Hot TopicsWiley-VCH

EurJOCASCChem Eur JAngewandte

C–H Activation

The possibility of direct introduction of a new functionality (or a new C–C bond) via direct C–H bond transformation is a highly attractive strategy in covalent synthesis. The range of substrates is virtually unlimited, including hydrocarbons, complex organic compounds of small molecular weight, and synthetic and biological polymers. Below is a list of recent articles on this topic. For a review, see

  1. Xiao Chen, Keary M. Engle, Dong-Hui Wang, Jin-Quan Yu*
    Palladium(II)-Catalyzed C–H Activation/C–C Cross-Coupling Reactions: Versatility and Practicality
    Angew. Chem. 2009, 121, 5196–5217; Angew. Chem. Int. Ed. 2009, 48, 5094–5115

RSS feed

Recent Articles

Andrés G. Algarra, David L. Davies, Qudsia Khamker, Stuart A. Macgregor, Claire L. McMullin, Kuldip Singh, Barbara Villa-Marcos
Combined Experimental and Computational Investigations of Rhodium-Catalysed C-H Functionalisation of Pyrazoles with Alkenes [Full Paper]

Combined Experimental and Computational Investigations of Rhodium-Catalysed C-H Functionalisation of Pyrazoles with Alkenes

Selective vinylation: The rhodium-catalysed oxidative coupling of alkenes and 3-aryl-5-R-pyrazoles gives vinylated products, some of which can cyclise through intramolecular Michael reactions (see scheme). DFT calculations show a clear preference for 2,1-insertion with β-H elimination, calculated to favour the trans vinyl products in all cases, as found experimentally.

Chem. Eur. J., December 17, 2014, DOI: 10.1002/chem.201405550

Wu Li, Zhengli Duan, Xueye Zhang, Heng Zhang, Mengfan Wang, Ru Jiang, Hongyao Zeng, Chao Liu, Aiwen Lei
From Anilines to Isatins: Oxidative Palladium-Catalyzed Double Carbonylation of C-H Bonds [Communication]

From Anilines to Isatins: Oxidative Palladium-Catalyzed Double Carbonylation of C-H Bonds

Two at once: A novel palladium-catalyzed C-H double carbonylation introduces two adjacent carbonyl groups for the synthesis of isatins from readily available anilines. The reaction proceeds under atmospheric pressure of CO with high regioselectivity and without any additives. Density functional theory investigations indicate that the palladium-catalyzed double carbonylation catalytic cycle is plausible.

Angew. Chem. Int. Ed., December 17, 2014, DOI: 10.1002/anie.201410321

Ana Zamorano, Nuria Rendón, Joaquín López-Serrano, José E. V. Valpuesta, Eleuterio Alvarez, Ernesto Carmona
Dihydrogen Catalysis of the Reversible Formation and Cleavage of C-H and N-H Bonds of Aminopyridinate Ligands Bound to (η5-C5Me5)IrIII [Full Paper]

Dihydrogen Catalysis of the Reversible Formation and Cleavage of C-H and N-H Bonds of Aminopyridinate Ligands Bound to (η5-C5Me5)IrIII

Aminopyridinate (Ap) complexes of composition [Ir(Ap)(η5-C5Me5)]+ exist in the form of two isomers 1 a+1 d+ and 2 a+2 d+ that equilibrate in the presence of H2 by means of a reversible prototropic rearrangement within the Ap ligand. The isomerisation reaction is catalysed by dihydrogen and implies reversible formation and cleavage of H-H, C-H and N-H bonds.

Chem. Eur. J., December 11, 2014, DOI: 10.1002/chem.201405340

Elementary Steps of Iron Catalysis: Exploring the Links between Iron Alkyl and Iron Olefin Complexes for their Relevance in C-H Activation and C-C Bond Formation

Trio con brio: Several unorthodox complexes of high relevance for the understanding of iron-catalyzed C–H activation and C–C bond formation have been obtained. These include a surrogate of an intermediate in [2+2+2] cycloaddition reactions, a 14 e [L2Fe(X)R] species that is (meta)stable despite its potential for β-H elimination, and an iron allyl hydride complex formed by two consecutive C–H activation events mediated by a single iron center.

Angew. Chem. Int. Ed., December 10, 2014, DOI: 10.1002/anie.201410069

Xinda Wei, Zongming Lu, Xu Zhao, Zheng Duan, Francois Mathey
Synthesis of Annelated Phospholes through Intramolecular C-H Activation by Monovalent Phosphorus [Communication]

Synthesis of Annelated Phospholes through Intramolecular C-H Activation by Monovalent Phosphorus

Proximity matters: Electrophilic terminal phosphinidene complexes (left, with Ar-Ar being biaryl or an analogue thereof) undergo a spontaneous insertion of the P atom into the vicinal C-H bond to give annelated phospholes. The latter compounds are valuable precursors for the preparation of a variety of optoelectronic devices.

Angew. Chem. Int. Ed., December 9, 2014, DOI: 10.1002/anie.201410603

Norbert Hoffmann
Combining Photoredox and Metal Catalysis [Highlight]

Combining Photoredox and Metal Catalysis

A photogenic pair: Photoredox catalysis with visible light and molecular oxygen as oxidant in combination with palladium catalysis enables highly efficient activation of C-H bonds. Mild photochemical reaction conditions generally facilitate the combination of different catalytic reactions.

ChemCatChem, December 8, 2014, DOI: 10.1002/cctc.201402868

Rongwei Jin, Frederic W. Patureau
Metal-free Dehydrogenative Isoquinolone Synthesis [Highlight]

Metal-free Dehydrogenative Isoquinolone Synthesis

Versatile C-H bonds: We discuss Manna and Antonchick’s metal-free isoquinolone synthesis through the dehydrogenative condensation of benzamides with alkynes and what it means for the fields of C-H functionalization and organic synthesis. DG=Directing group, E=electrophile.

ChemCatChem, December 8, 2014, DOI: 10.1002/cctc.201402704

Palladium-Catalyzed Intramolecular C-H Difluoroalkylation: Synthesis of Substituted 3,3-Difluoro-2-oxindoles

Scoped out: An efficient synthesis of the title compounds by a palladium-catalyzed C-H difluoroalkylation is described. This method features a broad substrate scope, operational simplicity, and utilizes readily available starting materials. BrettPhos was found to facilitate this transformation with unique efficiency. CPME=cyclopentyl methyl ether, dba=dibenzylidene acetone.

Angew. Chem. Int. Ed., December 4, 2014, DOI: 10.1002/anie.201410471

Meiling Yi, Xiuling Cui, Chongwei Zhu, Chao Pi, Weimin Zhu, Yangjie Wu
Direct ortho-Acylation of Azoxybenzenes with Aldehydes via Palladium-Catalyzed Regioselective C-H Bond Activation [Communication]

Direct ortho-Acylation of Azoxybenzenes with Aldehydes via Palladium-Catalyzed Regioselective C-H Bond Activation

Playing the ac-yl: A practical palladium-catalyzed strategy to synthesize azoxybenzene derivatives in a chemo- and regioselective manner by direct C-H acylation has been developed. Easily available aldehydes were used as a cheap aroyl source. The protocol proceeds smoothly and can tolerate a variety of functional groups to give moderate to high yields. DCE=1,2-dichloroethane; TBHP=tert-butyl hydroperoxide.

Asian J. Org. Chem., December 4, 2014, DOI: 10.1002/ajoc.201402251

Christopher Conifer, Chidambaram Gunanathan, Torsten Rinesch, Markus Hölscher, Walter Leitner
Solvent-Free Hydrosilylation of Terminal Alkynes by Reaction with a Nonclassical Ruthenium Hydride Pincer Complex [Full Paper]

Solvent-Free Hydrosilylation of Terminal Alkynes by Reaction with a Nonclassical Ruthenium Hydride Pincer Complex

A selective catalyst system for the hydrosilylation of alkyl alkynes under mild, solvent-free conditions has been developed with the ruthenium pincer complex [Ru(tBuPNP)(H2)(H)2] [tBuPNP = 2,6-bis(di-tert-butylphosphinomethyl)pyridine].

Eur. J. Inorg. Chem., December 2, 2014, DOI: 10.1002/ejic.201403016

Xian-Ying Shi, Ke-Yan Liu, Juan Fan, Xue-Fen Dong, Jun-Fa Wei, Chao-Jun Li
A Convenient Synthesis of N-Aryl Benzamides by Rhodium-Catalyzed ortho-Amidation and Decarboxylation of Benzoic Acids [Communication]

A Convenient Synthesis of N-Aryl Benzamides by Rhodium-Catalyzed ortho-Amidation and Decarboxylation of Benzoic Acids

Kill the director: The rhodium-catalyzed amidation of substituted benzoic acids with isocyanates via directed C-H functionalization followed by decarboxylation to afford the corresponding N-aryl benzamides is demonstrated. The carboxylate serves as a unique, removable directing group. Notably, less common meta-substituted N-aryl benzamides are formed readily from more accessible para- or ortho-substituted groups by employing this strategy.

Chem. Eur. J., December 2, 2014, DOI: 10.1002/chem.201406031

Keshav Raghuvanshi, Karsten Rauch, Lutz Ackermann
Ruthenium(II)-Catalyzed C-H Acyloxylation of Phenols with Removable Auxiliary [Full Paper]

Ruthenium(II)-Catalyzed C-H Acyloxylation of Phenols with Removable Auxiliary

Ruthenium(II)-catalyzed oxygenations of phenols with removable pyridyl (py) auxiliaries were accomplished with high catalytic efficacy and broad substrate scope (see scheme). Notably, the robust and versatile catalyst was tolerant of synthetically valuable electrophilic functional groups and Lewis basic heterocycles.

Chem. Eur. J., November 27, 2014, DOI: 10.1002/chem.201405071

Sourav Kumar Santra, Arghya Banerjee, Nilufa Khatun, Bhisma K. Patel
Ceric Ammonium Nitrate (CAN) Promoted PdII-Catalyzed Substrate-Directed o-Benzoxylation and Decarboxylative o-Aroylation [Full Paper]

Ceric Ammonium Nitrate (CAN) Promoted PdII-Catalyzed Substrate-Directed o-Benzoxylation and Decarboxylative o-Aroylation

CAN can activate: Inexpensive ceric ammonium nitrate (CAN) is an efficient oxidant for the Pd-catalyzed substrate-directed o-benzoxylation and decarboxylative o-aroylation processes. In the presence of CAN, the reaction of directing arenes with carboxylic acids resulted in o-benzoxylated products, and that with α-keto acids led to the formation of o-aroylation products.

Eur. J. Org. Chem., November 27, 2014, DOI: 10.1002/ejoc.201403367

Wei Hou, Yaxi Yang, Wen Ai, Yunxiang Wu, Xuan Wang, Bing Zhou, Yuanchao Li
IrIII-Catalyzed Direct C-7 Amidation of Indolines with Sulfonyl, Acyl, and Aryl Azides at Room Temperature [Full Paper]

IrIII-Catalyzed Direct C-7 Amidation of Indolines with Sulfonyl, Acyl, and Aryl Azides at Room Temperature

An IrIII-catalyzed C-7 selective C–H amidation of indolines with organic azides has been achieved. This method offers an environmentally benign, readily scalable synthesis for 7-aminoindolines. More importantly, acyl, sulfonyl, and aryl azides can be employed in this C–H amidation reaction under very mild reaction conditions (DCE = 1,2-dichloroethane).

Eur. J. Org. Chem., November 27, 2014, DOI: 10.1002/ejoc.201403355

Viktor O. Iaroshenko, Ashot Gevorgyan, Satenik Mkrtchyan, Tatevik Grigoryan, Ester Movsisyan, Alexander Villinger, Peter Langer
Regioselective Direct Arylation of Fused 3-Nitropyridines and Other Nitro-Substituted Heteroarenes: The Multipurpose Nature of the Nitro Group as a Directing Group [Full Paper]

Regioselective Direct Arylation of Fused 3-Nitropyridines and Other Nitro-Substituted Heteroarenes: The Multipurpose Nature of the Nitro Group as a Directing Group

So nitro: We report Pd- and Ni-catalyzed, guided, and regioselective C-H arylations of a series of fused 3-nitropyridines. The method described here is a facile tool for the chemical functionalization of drug-like fused pyridines. The scope and limitations of the reaction, the chemical potential of the nitro group, and a putative reaction mechanism are discussed.

ChemCatChem, November 26, 2014, DOI: 10.1002/cctc.201402715

Remote meta-C-H Olefination of Phenylacetic Acids Directed by a Versatile U-Shaped Template

It’s T time: The title reaction has been achieved using a commercially available nitrile-containing template. The identification of N-formyl-protected glycine as the ligand (Formyl-Gly-OH) was crucial for the development of this reaction. Versatility of the template approach in accommodating macrocyclopalladation processes with different ring sizes is demonstrated.

Angew. Chem. Int. Ed., November 25, 2014, DOI: 10.1002/anie.201409860

Alexander G. Tskhovrebov, Lara C. E. Naested, Euro Solari, Rosario Scopelliti, Kay Severin
Synthesis of Azoimidazolium Dyes with Nitrous Oxide [Communication]

Synthesis of Azoimidazolium Dyes with Nitrous Oxide

Dyes from laughing gas: Azoimidazolium dyes can be obtained by a simple coupling reaction of N-heterocyclic carbenes with nitrous oxide and arenes. This shows that N2O can be used as an efficient N2 donor in synthetic organic chemistry.

Angew. Chem. Int. Ed., November 24, 2014, DOI: 10.1002/anie.201410067

Ross Fu, Matthew E. O'Reilly, Robert J. Nielsen, William A. Goddard III , T. Brent Gunnoe
Rhodium Bis(quinolinyl)benzene Complexes for Methane Activation and Functionalization [Full Paper]

Rhodium Bis(quinolinyl)benzene Complexes for Methane Activation and Functionalization

Activating methane: Free-energy activation and functionalization barriers were calculated for a series of rhodium(III) bis(quinolinyl)benzene (bisqx) complexes for partial oxidation of methane. An η2-benzene coordination mode encourages methyl group functionalization by serving as an effective leaving group for SN2 and SR2 attack.

Chem. Eur. J., November 21, 2014, DOI: 10.1002/chem.201405460

C-H Bond Activation by Metal–Superoxo Species: Magnetic Coupling Correlated to High Reactivity in Metal-Superoxo species

Superoxoman: The title reaction was investigated and the calculations reveal that Mn–O2.− and Fe–O2.− are stronger oxidants compared to either Cr–O2.− or Cu–O2.−, and the oxidative abilities are found to be correlated to the magnetic exchange parameter J. These findings have direct relevance to the functions of several metalloenzymes.

Angew. Chem. Int. Ed., November 21, 2014, DOI: 10.1002/anie.201409844

Alizé Pennec, Cheri L. Jacobs, Diederik J. Opperman, Martha S. Smit
Revisiting Cytochrome P450-Mediated Oxyfunctionalization of Linear and Cyclic Alkanes [Full Paper]

Soumen Kundu, Jasper Van Kirk Thompson, Longzhu Q. Shen, Matthew R. Mills, Emile L. Bominaar, Alexander D. Ryabov, Terrence J. Collins
Activation Parameters as Mechanistic Probes in the TAML Iron(V)–Oxo Oxidations of Hydrocarbons [Full Paper]

Activation Parameters as Mechanistic Probes in the TAML Iron(V)–Oxo Oxidations of Hydrocarbons

The devil is in the detail: Linear correlation between Gibbs free energies of activation ΔG and C-H bond dissociation energies DC−H for hydrocarbon oxidation by a FeVO–TAML complex falsely dictates a common mechanism for all substrates. Dissecting ΔG into ΔH and ΔS, and plotting ΔH vs. DC−H reveals an alternate oxidation mechanism for the hydrocarbon with lowest DC−H.

Chem. Eur. J., November 19, 2014, DOI: 10.1002/chem.201405024

Jie Li, Lutz Ackermann
Cobalt-Catalyzed C-H Cyanation of Arenes and Heteroarenes [Communication]

Cobalt-Catalyzed C-H Cyanation of Arenes and Heteroarenes

As directed: The title reactions were accomplished with in situ generated cobalt(III) carboxylate complexes for highly efficient C-H activations. The direct cyanation proved viable with removable directing groups and displayed a broad substrate scope and mild reaction conditions.

Angew. Chem. Int. Ed., November 17, 2014, DOI: 10.1002/anie.201409247

Yue-Jin Liu, Yan-Hua Liu, Xue-Song Yin, Wen-Jia Gu, Bing-Feng Shi
Copper/Silver-Mediated Direct ortho-Ethynylation of Unactivated (Hetero)aryl C-H Bonds with Terminal Alkyne [Full Paper]

Copper/Silver-Mediated Direct ortho-Ethynylation of Unactivated (Hetero)aryl C-H Bonds with Terminal Alkyne

A copper/silver-mediated oxidative ortho-ethynylation of unactivated aryl C-H bonds with terminal alkyne has been developed using a removable bidentate directing group (PIP; see scheme) derived from 2-(pyridine-2-yl)isopropylamine. The reaction provides an efficient synthesis of aryl alkynes with broad substrate scope, high functional-group tolerance, and compatibility with a wide range of heterocycles.

Chem. Eur. J., November 14, 2014, DOI: 10.1002/chem.201405594

A Regioselective Synthesis of Benzopinacolones through Aerobic Dehydrogenative α-Arylation of the Tertiary sp3 C-H Bond of 1,1-Diphenylketones with Aromatic and Heteroaromatic Compounds

Metal-free α-arylation of ketones: A regioselective synthesis of symmetrical and unsymmetrical benzopinacolones through a metal-free aerobic dehydrogenative α-arylation at the tertiary sp3 C-H bond of substituted 1,1-diphenylketones with aromatic and heteroaromatic compounds, in the presence of K2S2O8 in CF3COOH at room temperature, is described. In addition, benzopinacolones were converted into sterically hindered, tetrasubstituted alkenes and polycyclic aromatic compounds (see scheme; DDQ=2,3-dichloro-5,6-dicyano-1,4-benzoquinone).

Chem. Eur. J., November 13, 2014, DOI: 10.1002/chem.201404308

Lin-Bao Zhang, Xin-Qi Hao, Shou-Kun Zhang, Zhan-Jiang Liu, Xin-Xiang Zheng, Jun-Fang Gong, Jun-Long Niu, Mao-Ping Song
Cobalt-Catalyzed C(sp2)-H Alkoxylation of Aromatic and Olefinic Carboxamides [Communication]

Cobalt-Catalyzed C(sp2)-H Alkoxylation of Aromatic and Olefinic Carboxamides

Alcohols in action: A wide range of alcohols and benzamide substrates functionalized with electron-rich or electron-poor substituents are tolerated in the title reaction. This practical reaction occurs under mild conditions.

Angew. Chem. Int. Ed., November 12, 2014, DOI: 10.1002/anie.201409751

Pavel A. Donets, Nicolai Cramer
Ligand-Controlled Regiodivergent Nickel-Catalyzed Annulation of Pyridones [Communication]

Ligand-Controlled Regiodivergent Nickel-Catalyzed Annulation of Pyridones

Nickeled and dimed: Nickel(0)-catalyzed C-H functionalization of 2-pyridones and subsequent ligand-controlled regioselective cyclization affords 1,6-annulated 2-pyridones. Cyclooctadiene (L1) selectively leads to exo cyclization, whereas the addition of a bulky N-heterocyclic carbene ligand (L2) switches to the endo mode. The method was applied in the synthesis of the lupin alkaloid (±)-cytisine. LA=Lewis acid.

Angew. Chem. Int. Ed., November 6, 2014, DOI: 10.1002/anie.201409669

Shin Miyamura, Misaho Araki, Takayoshi Suzuki, Junichiro Yamaguchi, Kenichiro Itami
Stereodivergent Synthesis of Arylcyclopropylamines by Sequential C-H Borylation and Suzuki–Miyaura Coupling [Communication]

Stereodivergent Synthesis of Arylcyclopropylamines by Sequential C-H Borylation and Suzuki–Miyaura Coupling

All about atmosphere: A step-economical synthesis of 2-arylcyclopropylamines through the title sequence has been developed. The iridium-catalyzed C-H borylation proceeds with cis selectivity, and the subsequent Suzuki–Miyaura coupling proceeds with retention of configuration at the carbon center bearing the Bpin group, and epimerization at the nitrogen-bound carbon atoms. Either isomer (cis or trans) can be accessed by simply changing the atmosphere (N2 or O2).

Angew. Chem. Int. Ed., October 27, 2014, DOI: 10.1002/anie.201409186

Yasutomo Segawa, Takehisa Maekawa, Kenichiro Itami
Synthesis of Extended π-Systems through C–H Activation [Review]

Synthesis of Extended π-Systems through C–H Activation

By no means π in the sky! The activation of aromatic C-H bonds by a transition metal catalyst has received significant attention in the synthetic chemistry community. In recent years, rapid and site-selective extension of π-electron systems by C–H activation has emerged as an ideal methodology for preparing conjugated organic materials. This Review focuses on recently developments in this area directed toward new optoelectronic materials.

Angew. Chem. Int. Ed., September 26, 2014, DOI: 10.1002/anie.201403729

Wen Ai , Xueyan Yang, Yunxiang Wu, Xuan Wang, Yuanchao Li, Yaxi Yang, Bing Zhou
Rhodium(III)- and Iridium(III)-Catalyzed C7 Alkylation of Indolines with Diazo Compounds [Full Paper]

Rhodium(III)- and Iridium(III)-Catalyzed C7 Alkylation of Indolines with Diazo Compounds

A RhIII-catalyzed procedure for the C7-selective C-H alkylation of indolines with α-diazo compounds at room temperature is reported. An IrIII-catalyzed intermolecular insertion of arene C-H bonds into α-diazo compounds has also been successfully developed (see scheme; EWG=electron-withdrawing group).

Chem. Eur. J. 2014, 20, No. 52, 17653-17657

Rhodium(III)/Copper(II)-Promoted trans-Selective Heteroaryl Acyloxylation of Alkynes: Stereodefined Access to trans-Enol Esters

What a pair: A RhIII/CuII-promoted process is reported to provide tetrasubstituted enol esters in a trans-selective fashion. This three-component reaction uses a rhodium(III) catalyst for the C2-selective activation of electron-rich heteroarenes and the addition across the alkyne. Copper(II) then takes over to forge the vinyl ester bond. The method was also used for the functionalization of bioactive furocoumarin natural products.

Angew. Chem. Int. Ed. 2014, 53, No. 52, 14575-14579

Marie L. Clement, Kyle A. Grice, Avery T. Luedtke, Werner Kaminsky, Karen I. Goldberg
Platinum(II) Olefin Hydroarylation Catalysts: Tuning Selectivity for the anti-Markovnikov Product [Communication]

Platinum(II) Olefin Hydroarylation Catalysts: Tuning Selectivity for the anti-Markovnikov Product

Platinum plays favorites: PtII complexes containing unsymmetrical (pyridyl)pyrrolide ligands are shown to catalyze the hydroarylation of unactivated alkenes with selectivity for the anti-Markovnikov product (see scheme). Substitution on the pyrrolide portion of the ligand allows effective tuning of the selectivity to anti-Markovnikov alkylarene products, whereas substitution on the pyridyl portion can promote competitive alkenylarene production.

Chem. Eur. J. 2014, 20, No. 52, 17287-17291

Demyan E. Prokopchuk, Brian T. H. Tsui, Alan J. Lough, Robert H. Morris
Intramolecular C-H/O-H Bond Cleavage with Water and Alcohol Using a Phosphine-Free Ruthenium Carbene NCN Pincer Complex [Full Paper]

Intramolecular C-H/O-H Bond Cleavage with Water and Alcohol Using a Phosphine-Free Ruthenium Carbene NCN Pincer Complex

Proton pincer ping-pong: New phosphine-free Ru–NCN pincer complexes have been synthesized. The complexes' dearomatized alkoxide/hydroxide analogues undergo unprecedented regioselective, intramolecular C-H/O-H bond activation with tert-butanol or water at 25 °C, as shown by NMR spectroscopy and DFT calculations.

Chem. Eur. J. 2014, 20, No. 51, 16960-16968

Highly Linear Selective Cobalt-Catalyzed Addition of Aryl Imines to Styrenes: Reversing Intrinsic Regioselectivity by Ligand Elaboration

Paired off: The title reaction has been achieved with cobalt-based catalytic systems featuring bis(2,4-dimethoxyphenyl)(phenyl)phosphine (L) and either 2-methoxypyridine or DBU (LB), thus affording a variety of 1,2-diarylethanes in good yields. Ligand screening and deuterium-labeling studies show the ligand and Lewis base to be important in the crucial C-C reductive elimination step. Cy=cyclohexyl, PMP=para-methoxyphenyl.

Angew. Chem. Int. Ed. 2014, 53, No. 51, 14166-14170

Lu Li, Xiaoyue Mu, Wenbo Liu, Xianghua Kong, Shizhao Fan, Zetian Mi, Chao-Jun Li
Thermal Non-Oxidative Aromatization of Light Alkanes Catalyzed by Gallium Nitride [Communication]

Thermal Non-Oxidative Aromatization of Light Alkanes Catalyzed by Gallium Nitride

Light weights: The readily available nondoped GaN material possesses superior thermal stability and catalytic activity towards the non-oxidative aromatization of light alkanes (from C1 to C6) at elevated temperature. Theoretical calculations suggest an energetically favorable adsorption interaction between methane and the m-plane of GaN.

Angew. Chem. Int. Ed. 2014, 53, No. 51, 14106-14109

Farnaz Jafarpour, Hamideh Hazrati, Masoumeh Darvishmolla
Acylation of Pyrroles and their Free (N-H)-Derivatives via Palladium-Catalyzed Carbopalladation of Nitriles [Communication]

Ji-Rong Huang, Qiang Song, Yu-Qin Zhu, Liu Qin, Zhi-Yong Qian, Lin Dong
Rhodium(III)-Catalyzed Three-Component Reaction of Imines, Alkynes, and Aldehydes through C-H Activation [Communication]

Rhodium(III)-Catalyzed Three-Component Reaction of Imines, Alkynes, and Aldehydes through C-H Activation

Efficient approach: An efficient rhodium(III)-catalyzed tandem three-component reaction of imines, alkynes, and aldehydes through C-H activation has been developed (see scheme; DCE=1,2-dichloroethane, Boc=tert-butoxycarbonyl). High stereo- and regioselectivity, as well as good yields were obtained in most cases. The simple and atom-economical approach offers a broad scope of substrates, providing polycyclic skeletons with potential biological properties.

Chem. Eur. J. 2014, 20, No. 51, 16882-16886

Tobias Gylling Frihed, Christian Marcus Pedersen, Mikael Bols
Synthesis of All Eight L-Glycopyranosyl Donors Using C-H Activation [Communication]

Synthesis of All Eight L-Glycopyranosyl Donors Using C-H Activation

A one-pot four-step procedure was developed for the synthesis of all eight L-glycopyranosyl donors from the corresponding 6-deoxy thioglycosides. Ir-catalyzed silylation (a) and C-H activation (b), followed by a Fleming–Tamao oxidation (c) and acetylation (d) led to highly functionalized thioglycosides.

Angew. Chem. Int. Ed. 2014, 53, No. 50, 13889-13893

Chinmoy Kumar Hazra, Quentin Dherbassy, Joanna Wencel-Delord, Françoise Colobert
Synthesis of Axially Chiral Biaryls through Sulfoxide-Directed Asymmetric Mild C-H Activation and Dynamic Kinetic Resolution [Communication]

Synthesis of Axially Chiral Biaryls through Sulfoxide-Directed Asymmetric Mild C-H Activation and Dynamic Kinetic Resolution

Pd makes it rotate: A C-H activation/dynamic kinetic resolution method allows access to axially chiral biaryls. The isomerization step is believed to occur via a palladacyclic intermediate. Chiral induction is achieved using the sulfoxide motif as both “traceless” directing group and chiral source.

Angew. Chem. Int. Ed. 2014, 53, No. 50, 13871-13875

Amide-Functionalized Naphthyridines on a RhII–RhII Platform: Effect of Steric Crowding, Hemilability, and Hydrogen-Bonding Interactions on the Structural Diversity and Catalytic Activity of Dirhodium(II) Complexes

The introduction of structural diversity into RhII–RhII complexes is achieved with amide-functionalized 1,8-naphthyridine ligands modulated by steric crowding, bridging carboxylate groups that are labile, and hydrogen-bonding interactions between the amide hydrogen and carboxylate oxygen atoms. The amide functionality shows hemilabile behavior at the axial sites, thus making the dirhodium complex effective for the catalytic C-H functionalization of indoles with appropriate diazo compounds (see scheme).

Chem. Eur. J. 2014, 20, No. 50, 16537-16549

Malek Nechab, Shovan Mondal, Michèle P. Bertrand
1,n-Hydrogen-Atom Transfer (HAT) Reactions in Which n≠5: An Updated Inventory [Review]

1,n-Hydrogen-Atom Transfer (HAT) Reactions in Which n≠5: An Updated Inventory

Intramolecular HAT scope: The investigation of the less commonly encountered 1,n-hydrogen-atom transfer (HAT) reactions in which n≠5 has led to high yielding original synthetic applications. The aim of this Review is to make a critical updated inventory, highlighting the most elegant cascade reactions based on a 1,n-HAT elementary step (from A to B) in which n=4, 6, 7, 8, 9, and so forth.

Chem. Eur. J. 2014, 20, No. 49, 16034-16059

Xiaojin Wu, Jessica Wei Ting See, Kai Xu, Hajime Hirao, Julien Roger, Jean-Cyrille Hierso, Jianrong (Steve) Zhou
A General Palladium-Catalyzed Method for Alkylation of Heteroarenes Using Secondary and Tertiary Alkyl Halides [Communication]

A General Palladium-Catalyzed Method for Alkylation of Heteroarenes Using Secondary and Tertiary Alkyl Halides

A radical way: The title reaction has been realized for many unactivated alkyl halides and a variety of heteroarenes (see picture; red dots denote the point of alkylation with secondary and tertiary alkyl halides). Preliminary mechanistic studies indicate that the palladium catalyst initiates an alkyl radical addition to heterocycles.

Angew. Chem. Int. Ed. 2014, 53, No. 49, 13573-13577

Pietro Cotugno, Antonio Monopoli, Francesco Ciminale, Antonella Milella, Angelo Nacci
Palladium-Catalyzed Cross-Coupling of Styrenes with Aryl Methyl Ketones in Ionic Liquids: Direct Access to Cyclopropanes [Communication]

Palladium-Catalyzed Cross-Coupling of Styrenes with Aryl Methyl Ketones in Ionic Liquids: Direct Access to Cyclopropanes

Double activation: The combined use of Pd(OAc)2, Cu(OAc)2, and dioxygen in molten tetrabutylammonium acetate (TBAA) promotes an unusual cyclopropanation reaction between aryl methyl ketones and styrenes. The process is a dehydrogenative cyclizing coupling that involves a twofold C-H activation at the α-position of the ketone.

Angew. Chem. Int. Ed. 2014, 53, No. 49, 13563-13567

Xin Wang, Kai Sun, Yunhe Lv, Fengji Ma, Gang Li, Donghui Li, Zhonghong Zhu, Yongqing Jiang, Feng Zhao
Regioselective C-H Imidation of Five-Membered Heterocyclic Compounds through a Metal Catalytic or Organocatalytic Approach [Communication]

Regioselective C-H Imidation of Five-Membered Heterocyclic Compounds through a Metal Catalytic or Organocatalytic Approach

Give me five: A regioselective C-H imidation of five-membered heterocyclic pyrrole, furan, and thiophene derivatives was realized. Through a metal catalytic or organocatalytic approach, a series of 2-amino- and β-amino-substituted heterocyclic compounds was obtained under atmospheric conditions.

Chem. Asian J. 2014, 9, No. 12, 3413-3416

Iron-Catalyzed C–H Bond Functionalization for the Exclusive Synthesis of Pyrido[1,2-a]indoles or Triarylmethanols

An efficient iron-catalyzed C–H bond functionalization that proceeded through an intramolecular C–H amination reaction under nitrogen was employed for the synthesis of pyrido[1,2-a]indoles from 2-benzhydrylpyridines. Under oxygen, the same 2-benzhydrylpyridines were used for the synthesis of the corresponding tertiary alcohols. Overall, a change of atmosphere altered the course of the reaction.

Eur. J. Org. Chem. 2014, No. 36, 8055-8063

Photochemical Reactions of [(η5-C5R5)Re(CO)3] (R = Me or H) with Aryl Halides in Benzene: Stoichiometric Formation of Biphenyl

Photolysis of [Cp*Re(CO)3] with bromo- or chlorobenzene in benzene results in the formation of biphenyl and the corresponding rhenium hydride halide complex trans-[Cp*Re(CO)2H(X)]. Isotopic labeling experiments indicate that one phenyl ring in the resulting biphenyl comes from the aryl halide and the other one from the solvent benzene. Plausible mechanisms are proposed that involve intermolecular C–X and C–H activation.

Eur. J. Inorg. Chem. 2014, No. 34, 5932-5939

Jitan Zhang, Hongsheng Qian, Zhanxiang Liu, Chunhua Xiong, Yuhong Zhang
Rhodium(III)-Catalyzed One-Pot Access to Isoquinolines and Heterocycle-Fused Pyridines in Aqueous Medium through C–H Cleavage [Full Paper]

Rhodium(III)-Catalyzed One-Pot Access to Isoquinolines and Heterocycle-Fused Pyridines in Aqueous Medium through C–H Cleavage

An efficient RhIII-catalyzed ortho-C–H bond activation for the synthesis of substituted isoquinolines and heterocycle-fused pyridines in aqueous medium has been developed. This method involves the in situ generation of ketimines from ketones and ammonium acetate and subsequent oxidative C–H bond activation/annulation of the ketimines with alkynes to form the C–C/C–N bonds spontaneously.

Eur. J. Org. Chem. 2014, No. 36, 8110-8118

Ke Yang, Peng Wang, Cheng Zhang, Adnan A. Kadi, Hoong-Kun Fun, Yan Zhang, Hongjian Lu
Nickel-Catalyzed Decarboxylative Arylation of Heteroarenes through sp2 C–H Functionalization [Short Communication]

Nickel-Catalyzed Decarboxylative Arylation of Heteroarenes through sp2 C–H Functionalization

The nickel-catalyzed direct decarboxylative arylation of hetereoarenes with benzoic acids through an sp2 C–H functionalization process is reported. This transformation provides the first examples of decarboxylative cross-coupling reactions with aromatic acids through nickel catalysis. IPr = 1,3-Bis(2,6-diisopropylphenyl)-imidazol-2-ylidene, BQ = 1,4-benzoquinone.

Eur. J. Org. Chem. 2014, No. 34, 7586-7589

Tuning CuII Coordination Polymers Derived from a Bis(pyrazolecarboxylate) Ligand by Solvothermal C–H Bond Activation: Synthesis, Structures, Catalysis, and Magnetic Properties

A new bis(pyrazolecarboxylate) ligand undergoes C–H bond activation in the presence of Cu(ClO4)2 under mild basic conditions. The resulting coordination polymers exhibit interesting structural features with promising catalytic and magnetic properties.

Eur. J. Inorg. Chem. 2014, No. 34, 5874-5884

Toan Dao-Huy, Maximilian Haider, Fabian Glatz, Michael Schnürch, Marko D. Mihovilovic
Direct Arylation of Benzo[b]furan and Other Benzo-Fused Heterocycles [Full Paper]

Direct Arylation of Benzo[b]furan and Other Benzo-Fused Heterocycles

The direct arylation of benzo-fused heterocycles is reported. A common strategy could be applied to benzofuran, benzothiophene, and indole with good selectivity for arylation at the 2-position. In addition, the same method could be applied to the arylation at C3 in a second C–H activation step.

Eur. J. Org. Chem. 2014, No. 36, 8119-8125

Yiwen Yang, Chunxiang Kuang
Room-Temperature Direct Alkenylation of 3-Arylsydnones [Short Communication]

Room-Temperature Direct Alkenylation of 3-Arylsydnones

A new efficient method for the direct alkenylation of 3-arylsydnones by palladium-catalyzed C–H functionalization is developed. The reaction proceeds smoothly at room temperature and delivers the products in yields up to 83 %.

Eur. J. Org. Chem. 2014, No. 35, 7810-7813

Ruthenium-Catalyzed Alkenylation of Arenes with Alkynes or Alkenes by 1,2,3-Triazole-Directed C–H Activation

The ruthenium-catalyzed alkenylation of arenes with unsaturated alkanes has been achieved by triazole-directed C–H activation. Dialkenylated arenes were efficiently produced by this method from internal alkynes as the sole products with high regio- and stereoselectivity.

Eur. J. Org. Chem. 2014, No. 35, 7878-7888

Iridium Complexes Containing Mesoionic C Donors: Selective C(sp3)-H versus C(sp2)-H Bond Activation, Reactivity Towards Acids and Bases, and Catalytic Oxidation of Silanes and Water

Selective C(sp2)-H activation of pyridylimidazolium or pyridyltriazolium salts affords isostructural iridium(III) complexes containing a mesoionic C-donor ligand. Despite the similar mesoionic character, the behavior of the ligands (e.g., in H/D isotope-exchange reactions) and of the complexes (in oxidation catalysis) is distinctly different (see scheme).

Chem. Eur. J. 2014, 20, No. 48, 15775-15784

Hang Zhang, Kang Wang, Bo Wang, Heng Yi, Fangdong Hu, Changkun Li, Yan Zhang, Jianbo Wang
Rhodium(III)-Catalyzed Transannulation of Cyclopropenes with N-Phenoxyacetamides through C-H Activation [Communication]

Rhodium(III)-Catalyzed Transannulation of Cyclopropenes with N-Phenoxyacetamides through C-H Activation

The three C's: An efficient rhodium(III)-catalyzed synthesis of 2H-chromenes from N-phenoxyacetamides and cyclopropenes has been developed. The reaction represents the first example of using cyclopropenes as a three-carbon unit in rhodium(III)-catalyzed C(sp2)-H activations. Preliminary mechanistic investigations are discussed.

Angew. Chem. Int. Ed. 2014, 53, No. 48, 13234-13238

Construction of Axial Chirality by Rhodium-Catalyzed Asymmetric Dehydrogenative Heck Coupling of Biaryl Compounds with Alkenes

An axe to grind? Novel axially chiral biaryls were synthesized by the direct C-H bond olefination of biaryl compounds, using a chiral [Cp*RhIII] catalyst (1), in good to excellent yields and enantioselectivities. The biaryls were found as suitable ligands for rhodium-catalyzed asymmetric conjugate addition reactions.

Angew. Chem. Int. Ed. 2014, 53, No. 48, 13244-13247

Wanrong Dong, Kanniyappan Parthasarathy, Ying Cheng, Fangfang Pan, Carsten Bolm
Hydroarylations of Heterobicyclic Alkenes through Rhodium-Catalyzed Directed C-H Functionalizations of S-Aryl Sulfoximines [Communication]

Hydroarylations of Heterobicyclic Alkenes through Rhodium-Catalyzed Directed C-H Functionalizations of S-Aryl Sulfoximines

Rhodium-catalyzed hydroarylations of heterobicyclic alkenes with NH-sulfoximines lead to products that can then be converted to aryl-fused thiazines. The initial process involves a C-H functionalization directed by the sulfoximidoyl group. Aryl addition to the alkene is then followed by dehydration and palladium-catalyzed oxidative C-N coupling (see scheme).

Chem. Eur. J. 2014, 20, No. 48, 15732-15736

János Daru, Zsuzsanna Benda, Adám Póti, Zoltán Novák, András Stirling
Mechanistic Study of Silver-Mediated Furan Formation by Oxidative Coupling [Full Paper]

Mechanistic Study of Silver-Mediated Furan Formation by Oxidative Coupling

Radical or ionic mechanism? Both. The detailed mechanism of a silver-mediated furan formation by oxidative C-H/C-H activation has been revealed by DFT calculations and additional experiments. The reaction path starts with a radical C-C coupling process. Then, an aromatic cyclization occurs featuring an ionic mechanism, which completes the furan formation. Silver plays crucial roles in the reaction: it is an oxidant and a catalyst simultaneously.

Chem. Eur. J. 2014, 20, No. 47, 15395-15400

First Principles (DFT) Characterization of RhI/dppp-Catalyzed C-H Activation by Tandem 1,2-Addition/1,4-Rh Shift Reactions of Norbornene to Phenylboronic Acid

Calculated barriers to C-H activation: The key 1,4-Rh shift step in the multiple, “merry-go-round” addition of norbornene to phenylboronic acid is shown to proceed by C-H oxidation addition (OA)/C-H reductive elimination (RE) to/from RhIII-hydride by DFT calculations (PCM/PBE0/DGDZVP level of theory). The calculated barriers are in excellent agreement with the experimental selectivity.

Chem. Eur. J. 2014, 20, No. 47, 15625-15634

Dmitry Katayev, Evgeny Larionov, Masafumi Nakanishi, Céline Besnard, E. Peter Kündig
Palladium–N-Heterocyclic Carbene (NHC)-Catalyzed Asymmetric Synthesis of Indolines through Regiodivergent C(sp3)-H Activation: Scope and DFT Study [Full Paper]

Palladium–N-Heterocyclic Carbene (NHC)-Catalyzed Asymmetric Synthesis of Indolines through Regiodivergent C(sp3)-H Activation: Scope and DFT Study

Overcoming inactivity: Bulky, chiral, monodentate N-heterocyclic carbene (NHC) ligands were successfully applied to the palladium-catalyzed, highly enantioselective CAr-Calkyl coupling of an unactivated C(sp3)-H bond (see scheme). Readily synthesized carbamates, containing a stereogenic center, were investigated and afforded different trans-2,3-substituted indolines. Furthermore, a DFT study was carried out to rationalize experimentally observed regio- and enantioselectivities.

Chem. Eur. J. 2014, 20, No. 46, 15021-15030

Kevin Rousée, Cédric Schneider, Samuel Couve-Bonnaire, Xavier Pannecoucke, Vincent Levacher, Christophe Hoarau
Pd- and Cu-Catalyzed Stereo- and Regiocontrolled Decarboxylative/C-H Fluoroalkenylation of Heteroarenes [Communication]

Pd- and Cu-Catalyzed Stereo- and Regiocontrolled Decarboxylative/C-H Fluoroalkenylation of Heteroarenes

Two metals are better than one: Pd/Cu-catalyzed decarboxylative/direct C-H alkenylation of heteroarenes with α-fluoroacrylic acids is reported. This method offers step-economical and stereocontrolled access to valuable heteroarylated monofluoroalkenes as both Z and E isomers.

Chem. Eur. J. 2014, 20, No. 46, 15000-15004

Ruthenium(II)-Catalyzed Oxidative C-H Alkenylations of Sulfonic Acids, Sulfonyl Chlorides and Sulfonamides

Versatile oxidative alkenylations of sulfonic acids, sulfonyl chlorides or sulfonamides were achieved by a robust ruthenium(II) catalyst with excellent substrate scope. Mechanistic studies suggested a reversible, acetate-assisted C-H ruthenation, along with a subsequent olefin insertion.

Chem. Eur. J. 2014, 20, No. 46, 15248-15251

On the Mechanism of the Palladium Bis(NHC) Complex Catalyzed CH Functionalization of Propane: Experiment and DFT Calculations

No propane, no gain: The mechanism for the functionalization of propane with palladium(NHC) catalysts was investigated in detail. The combined experimental and computational (DFT) results favor a mechanism with CH activation by palladium(II) and oxidation by bromine to palladium(IV). It is proposed that the oxidation of palladium(II) to palladium(IV) alkyl species proceeds faster for iso-alkyl than for n-alkyl complexes.

Chem. Eur. J. 2014, 20, No. 45, 14872-14879

Quentin Michaudel, Guillaume Journot, Alicia Regueiro-Ren, Animesh Goswami, Zhiwei Guo, Thomas P. Tully, Lufeng Zou, Raghunath O. Ramabhadran, Kendall N. Houk, Phil S. Baran
Improving Physical Properties via C-H Oxidation: Chemical and Enzymatic Approaches [Communication]

Improving Physical Properties via C-H Oxidation: Chemical and Enzymatic Approaches

A handle on [O]: A variety of C-H oxidation methods were explored on the betulin skeleton to improve the solubility of this bioactive, yet poorly water-soluble, natural product. The innate reactivity of the molecule, as well as the molecular handles present on the core, allowed oxidations at different positions. Solubility enhancement was observed for many of the synthesized compounds.

Angew. Chem. Int. Ed. 2014, 53, No. 45, 12091-12096

William J. Kerr, Richard J. Mudd, Laura C. Paterson, Jack A. Brown
Iridium(I)-Catalyzed Regioselective C-H Activation and Hydrogen-Isotope Exchange of Non-aromatic Unsaturated Functionality [Communication]

Iridium(I)-Catalyzed Regioselective C-H Activation and Hydrogen-Isotope Exchange of Non-aromatic Unsaturated Functionality

Selective iridium: The first β-selective Ir-catalyzed C-H activation and hydrogen-isotope-exchange process by using active IrI catalyst was established. Under practically accessible reaction conditions and by employing low levels of catalyst loading, very good levels of deuterium incorporation have been obtained with appreciable selectivity over the potentially competing reduction process across a series of α,β-unsaturated substrates (see scheme).

Chem. Eur. J. 2014, 20, No. 45, 14604-14607

Yu Xue, Zhoulong Fan, Xiaolong Jiang, Kui Wu, Meining Wang, Chunyong Ding, Qizheng Yao, Ao Zhang
RhIII-Catalysed Hydrazine-Directed C(sp2)–H Amination of Phenidones with N-Alkyl-O-benzoyl-hydroxylamines [Full Paper]

RhIII-Catalysed Hydrazine-Directed C(sp2)–H Amination of Phenidones with N-Alkyl-O-benzoyl-hydroxylamines

A RhIII-catalysed ortho C–H amination of phenidones under mild conditions at room temperature was developed using N-alkyl-O-benzoyl-hydroxylamines as aminating agents, and with a cyclic hydrazine moiety as a directing group, yields of up to 97 % and a high functional group tolerance were observed.

Eur. J. Org. Chem. 2014, No. 33, 7481-7488

Moritz Schubert, Simon Trosien, Lara Schulz, Carolin Brandscheid, Dieter Schollmeyer, Siegfried R. Waldvogel
Oxidative (Cross-)Coupling Reactions Mediated by C–H Activation of Thiophene Derivatives by Using Molybdenum(V) Reagents [Short Communication]

Oxidative (Cross-)Coupling Reactions Mediated by C–H Activation of Thiophene Derivatives by Using Molybdenum(V) Reagents

The unique performance of MoCl5 gives rise to a variety of complex structures involving the thiophene motif. The oxidative coupling is performed in the 2,3-positions of the thiophene moiety. In this approach, the first cross-coupling reactions by using MoCl5 are established.

Eur. J. Org. Chem. 2014, No. 32, 7091-7094

Copper-Catalyzed Asymmetric Addition to Isatins to give 3-Hydroxy-2-oxindoles by C–H Activation

A copper-catalyzed asymmetric addition to isatins to give 3-hydroxy-2-oxindoles by C–H activation with a fluorous bis(oxazoline) as ligand is presented. The fluorous ligand can be easily recovered and reused at least three times without significant loss in its activity.

Eur. J. Org. Chem. 2014, No. 32, 7259-7264

Polymer- and Silica-Supported Iron BPMEN-Inspired Catalysts for C-H Bond Functionalization Reactions

Minor adjustments: Two approaches are presented to functionalize the popular N1,N2-dimethyl-N1,N2-bis(pyridin-2-ylmethyl)ethane-1,2-diamine (BPMEN) ligand, so that it can be supported on porous silica or polymer resin supports. Iron that complexes with this ligand can be used in an array of catalytic C-H functionalization reactions (see picture).

Chem. Asian J. 2014, 9, No. 11, 3142-3152

Zaini Jamal, Yong-Chua Teo, Ling-Keong Wong
Functionalization of the Benzylic C–H Bonds in Azaarenes by Cobalt-Catalyzed 1,4-Addition to Enones [Short Communication]

Functionalization of the Benzylic C–H Bonds in Azaarenes by Cobalt-Catalyzed 1,4-Addition to Enones

Functionalization of the C(sp3)–H bonds in azaarenes catalyzed by CoCl2 as an inexpensive Lewis acid catalyst is reported. Enones are demonstrated to be good C=C electrophilic acceptors for the construction of various azaarene-containing 1,4-addition products in yields up to 95 %.

Eur. J. Org. Chem. 2014, No. 33, 7343-7346

Matthijs Ruitenbeek, Bert M. Weckhuysen
A Radical Twist to the Versatile Behavior of Iron in Selective Methane Activation [Highlight]

A Radical Twist to the Versatile Behavior of Iron in Selective Methane Activation

Things go better without coke! The selective activation of methane and its direct conversion into light olefins and aromatic compounds remains a formidable challenge. Recent work shows that a catalyst material consisting of lattice-confined single iron atoms is very active and selective in the direct, nonoxidative conversion of methane into ethylene, benzene, and naphthalene without the formation of coke deposits.

Angew. Chem. Int. Ed. 2014, 53, No. 42, 11137-11139

Niles J. Gunsalus, Michael M. Konnick, Brian G. Hashiguchi, Roy A. Periana
Discrete Molecular Catalysts for Methane Functionalization [Review]

Konstantin Junold, Johannes A. Baus, Christian Burschka, Maik Finze, Reinhold Tacke
Selective C–H Bond Activation of 1,2-Dicarba-closo-dodecaborane by the Donor-Stabilized Silylene Bis[N,N'-diisopropylbenzamidinato(–)]silicon(II) [Short Communication]

Selective C–H Bond Activation of 1,2-Dicarba-closo-dodecaborane by the Donor-Stabilized Silylene Bis[N,N'-diisopropylbenzamidinato(–)]silicon(II)

Reaction of donor-stabilized silylene 1 with 1,2-dicarba-closo-dodecaborane leads to the formation of neutral six-coordinate silicon(IV) complex 2 (selective C–H bond activation). Compound 2 reacts with acetonitrile to form neutral six-coordinate silicon(IV) complex 3 and 1,2-dicarba-closo-dodecaborane.

Eur. J. Inorg. Chem. 2014, No. 30, 5099-5102

Rowan D. Young
Characterisation of Alkane σ-Complexes [Minireview]

Characterisation of Alkane σ-Complexes

The coordination of alkanes to metal centers is a complex matter! Advances in synthetic strategies to produce alkane σ-complexes, and ever more detailed analyses of such complexes, is leading to an understanding of how alkanes bind to specific metal centers. Such analysis is vital in understanding selectivity in C-H activation reactions.

Chem. Eur. J. 2014, 20, No. 40, 12704-12718

Johannes Schranck, Anis Tlili, Matthias Beller
Functionalization of Remote C-H Bonds: Expanding the Frontier [Highlight]

Functionalization of Remote C-H Bonds: Expanding the Frontier

Novel tool set: New methodologies for the functionalization of remote C-H bonds have been developed recently. In diverse approaches high selectivities are achieved for the functionalization of less reactive C(sp2)-H as well as C(sp3)-H bonds distal to any substituents.

Angew. Chem. Int. Ed. 2014, 53, No. 36, 9426-9428

Frédéric Liron, Julie Oble, Mélanie M. Lorion, Giovanni Poli
Direct Allylic Functionalization Through Pd-Catalyzed C–H Activation [Microreview]

Direct Allylic Functionalization Through Pd-Catalyzed C–H Activation

This review outlines some selected examples and present challenges relating to palladium-catalyzed direct allylic functionalization. This old reaction, ignored for many years, is enjoying a new age.

Eur. J. Org. Chem. 2014, No. 27, 5863-5883

Laurent Djakovitch, François-Xavier Felpin
Direct C sp2-H and C sp3-H Arylation Enabled by Heterogeneous Palladium Catalysts [Minireview]

Direct C sp2-H and C sp3-H Arylation Enabled by Heterogeneous Palladium Catalysts

When palladium meets a support: The functionalization of the C-H bond is the most straightforward approach to create new bonds. Although most studies involve homogeneous transition-metal catalysts, in this Minireview we aim to give a picture of recent advances of direct C-H arylations enabled by heterogeneous Pd catalysts.

ChemCatChem 2014, 6, No. 08, 2175-2187

Ligands Control Reactivity and Selectivity in Palladium-Catalyzed Functionalization of Unactivated C sp3-H Bonds

Ligands at the wheel: The pivotal role of ligands for the palladium-catalyzed functionalization of remote C sp3-H bonds has been demonstrated. The presence of the ligand enhances the reactivity of the inert C sp3-H bond and controls the selectivity of the process. DG=Directing group, FG=functional group.

ChemCatChem 2014, 6, No. 08, 2188-2190

Jamal Koubachi, Saïd El Kazzouli, Mosto Bousmina, Gérald Guillaumet
Functionalization of Imidazo[1,2-a]pyridines by Means of Metal-Catalyzed Cross-Coupling Reactions [Microreview]

Functionalization of Imidazo[1,2-a]pyridines by Means of Metal-Catalyzed Cross-Coupling Reactions

The latest developments in the field of imidazo[1,2-a]pyridine functionalization by means of cross-coupling reactions such as the Sonogashira, Heck, Negishi, Suzuki–Miyaura, and Stille reactions, as well as by C-arylation, C-alkenylation, carbonylation, and double functionalization, are reviewed and discussed.

Eur. J. Org. Chem. 2014, No. 24, 5119-5138

Direct Functionalization with Complete and Switchable Positional Control: Free Phenol as a Role Model

PhenAll: Recent breakthroughs in site-selective and direct functionalization of free phenols by transition-metal-catalyzed C-O or C-H bond activation are highlighted here as role models for the complete and switchable positional control of transformations of important core structures.

Angew. Chem. Int. Ed. 2014, 53, No. 30, 7710-7712

Christoph Kornhaaß, Christian Kuper, Lutz Ackermann
Ferrocenylalkynes for Ruthenium-Catalyzed Isohypsic C-H/N-O Bond Functionalizations [Update]

Yan Li, Yun Wu, Guang-Shui Li, Xi-Sheng Wang
Palladium-Catalyzed C-F Bond Formation via Directed C-H Activation [Review]

Suman De Sarkar, Weiping Liu, Sergei I. Kozhushkov, Lutz Ackermann
Weakly Coordinating Directing Groups for Ruthenium(II)- Catalyzed C-H Activation [Review]

Zhao-Lei Yan, Wen-Liang Chen, Ya-Ru Gao, Shuai Mao, Yan-Lei Zhang, Yong-Qiang Wang
Palladium-Catalyzed Intermolecular C-2 Alkenylation of Indoles Using Oxygen as the Oxidant [Update]

José Luis García Ruano, José Alemán, Alejandro Parra, Leyre Marzo
Sulfonyl Acetylenes as Alkynylating Reagents Under Radical or Anionic Conditions [Microreview]

Sulfonyl Acetylenes as Alkynylating Reagents Under Radical or Anionic Conditions

We summarize a powerful methodology for the alkynylation of C(sp3), C(sp2), and C(sp) carbon atoms, as well as some heteroatoms, with alkynylsulfones. It is based on the fact that β-substituted sulfonylacetylenes undergo unexpected anti-Michael addition of organolithiums and radical species, giving intermediates that evolve into alkynyl derivatives in situ by elimination of the anion or radical TolSO2.

Eur. J. Org. Chem. 2014, No. 08, 1577-1588

Philipp J. Gritsch, Christian Leitner, Magnus Pfaffenbach, Tanja Gaich
The Witkop Cyclization: A Photoinduced C-H Activation of the Indole System [Minireview]

The Witkop Cyclization: A Photoinduced C-H Activation of the Indole System

To wit: The title reaction resembles a photoinduced electron-transfer process, and allows the direct formation of medium-sized lactams by C-H activation of the indole nucleus. Therefore it is a versatile tool for the construction of polycyclic indole alkaloid scaffolds.

Angew. Chem. Int. Ed. 2014, 53, No. 05, 1208-1217

Towards Ideal Synthesis: Alkenylation of Aryl C-H Bonds by a Fujiwara–Moritani Reaction

Chemical power tools: The Fujiwara–Moritani reaction is the palladium-catalyzed coupling reaction of a simple aryl C-H bond with an alkenyl C-H bond to form a new C-C bond (see scheme). This Minireview focuses on the advances in the past five years related to the activation of various aryl C-H bonds in this coupling reaction.

Chem. Eur. J. 2014, 20, No. 03, 634-642

The Cross-Dehydrogenative Coupling of Csp3-H Bonds: A Versatile Strategy for C-C Bond Formations

Waste not, want not: The title CDC reactions have emerged as versatile tools for selective and waste-minimized C-C bond formations. They rely on the direct coupling of two different C-H bonds under oxidative conditions. This Review focuses on the recent progress in cross-dehydrogenative Csp3-C formation and provides a comprehensive overview on existing procedures and employed methodologies.

Angew. Chem. Int. Ed. 2014, 53, No. 01, 74-100

New Site-Selective Organoradical Based on Hypervalent Iodine Reagent for Controlled Alkane sp3 C-H Oxidations

Large Iodine: The site-selective oxidation of unactivated secondary sp3 C-H bonds was accomplished by using a newly defined reactive hypervalent iodine(III) radical in the presence of tert-butyl hydroperoxide (see scheme). Recent studies on hypervalent iodine radicals have significantly contributed to the further development and design of organic molecules in radical oxidation chemistry.

ChemCatChem 2014, 6, No. 01, 76-78

Yinuo Wu, Jun Wang, Fei Mao, Fuk Yee Kwong
Palladium-Catalyzed Cross-Dehydrogenative Functionalization of C(sp2)-H Bonds [Focus Review]

Palladium-Catalyzed Cross-Dehydrogenative Functionalization of C(sp2)-H Bonds

Caught in the cross-fire: This Review highlights the recent developments in catalytic cross-dehydrogenative coupling (CDC) reactions, which join together two aromatic C-H fragments through a palladium-catalyzed dehydrogenative pathway.

Chem. Asian J. 2014, 9, No. 01, 26-47

© Wiley-VCH 2013.