Home    Service    Jobs    Newsletter    Company    Productsearch    eBooks    Shopping cart    Deutsch
Books | Materials Science | Ceramics | Cellular Ceramics | Table of contents
 

ChemistryViews

MaterialsViews

wileyPLUS

WileyOnline Library

Wiley JobNetwork

Wiley STMData

Ernst & Sohn

more >>
Contents  
 
Preface XIX
List of Contributors XXI
Part 1 Introduction 1
1.1 Cellular Solids - Scaling of Properties
Michael F. Ashby
3
1.1.1 Introduction 3
1.1.2 Cellular or "Lattice" Materials 4
1.1.3 Bending-Dominated Structures 5
1.1.3.1 Mechanical Properties 6
1.1.3.2 Thermal Properties 9
1.1.3.3 Electrical Properties 10
1.1.4 Maxwell's Stability Criterion 10
1.1.5 Stretch-Dominated Structures 12
1.1.6 Summary 16
1.2 Liquid Foams - Precursors for Solid Foams
Denis Weaire, Simon Cox, and Ken Brakke
18
1.2.1 The Structure of a Liquid Foam 18
1.2.2 The Elements of Liquid Foam Structure 21
1.2.3 Real Liquid Foams 24
1.2.4 Quasistatic Processes 24
1.2.5 Beyond Quasistatics 26
1.2.6 Summary 28
Part 2 Manufacturing 31
2.1 Ceramics Foams
Jon Binner
33
2.1.1 Introduction 33
2.1.2 Replication Techniques 34
2.1.2.1 Slurry Coating and Combustion of Polymer Foams 34
2.1.2.2 Pyrolysis and CVD Coating of Polymer Foams 38
2.1.2.3 Structure of Reticulated Ceramics 39
2.1.3 Foaming Techniques 42
2.1.3.1 Incorporation of an External Gas Phase 42
2.1.3.2 In Situ Gas Evolution 46
2.1.3.3 Gelation 49
2.1.3.4 Ceramic Foam Structure 51
2.1.4 Other Techniques 52
2.1.6 Summary 54
2.2 Honeycombs
John Wight
57
2.2.1 Introduction 57
2.2.2 Forming the Honeycomb Geometry 57
2.2.2.1 Background 57
2.2.2.2 Honeycomb Extrusion Die 59
2.2.2.3 Nonextrusion Fabrication Processes 62
2.2.3 Composition 63
2.2.3.1 Paste 63
2.2.3.2 Mixing 64
2.2.3.3 The Binder 65
2.2.4 Thermal Processing 66
2.2.4.1 Diffusion: Drying and Debinding 66
2.2.4.2 Melt Manipulation 67
2.2.4.3 Sinter Shrinkage Manipulation 68
2.2.5 Post-Extrusion Forming 69
2.2.5.1 Reduction Extrusion 70
2.2.5.2 Hot Draw Reduction 73
2.2.6 Summary 82
2.3 Three-Dimensional Periodic Structures
Jennifer A. Lewis and James E. Smay
87
2.3.1 Introduction 87
2.3.2 Direct-Write Assembly 87
2.3.3 Colloidal Inks 89
2.3.4 Ink Flow during Deposition 91
2.3.5 Shape Evolution of Spanning Filaments 94
2.3.6 Direct-Write Assembly of 3D Periodic Structures 96
2.3.7 Summary 99
2.4 Connected Fibers: Fiber Felts and Mats
Janet B. Davis and David B. Marshall
101
2.4.1 Introduction 101
2.4.2 Oxide Fibers 102
2.4.2.1 Melt-Blown Silica Fibers 102
2.4.2.2 Blown Alumina—Silica Fibers 104
2.4.2.3 Drawn Alumina—Borosilicate Fibers 105
2.4.3 Fiber Product Forms 106
2.4.3.1 Continuous Monofilaments 107
2.4.3.2 Fiber Mat 107
2.4.3.3 Bulk Fiber 109
2.4.4 High-Performance Insulation for Space Vehicles 109
2.4.4.1 Rigid Space Shuttle Tiles 110
2.4.4.2 Flexible Insulation Blankets 116
2.4.4.3 Innovations in Thermal Protection Systems 117
2.4.5 Summary 120
2.5 Microcellular Ceramics from Wood
Heino Sieber and Mrityunjay Singh
122
2.5.1 Introduction 122
2.5.2 Fabrication of Porous Biocarbon Templates 124
2.5.3 Preparation of Carbide-Based Biomorphous Ceramics 126
2.5.3.1 Processing by Silicon-Melt Infiltration 127
2.5.3.2 Gas-Phase Processing 129
2.5.4 Preparation of Oxide-Based Biomorphous Ceramics 131
2.5.5 Summary 134
2.6 Carbon Foams
James Klett
137
2.6.1 Introduction 137
2.6.2 History 137
2.6.3 Terminology 138
2.6.3.1 Carbon 139
2.6.3.2 Graphite 139
2.6.3.3 Graphitization 139
2.6.3.4 Foam 140
2.6.4 Foaming Processes 141
2.6.4.1 Thermosetting Precursors 141
2.6.4.2 Thermoplastic Precursors 144
2.6.5 Properties of Carbon and Graphite Foam 153
2.6.6 Summary 155
2.7 Glass FoamsGiovanni Scarinci, Giovanna Brusatin, Enrico Bernardo 158
2.7.1 Introduction 158
2.7.2 Historical Background 158
2.7.3 Starting Glasses 160
2.7.4 Modern Foaming Process 161
2.7.4.1 Initial Particle Size of the Glass and the Foaming Agent 161
2.7.4.2 Heating Rate 163
2.7.4.3 Foaming Temperature 164
2.7.4.4 Heat-Treatment Time 164
2.7.4.5 Chemical Dissolved Oxygen 164
2.7.4.6 Cooling Rate 165
2.7.5 Foaming Agents 166
2.7.5.1 Foaming by Thermal Decomposition 166
2.7.5.2 Foaming by Reaction 167
2.7.6 Glass Foam Products 170
2.7.7 Alternative Processes and Products 171
2.7.7.1 Foams from Evaporation of Metals 172
2.7.7.2 High-Silica Foams from Phase-Separating Glasses 172
2.7.7.3 Microwave Heating 172
2.7.7.4 Glass Foam from Silica Gel 173
2.7.7.5 High-Density Glass Foam 173
2.7.7.6 Partially Crystallized Glass Foam 173
2.7.7.7 Foaming of CRT Glasses 174
2.7.8 Summary 175
2.8 Hollow Spheres
Srinivasa Rao Boddapati and Rajendra K. Bordia
177
2.8.1 Introduction 177
2.8.2 Processing Methods 178
2.8.2.1 Sacrificial-Core Method 178
2.8.2.2 Layer-by-Layer Deposition 179
2.8.2.3 Emulsion/Sol—Gel Method 182
2.8.2.4 Spray and Coaxial-Nozzle Techniques 185
2.8.2.5 Reaction-Based and Other Methods 188
2.8.3 Cellular Ceramics from Hollow Spheres (Syntactic Foams) 188
2.8.4 Properties 188
2.8.5 Applications 189
2.8.6 Summary 190
2.9 Cellular Concrete
Michael W. Grutzeck
193
2.9.1 Introduction 193
2.9.2 Types of Cellular Concrete 194
2.9.2.1 Low Temperature Cured Cellular Concrete 195
2.9.2.2 Autoclave-Cured Cellular Concrete 197
2.9.3 Per-Capita Consumption 198
2.9.4 Overview of Cellular Concrete 199
2.9.4.1 The Gas Phase 199
2.9.4.2 The Matrix Phase 200
2.9.5 Portland Cement 206
2.9.5.1 History 207
2.9.5.2 Fabrication of Portland Cement 207
2.9.5.3 Hydration 208
2.9.6 Properties of Calcium Silicate Hydrate in Cellular Concretes 211
2.9.6.1 Cast-in-Place or Precast Cellular Concrete 212
2.9.6.2 Autoclaved Aerated Concrete (AAC) 214
2.9.7 Durability of Cellular Concrete 219
2.9.8 Summary 221
Part 3 Structure 225
3.1 Characterization of Structure and Morphology
Steven Mullens, Jan Luyten, and Juergen Zeschky
227
3.1.1 Introduction and Theoretical Background 227
3.1.1.1 The Importance of Foam Structure Characterization 227
3.1.1.2 Structure-Dependent Properties 228
3.1.1.3 Parameters Describing the Structure of the Foams 230
3.1.2 Characterization of Foam Pore Structure 232
3.1.2.1 Sample Preparation 233
3.1.2.2 Characterization Methods 233
3.1.2.3 Comparison of Methods 262
3.1.3 Summary 263
3.2 Modeling Structure—Property Relationships in Random Cellular Materials
Anthony P. Roberts
267
3.2.1 Introduction 267
3.2.2 Theoretical Structure—Property Relations 268
3.2.3 Modeling and Measuring Structure 273
3.2.4 Computational Structure—Property Relations 280
3.2.5 Summary 285
Part 4 Properties 289
4.1 Mechanical Properties
Roy Rice
291
4.1.1 Introduction 291
4.1.2 Modeling the Porosity Dependence of Mechanical Properties of Cellular Ceramics 292
4.1.2.1 Earlier Models 292
4.1.2.2 Gibson—Ashby Models 294
4.1.2.3 Minimum Solid Area (MSA) Models 295
4.1.2.4 Computer Models 298
4.1.3 Porosity Effects on Mechanical Properties of Cellular Ceramics 299
4.1.3.1 Honeycomb Structures 299
4.1.3.2 Foams and Related Structures 301
4.1.4 Discussion 307
4.1.4.1 Measurement—Characterization Issues 307
4.1.4.2 Impact of Fabrication on Microstructure 308
4.1.4.3 Porosity—Property Trade-Offs 309
4.1.5 Summary 310
4.2 Permeability
Murilo Daniel de Mello Innocentini, Pilar Sepulveda, and Fernando dos Santos Ortega
313
4.2.1 Introduction 313
4.2.2 Description of Permeability 313
4.2.3 Experimental Evaluation of Permeability 315
4.2.4 Models for Predicting Permeability 317
4.2.4.1 Granular Media 318
4.2.4.2 Fibrous Media 320
4.2.4.3 Cellular Media 321
4.2.5 Viscous and Inertial Flow Regimes in Porous Media 331
4.2.6 Summary 338
4.3 Thermal Properties
Thomas Fend, Dimosthenis Trimis, Robert Pitz-Paal, Bernhard Hoffschmidt, and Oliver Reutter
342
4.3.1 Introduction 342
4.3.2 Thermal Conductivity 342
4.3.2.1 Experimental Methods to Determine the Effective Thermal Conductivity without Flow 345
4.3.2.2 Method to Determine the Effective Thermal Conductivity with Flow 348
4.3.3 Specific Heat Capacity 350
4.3.4 Thermal Shock 350
4.3.5 Volumetric Convective Heat Transfer 352
4.3.5.1 Nusselt/Reynold Correlations and Comparison with Theoretical Data 354
4.3.6 Summary 359
4.4 Electrical Properties
Hans-Peter Martin and Joerg Adler
361
4.4.1 Introduction and Fundamentals 361
4.4.2 Specific Aspects of Electrical Properties of Cellular Solids 366
4.4.2.1 Honeycombs 367
4.4.2.2 Biomimetic Ceramic Structures 368
4.4.2.3 Ceramic Foams 369
4.4.2.4 Ceramic Fibers 374
4.4.3 Electrical Applications of Cellular Ceramics 376
4.4.3.1 Foam Ceramic Heaters 376
4.4.3.2 Electrically Conductive Honeycombs 378
4.4.4 Summary 379
4.5 Acoustic Properties
Iain D. J. Dupère, Tian J. Lu, and Ann P. Dowling
381
4.5.1 Introduction 381
4.5.2 Acoustic Propagation 381
4.5.2.1 Linearized Equations of Motion 381
4.5.2.2 Wave Equation 382
4.5.2.3 Relationships between Acoustic Parameters under Inviscid Conditions 383
4.5.2.4 Acoustic Energy 384
4.5.3 Acoustic Properties 384
4.5.3.1 Acoustic Impedance and Admittance 384
4.5.3.2 Acoustic Wavenumber 386
4.5.3.3 Reflection Coefficient, Transmission Coefficient, and Transmission Loss 386
4.5.3.4 Absorption Coefficient 387
4.5.4 Experimental Techniques 387
4.5.4.1 Moving-Microphone Technique 387
4.5.4.2 Two- and Four-Microphone Techniques 388
4.5.5 Empirical Models 389
4.5.6 Theoretical Models 390
4.5.6.1 Viscous Attenuation in Channels (Rayleigh's Model) 390
4.5.6.2 Acoustic Damping by an Array of Elements Perpendicular to the Propagation Direction 391
4.5.6.3 Generalized Models 392
4.5.6.4 Complex Viscosity and Complex Density Models 392
4.5.6.5 Direct Models 393
4.5.6.6 Biot's Model 395
4.5.6.7 Lambert's Model 396
4.5.7 Acoustic Applications of Cellular Ceramics 397
4.5.8 Summary 398
Part 5 Applications 401
5.1 Liquid Metal Filtration
Rudolph A. Olson III and Luiz C. B. Martins
403
5.1.1 Introduction 403
5.1.2 Theory of Molten-Metal Filtration 404
5.1.3 Commercial Applications 408
5.1.3.1 Aluminum 408
5.1.3.2 Iron Foundry 410
5.1.3.3 Steel 412
5.1.4 Summary 414
5.2 Gas (Particulate) Filtration
Debora Fino and Guido Saracco
416
5.2.1 Introduction 416
5.2.2 Properties of (Catalytic) Cellular Filters 417
5.2.3 Applications 418
5.2.3.1 Diesel Particulate Abatement 418
5.2.3.2 Abatement of Gaseous Pollutants and Fly-Ash 428
5.2.4 Modeling 433
5.2.5 Summary 436
5.3 Kiln Furnitures
Andy Norris and Rudolph A. Olson III
439
5.3.1 Introduction 439
5.3.2 Application of Ceramic Foam to Kiln Furniture 441
5.3.2.1 Longer Life 441
5.3.2.2 More Uniform Atmosphere Surrounding the Fired Ware 446
5.3.2.3 Reduction of Frictional Forces during Shrinkage 447
5.3.2.4 Chemical Inertness 447
5.3.2.5 Cost Benefits 448
5.3.3 Manufacture of Kiln Furniture 449
5.3.3.1 Foam Replication Process 449
5.3.3.2 Foams Manufactured by using Fugitive Pore Formers 451
5.3.4 Summary 452
5.4 Heterogeneously Catalyzed Processes with Porous Cellular Ceramic Monoliths
Franziska Scheffler, Peter Claus, Sabine Schimpf, Martin Lucas, and Michael Scheffler
454
5.4.1 Introduction 454
5.4.2 Making Catalysts from Ceramic Monoliths 455
5.4.2.1 Enlargement of Surface Area and Preparation for Catalyst Loading 456
5.4.2.2 Loading with Catalytically Active Components and Activation 457
5.4.2.3 Zeolite Coating: A Combination of High Surface Area and Catalytic Activity 458
5.4.3 Some Catalytic Processes with Honeycomb Catalysts 461
5.4.3.1 Automotive Catalysts 461
5.4.3.2 Diesel Engine Catalysts 464
5.4.3.3 Catalytic Combustion for Gas Turbines 465
5.4.3.4 Applications of Honeycomb Catalysts for Other Gas Phase Reactions 465
5.4.3.5 Honeycomb Catalysts for Gas/Liquid-Phase Reactions 467
5.4.3.6 Other Research Applications of Honeycomb Catalysts 472
5.4.4 Catalytic Processes with Ceramic Foam Catalysts 473
5.4.4.1 Improvement of Technical Processes for Base Chemicals Production 474
5.4.4.2 Hydrogen Liberation from Liquid Precursors/Hydrogen Cleaning for Fuel Cell Applications 475
5.4.4.3 Automotive and Indoor Exhaust Gas Cleaning 476
5.4.4.4 Catalytic Combustion in Porous Burners 479
5.4.5 Summary 479
5.5 Porous Burners
Dimosthenis Trimis, Olaf Pickenäcker, and Klemens Wawrzinek
484
5.5.1 Introduction 484
5.5.2 Flame Stabilization of Premixed Combustion Processes in Porous Burners 486
5.5.2.1 Flame Stabilization by Unsteady Operation 488
5.5.2.2 Flame Stabilization under Steady Operation by Convection and Cooling 489
5.5.2.3 Flame Stabilization under Steady Operation by Thermal Quenching 490
5.5.2.4 Diffusive Mass-Transport Effects on Flame Stabilization 492
5.5.3 Catalytic Radiant Surface Burners 493
5.5.4 Radiant Surface Burners 494
5.5.5 Volumetric Porous Burners with Flame Stabilization by Thermal Quenching 495
5.5.5.1 Materials and Shapes for Porous-Medium Burners 496
5.5.5.2 Applications of Volumetric Porous Burners 498
5.5.6 Summary 506
5.6 Acoustic Transfer in Ceramic Surface Burners
Koen Schreel and Philip de Goey
509
5.6.1 Introduction 509
5.6.2 Acoustic Transfer 511
5.6.3 Analytical Model 512
5.6.4 Acoustic Transfer Coefficient for Realistic Porous Ceramics 514
5.6.4.1 Numerical Results 515
5.6.4.2 Measurements 518
5.6.5 Summary 521
5.7 Solar Radiation Conversion
Thomas Fend, Robert Pitz-Paal, Bernhard Hoffschmidt, and Oliver Reutter
523
5.7.1 Introduction 523
5.7.2 The Volumetric Absorber Principle 525
5.7.3 Optical, Thermodynamic, and Fluid-Mechanical Requirements of Cellular Ceramics for Solar Energy Conversion 526
5.7.4 Examples of Cellular Ceramics Used as Volumetric Absorbers 532
5.7.4.1 Extruded Silicon Carbide Catalyst Supports 532
5.7.4.2 Ceramic Foams 533
5.7.4.3 SiC Fiber Mesh 534
5.7.4.4 Screen-Printed Absorbers (Direct-Typing Process) 535
5.7.4.5 Material Combinations 536
5.7.5 Absorber Tests 536
5.7.6 Physical Restrictions of Volumetric Absorbers and Flow Phenomena in cellular ceramics 539
5.7.6.1 Experimental Determination of Nonstable Flow 544
5.7.7 Summary 545
5.8 Biomedical Applications: Tissue Engineering
Julian R. Jones and Aldo R. Boccaccini
547
5.8.1 Introduction 547
5.8.2 Regenerative Medicine and Biomaterials 548
5.8.3 Bioactive Ceramics for Tissue Engineering 549
5.8.4 Scaffold Biomaterials for Tissue Engineering 550
5.8.5 Cellular Bioceramics as Scaffolds in Tissue Engineering 552
5.8.5.1 HA and Other Calcium Phosphates 552
5.8.5.2 Melt-Derived Bioactive Glasses 560
5.8.5.3 Sol—Gel-derived Bioactive Glasses 560
5.8.5.4 Other Bioceramics Exhibiting Cellular Structure 564
5.8.6 Properties of Some Selected Bioactive Ceramic Foams 565
5.8.7 Summary 566
5.9 Interpenetrating Composites
Jon Binner
571
5.9.1 Introduction 571
5.9.2 Metal—Ceramic Interpenetrating Composites 572
5.9.3 Polymer—Ceramic Interpenetrating Composites 575
5.9.4 Summary 578
5.10 Porous Media in Internal Combustion Engines
Miroslaw Weclas
580
5.10.1 Introduction 580
5.10.2 Novel Engine Combustion Concepts with Homogeneous Combustion Processes 581
5.10.3 Application of Porous-Medium Technology in IC Engines 583
5.10.4 The PM Engine Concept: Internal Combustion Engine with Mixture Formation and Homogeneous Combustion in a PM Reactor 587
5.10.4.1 PM Engine with Closed PM Chamber 588
5.10.4.2 PM Engine with Open PM Chamber 589
5.10.5 An Update of the MDI Engine Concept: Intelligent Engine Concept with PM Chamber for Mixture Formation 590
5.10.6 Two-Stage Combustion System for DI Diesel Engine 592
5.10.7 Summary 594
5.11 Other Developments and Special Applications
Paolo Colombo and Edwin P. Stankiewicz
596
5.11.1 Introduction 596
5.11.2 Improving the Mechanical Properties of Reticulated Ceramics 596
5.11.2.1 Ceramic Foams by Reaction Bonding 597
5.11.2.2 Overcoating of Conventional Reticulated Ceramics 598
5.11.2.3 Infiltration of the Struts of Reticulated Ceramics 599
5.11.3 Microcellular Ceramic Foams 600
5.11.4 Porous Ceramics with Aligned Pores 601
5.11.5 Porous Superconducting Ceramics 602
5.11.6 Porous Yb2O3 Ceramic Emitter for Thermophotovoltaic Applications 603
5.11.7 Ceramic Foams for Advanced Thermal Management Applications 604
5.11.8 Ceramic Foams for Impact Applications 606
5.11.8.1 Hypervelocity Impact Shields for Spacecrafts and Satellites 606
5.11.8.2 Armour Systems 608
5.11.9 Heat Exchangers 609
5.11.10 Ceramic Foams for Semiconductor Applications 611
5.11.11 Duplex filters 611
5.11.12 Lightweight Structures 612
5.11.13 Ceramic Foams as Substrates for Carbon Nanotube Growth 613
5.11.14 Metal Oxide Foams as Precursors for Metallic Foams 614
5.11.15 Zeolite Cellular Structures 615
5.11.16 Current Collectors in Solid Oxide Fuel Cells 616
5.11.17 Sound Absorbers 616
5.11.18 Bacteria/Cell Immobilization 617
5.11.19 Light Diffusers 617
5.11.20 Summary 618
Concluding Remarks 621
Index 625

 





 

Tell a friend          RSS Feeds         Print-Version         Sitemap

©2014 Wiley-VCH Verlag GmbH & Co. KGaA - Provider
http://www.wiley-vch.de - mailto: info@wiley-vch.de
Data Protection