 217

9.8.1 Thermal Methods 217

9.8.2 Electrical Methods 217

9.8.3 MagneticMeasurements 218

9.9 Geochemical Techniques 219

9.9.1 Water or Solute Geothermometers 219

9.9.1.1 Na-K Geothermometer 219

9.9.1.2 Na-K-Ca Geothermometer 220

9.9.2 Gas Thermometers 220

9.9.3 Isotopes 220

9.9.4 Drilling 220

9.10 Utilization of Geothermal Resource 221

9.10.1 Electricity Generation from Geothermal Resources 222

9.10.2 Dry Steam Power Plants 222

9.10.3 Single-Flash Steam Power Plant 223

9.10.4 Double-Flash Power Plant 225

9.10.5 Binary Cycle Power Plant 226

9.11 Enhanced Geothermal Systems 227

9.11.1 Combined or Hybrid Plants 227

9.11.2 Combined Heat and Power (CHP) Plants 227

9.12 Direct Use of Geothermal Energy 228

9.13 Environmental Impact 230

9.14 Summary 231

References 231

10 Ocean Energy 233

10.1 Energy from Ocean 233

10.2 Harnessing the Tidal Energy 235

10.2.1 Tidal Barrage Power 236

10.2.2 Tidal Barrage Technologies 236

10.2.3 Tidal Stream Power 237

10.2.4 Dynamic Tidal Power Generation 238

10.3 Energy of Tides 238

10.4 Turbine Technologies 240

10.4.1 Horizontal-Axis Turbines 240

10.4.2 Vertical-Axis Turbines 241

10.4.3 Reciprocating Hydrofoils 242

10.5 Support Structure 242

10.5.1 Gravity Structures 242

10.5.2 Piled Structures 242

10.5.3 Floating Foundations 243

10.6 Wave Energy 243

10.6.1 Wave Energy and Power 243

10.7 Wave Energy Converters 245

10.7.1 OscillatingWater Column 245

10.7.2 Oscillating Body 246

10.7.3 Overtopping Converters (or Terminators) 246

10.7.4 Point Absorbers and Attenuators 247

10.8 Power Takeoff Systems 248

10.8.1 Air Turbines for OWC 249

10.8.2 Hydraulic Systems 249

10.8.3 Water Turbines 250

10.8.4 Direct Drive 250

10.9 Piezoelectric Generators 252

10.9.1 Power Extraction Systems 253

10.10 OceanThermal Energy Conversion 254

10.10.1 Technology for OTEC 254

10.10.1.1 Closed-Cycle 255

10.10.1.2 Open-Cycle 256

10.10.1.3 Hybrid Systems 257

10.11 Summary 258

References 258

11 Fuel Cells 261

11.1 Fuel Cell Technologies 261

11.2 Types of Fuel Cells 262

11.3 Proton Exchange Membrane (PEM) Fuel Cell 262

11.3.1 Water Management 263

11.3.2 Fuel Requirement 265

11.3.3 Reforming Technologies 265

11.3.3.1 Partial Oxidation 266

11.3.4 Hydrogen Storage 266

11.3.5 Catalysts for PEM Fuel Cell 267

11.4 Solid Oxide Fuel Cell 267

11.4.1 Electrolytes for SOFC 268

11.5 Molten Carbonate Fuel Cell 269

11.6 Phosphoric Acid Fuel Cell 270

11.7 Alkaline Fuel Cell 272

11.8 Direct Methanol Fuel Cell 274

11.8.1 CO Removal 276

11.9 Fuel Cell Stacks 276

11.9.1 Cooling with Separate Airflow 277

11.9.2 Liquid Cooling 277

11.10 Fuel Cell Applications 278

11.10.1 Application in Automobile Industry 278

11.10.2 Stationary Power Applications 278

11.10.3 Portable Applications 279

11.11 Modelling of Fuel Cell 280

11.11.1 Steady-StateModel 280

11.12 Summary 281

References 281

12 Small Hydropower Plant 283

12.1 Hydropower 283

12.2 Classification of Hydropower Plants 284

12.2.1 Basics of Hydropower Generation 285

12.3 Resource Assessment 285

12.3.1 Velocity Area Method 286

12.3.2 Float Method 287

12.4 System Components 288

12.4.1 DiversionWeir 288

12.4.1.1 Side Intake withoutWeir 288

12.4.1.2 Side Intake withWeir 288

12.4.1.3 Bottom Intake 288

12.4.2 Water Conductor System or Channels 289

12.4.3 Forebay Tank 289

12.4.4 Penstock 289

12.4.5 Spillways 289

12.5 Turbines 290

12.6 Impulse Turbines 290

12.6.1 Pelton Turbine 291

12.6.2 Cross-Flow Turbine 292

12.6.3 Turgo Turbine 293

12.7 Reaction Turbine 294

12.7.1 The Propeller Turbine 295

12.7.2 Reverse Pump Turbines 295

12.8 Generators for Small Hydro Plants 296

12.9 Design Considerations of Micro-Hydropower Plants 297

12.9.1 Example 299

References 299

13 Control of Grid-Connected Photovoltaic and Wind Energy Systems 301

13.1 Introduction 301

13.2 Operation and Control of Grid-Connected PV System 302

13.2.1 Control of Single-Phase PV System 302

13.2.1.1 Control of PV-Side dc/dc Converter 303

13.2.1.2 Control of Grid-Side Inverter 304

13.2.1.3 Inner Current Loop 305

13.3 Grid Synchronization 305

13.4 Control of Three-Phase Grid-Connected PV system 306

13.5 Selection of Inverter for PV System 307

13.5.1 Central Inverters 307

13.5.2 String Inverter 308

13.5.3 ac Module Inverter 309

13.5.4 Multi-String Inverters 310

13.6 Power Decoupling 311

13.7 Isolation Between Input and Output 311

13.8 Transformers and Interconnections 311

13.8.1 Transformerless PV Inverter Topologies 312

13.9 Filters for Grid-Connected PV Inverters 314

13.10 Islanding DetectionMethods 314

13.11 Operation and Control of Grid-ConnectedWind Energy System 315

13.11.1 Grid Integration ofWind Turbine System 316

13.11.2 Power Electronics inWind Energy System 317

13.11.3 Control of Doubly Fed Induction Generator-BasedWind Turbine Systems 318

13.11.3.1 Control of a DFIG under Unbalanced Grid 319

13.11.4 PMSG-BasedWind Energy Conversion System 320

13.11.4.1 Current-Source-Based PMSG 321

13.12 Summary 322

References 322

14 Renewable Energy Sources Integration in Microgrid 325

14.1 Microgrid 325

14.2 Types of Microgrids 327

14.3 dc Microgrid 327

14.3.1 Control Methods for dc Grid System 329

14.3.2 Energy Storage System 330

14.3.3 Operational Modes of dc Microgrid 330

14.3.3.1 Mode 1: IslandingMode (Battery Discharge) 330

14.3.3.2 Mode 2: IslandingMode (Excess Power Available) 331

14.3.3.3 Mode 3: Grid-Connected Mode (Power Taken from Grid) 331

14.3.3.4 Mode 4: Grid-Connected Mode (Power Supplied to Grid) 332

14.3.4 Application of dc Microgrids 332

14.4 ac Microgrid 332

14.4.1 Interconnected or Grid-Connected Mode 333

14.4.2 Islanded Mode 334

14.5 Control of ac Microgrid in Grid-Connected Mode 334

14.5.1 Primary Control 337

14.5.2 Secondary Control 337

14.5.3 Tertiary Control 338

14.6 Autonomous Operation of Microgrid 338

14.6.1 Islanding Detection 339

14.6.1.1 ImpedanceMeasurement Method 340

14.6.1.2 Slip-Mode Frequency Shift (SMS) Method 340

14.6.1.3 Active Frequency Drift Method 340

14.6.1.4 Sandia Frequency Shift (SFS) 341

14.6.2 Stability Issues 342

14.7 Load Frequency Control in Microgrid 342

14.7.1 Secondary Load-Frequency Control 343

14.8 Combined ac/dc Microgrid 343

14.8.1 Operation and Control of Hybrid ac/dc Grid 344

14.8.2 Modelling 345

14.9 Summary 345

References 345

Index 347
MUKHTAR AHMAD, PHD, is a retired professor from Aligarh Muslim University (AMU), Aligarh, India. He has a wide range of professional experience, beginning with lecturer in electrical engineering at AMU to becoming a Professor at three different Universities (Aligarh Muslim University, University Putra Malaysia, and Multimedia University Malaysia). Mukhtar has published work in journals, papers, and his own books.