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Critical Behaviour of Conduectivity and Dielectric Constant
near the Metal-Non-Metal Transition Threshold
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A system consisting of randomly distributed metallic and dielectric regions is considered.
The metal-non-metal transition takes place when the volume fraction of the metallic
phase approaches the percolation threshold. It is shown that the static dielectric constant
diverges near the threshold. Critical indexes are introduced which describe the behaviour
of the conductivity and the dielectric constant near the threshold as functions of the volume
fraction and frequency. The case of non-zero de conductivity of dielectric regions is con-
sidered also. It is shown that all indexes describing the critical behaviour of complex con-
ductivity can be expressed by two indexes which are known from computer and model ex-
periments. The results of computer calculations of Webman et al. are analysed.

PaccMoTper cayuaii, Korga Nepexol MeTAli—-TUdJIEKTPUK IIPONCXOIUT 3a CUeT
TOTO0, YTO BCIENCTBHE yBeJIWYeHUA [0 o0beMa, 3aHATOro CIydailHO pAacmoso-
JHEHHBIMH B IM3JIEKTPAYECKOIl cpefe MeTaNINYeCKUMH YYacTKaMu, 110 3TUM y4acT-
KaM BO3HMKaeT nporexanue. Ilokazano, 4To craTuyecKas QU3JIEeKTPUYECKAs IPO-
HHIIAeMOCTh o0palllaeTcsd B 0ECKOHEUHOCTh B TOYKe mepexona. Halinmensl kpuru-
YeCKUe HHIEKCHI, ONMCBHIBAIONIUE TOBeJeHUe 3JeKTPOIPOBOTHOCTH YW TU3JIEKTPH-
YeCKOI NPOHNIIaeMOCTH IIPH OAX0/e K TOYKe Jlepexoaa U B caMoil ToUKe mepexona
IpHu YacToTe, CTpemslieiics K Hyawo. VayueH TaryKe caydyail, Korga crarudecKasi
3JIEKTPONPOBOTHOCTh HeMeTAJIMYECKNX Y4acTKOB OTIWYHA oT Hyas. Ilokasawmo,
YTO BCA COBOKYIHOCTE MHIEKCOB, ONUCHIBAKOUIAA KPUTHAUYECKOE MOBEJEHUE KOM-
OJIeKCHOM IEKTPOIIPOBONHOCTH B 3aBMCUMOCTH OT YACTOTHI M JOJU MeTAJLINYec-
KOT0 00beMa, BhIpaskaeTcA uepes JBA MHIEKCA, M3BECTHEIX M3 PAcueTOB U MOHENb-
HBIX DKCIEPMMEHTOB. IIpoarnanmmaupoBaHsl pe3yibTaTh YHCIEHHHX pacdeToB Be6-
MaHa M Ap.

1. Infroduction

Tt is known that near the metal-non-metal transition (MNMT) many systems
consist of randomly distributed metallic and dielectric regions. The volume frac-
tion of metallic regions increases with some physical parameter (composition,
temperature, light intensity) and MNMT occurs when this fraction corresponds to
the percolation threshold for the metallic regions {1].

Most completely the conductivity of such a system was studied in the case of
zero conductivity of dielectric regions. For example it is a well-known problem
of the effective conductivity of a wire lattice with randomly removed bonds be-
tween nearest sites (bond problem). Let the fraction of removed bonds be 1 — =
and the percolation threshold be x,. It is clear that the effective conductivity
o@) = 01if v < z,. If x > z, the conductivity increases with = as

o(x) = oy(@ — x.)°, (h
1) 194021 Leningrad, USSR.
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where gy is the conductivity of the lattice with all bonds present (x = 1). (We
omit the numerical coefficients which have to be in (1) and in the following
equations.)

It is usually supposed that the critical index ¢ does not depend on the type of
the percolation problem, but it depends on the dimensionality of space [1, 2]
(universality hypothesis). This means for example that the index ¢ is the same for
the plane wire lattice and for the graphite paper with holes randomly punched
in it [3]. The results of computer and model experiments do not contradict the
universality hypothesis. These results give for the three-dimensional case
¢, = 1.6 and for the two-dimensional case ¢, = 1.3. The connection between the
index ¢ and the correlation radius index is discussed in papers [2, 4].

The first problem considered in this paper is the generalization of (1) for the
case of non-zero conductivity of dielectric regions. In terms of the wire lattice
model this generalization means that the randomly chosen metallic bonds be-
tween nearest neighbours are not removed, but they are replaced by bonds with
smaller conductances. Let the conductivity of the lattice with all metallic bonds
replaced be op, and let us assume that & = opfoy << 1. It is clear that o() is
a regular function of x for any small but non-zero value of k. Thus the parameter
% plays the same role as the magnetic field in the ferromagnetic phase transition
theory. The first question is what is the order of magnitude of ¢(z) at the point
x = «,. In close analogy with the phase transition theory we suppose that o(z,)
obeys a power law

fod s
o(x,) = oy (U_v];) = oy h®. (2)

So we introduce a new critical index s. In the two-dimensional case one can
determine this index from an exact result obtained by Dykhne [5]. Dykhne has
found that in a two-component system with symmetrical distribution of both
components (metal and dielectric) o(x,) = (opoy)'/?, i.e. s = 1/2. Following the
universality hypothesis we suppose that s = 1/2 for all two-dimensional perco-
lation problems. There are no exact results for the three-dimensional case. The
computer calculations performed by Webman, Jortner, and Cohen [6] (W.J.C.)
show that in this case also ¢(x,) > o, i.e. s < 1. The effective medium approxi-
mation gives s = 1/2 independently of space dimensionality but it is known [1]
that this approximation does not work near the percolation threshold.

e =
& /;
= 4
- =
/i
/i
/i
// 4
// |A|
ghke? 7 i Fig. 1. The theoretical dependence of o(x) for the (ay, op)

7 problem (solid line). (1) Equation (1); (2) equation (3)
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If o{®;) > op the conductivity o(x) has to increase with x for x < x,, too
(Fig. 1). Following W.J.C. we write g(x) for « < z, in the form
o(®) = op@, —2)7% ¢>0, 3)
where ¢ is another critical index. Equation (3) has to be valid if o(z) < o(x,).
A smooth transition from (1) to (3) occurs in some small interval A near the point
%, (Fig. 1). It means that (3) is valid if x, — x > 4. Equation (1) works if o(z,) <
<o) Loyorif e — x> A. The result of W.J.C. calculations is that ¢, =~ 1.
(The effective medium approximation gives ¢ = ¢ = 1 independently of space
dimensionality.)
In the next section we put forward a scaling hypothesis for the function
o(x, k). This hypothesis gives the following relation between indexes ¢, s, and ¢:

1
qg=t ( p 1). 4)
In the two-dimensional case s,=1/2 and it follows from (4) that ¢, =¢,. In the
three-dimensional case g, = 1, {,~ 1.6 and we obtain from (4) that s; = 0.62. We
show that this result is in agreement with the W.J.C. computer experiment.
We discuss also the role of the finite size effects in this experiment.

Up to this point we discussed the problem of the effective de conductivity of
a two-component system. This we call for brevity (oy, op) problem. In Section 3
we consider the properties of the complex ac conductivity near the percolation
threshold. The problem is to find the effective conductivity of a two-component
system

o(w, r) = Re o(w, x) — i—zs(w, zy, (5)

where ¢(w, ) is the real dielectric constant and w is the frequency. We consider
the low-frequency case, and up to Section 5 we suppose that the conductivity
of the metallic component gy is real. In Section 5 we discuss the influence of the
imaginary part of oy. The conductivity of the dielectric component has the form

1)

op(w) = & + b . (6)

We assume that the de conductivity of is much smaller than ¢y but we suppose

nothing about the relation between ¢p and we,/4m. This we call [0y, op{w)]
problem.

Now we discuss the results of our paper concerning the simplest case, ¢3 = 0.
If w = 0 the conductivity o(x) obeys the law (1) if « > x, and equals zero if
z < x,. However, g(w, ) is non-zero for any value of z if @ = 0. In this sense the
parameter w/oy is similar to the parameter & = gpfoy in the (o4, o) problem.
The total description of the function Re ¢(w, ) near the percolation threshold z,
includes three critical indexes s, p, and ¢. Index s characterizes the frequency
dependence Re o(w, ) at the point x = 2,

wey \°
Re o(w, x,) = oy <47w(;{> . (7)
The dependence upon ¢ — ., has the form
w2ed

Re o(w, ) (8)

- dnoy(x, — )7
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if ® < %, and Re o(w, ) < Re o(w, x,). The last expression describes the dissi-
pation of energy due to the polarization of isolated metallic clusters. That is
why Re ¢ ~ w? Finally Reo is given by (1) if >, and Reo(w, ) >
> Re o(w, ). A smooth transition from (8) and (1) to (7) takes place in a small
interval near the point x,.

We show in Section 3 that the [y, op(w)] problem can be reduced to the
(03 0p) problem. It follows from this reduction that the index s in (7) is just
the same as in (2) and that the index p is related with s and ¢ by

2

The behaviour of the dielectric constant & near the threshold is rather extra-
ordinary. Mott and Davis [7] put forward microscopic arguments for the diver-
gence of the dielectric constant near the MNMT threshold. There is some experi-
mental evidence of such a divergence.

A sharp increase of the dielectric constant near the MNMT threshold was ob-
served in doped Si[8] and in VO, films [9]. The anomaly in the dielectric prop-
erties of disordered systems was discussed also by Bonch-Bruevich [10].

Dubrov et al. {11] considered a two-component system with a percolation
MNMT. They used the effective medium approximation and showed that the
static dielectric constant near the threshold has the form

o

8(0, x) == Ix—_W.

(10)

In the framework of the effective medium approximation ¢ = 1 independently
of space dimensionality. Dubrov et al. [11] performed a very interesting model
experiment which demonstrated the increase of the dielectric constant near the
percolation threshold in the two-dimensional case. They gave also a qualitative
interpretation of this phenomenon which is asfollows.Near the percolation thresh-
old the metallic clusters are separated by thin dielectric regions. Each pair
of nearest clusters forms a condenser whose effective surface tends to infinity
near the percolation threshold. Then the effective capacity of the system diver-
ges, too.

In Section 3 we show that the index ¢ in (10) is just the same as in (3) and in
(4). In the two-dimensional case g, = f,. Then ¢ ~ |& — x,)~%. In the three-
dimensional case ¢ ~ | — 2,/ "% and ¢; =~ 1.

o Efwx) =

{—g?—r—ﬁlf))"'s L

Enl[goq}l-s

Fig. 2. Dielectric constant e(w, ). (1) 0w =0, 0‘% =0

(equation (10)). Curves 2 and 3 correspond to the

same frequency w. (2) 4n6h/e, € w, (3) 4n6Y /e, S .

The behaviour of curves for # > xy is explained in
Section 5

&

~&
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The dielectric constant is finite for any small but non-zero value of fre-
quency w. We show that

1—
47'[0' M s
Egv

&(w, ;) = g, ( (11)

Equation (10) is valid for e(w, ) if e(w, z) < e(w, 2.). However, (10) fails in
a small interval of « near the point x, where ¢(, x) tends to the finite value (11)
(Fig. 2).

So we show that the dielectric constant diverges near the percolation threshold
and we find the critical indexes without the effective medium approximation.

It is important that the indexes ¢, s, and ¢ depend on the dimensionality of
space, but the relation (4) is universal. Moreover, this relation can be established
more generally without reduction to the (oy, op) problem. One can suppose that
the complex conductivity is a regular function of x for any non-zero value of
frequency w and that the characteristic interval A is the same for the real and
for the imaginary parts of the conductivity. Then Kramers-Kronig relations
lead to (4) and (9). This way does not permit to find the numerical values of the
indexes which are known from the (g4, 0p) problem only. However, this means
that (4) and (9) describe a more general property MNMT concerning not only
two-component systems with percolation threshold.

In Section 4 we discuss the influence of the non-zero value of ¢%. Most inter-
esting is that an anomaly of the dielectric constant near the threshold takes
place even if w <€ 470 /e,. The inequality o9 <€ oy is only necessary.

2. (oM, op) Problem

The effective conductivity o of a two-component system (o, op) divided by
oy depends on two variables which are b = opfoy and 7 =« — x, (@ is the
volume fraction of the metallic component). The conductivity is a regular func-
tion of 7 for any non-zero value of h. We suppose that the broadening of the
singularity which takes place if & = 0 is described by a single parameter A.
Equation (1) is valid if 7> 4 and a deviation from (1) becomes important if
7 =~ A. This A must be a positive power of %, i.e. 4 = A™. Then we write the
conductivity in the usual scaling form

G gl
G_GM_W(W), (12)

where ¢ is an unknown function. The conductivity is non-zero at the point
7 = 0. Then we can put ¢(0) = 1. (We omit all numerical coefficients.) Equation
(12) is in close analogy with scaling laws of the phase transition theory. The
magnetization depends on magnetic field h and temperature (7' — T¢)/T, in
the same way.

It was mentioned that ¢ = z*if 7 > 0 and z/Ah™ — co. Then

i) =2 and m=—. (13)

> 00 t
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Now we can find the form of the function ¢(z) for large negative values of z.
For small x we have ¢ = oy, i.e. ¢ = h. It follows then

1 ¢
o = 1=y ! (14)
z>—00
and we obtain (3) which is valid if v < 0 and |z| > #*". Finally (2) follows from

(12) if v = 0.

Now we can compare our results with the W.J.C. computer experiment. The
conductivity of an 18 X 18 X 18 cube was computed. Every lattice bond has
unity conductance with probability « (metallic bonds) and has a conductance
h <€ 1 with probability 1 — z (dielectric bonds). Typical results of calculation
are reproduced on Fig. 3 for 2 = 1.2 X 1078 and £ = 1075, The spatial distribu-
tion of metallic and dielectric bonds was correlated. This correlation itself does
not prevent from applying our theory. Unfortunately the exact value of the
percolation threshold x, becomes unknown due to this correlation. W.J.C.
defined it from their data. For the case reproduced in Fig. 3 x, = 0.18.

First of all we see a discontinuous drop on curve 2 (Fig. 3) in contrast with
the theoretical curve (Fig. 1). The discontinuity was observed earlier in model
experiments [12]. Our understanding is that this phenomenon is connected with
the finite size of the system. It is known [2] that near the percolation threshold
the metallic network becomes extremely rare. Then if v is small enough only
one metallic channel remains between the opposite boundaries of the finite-size
sample. But the metallic network determines the conductivity if v+ >> 4. Then
the break of the last channel gives a discontinuous drop of the observable
conductivity. We can estimate the values o; and g, which characterize the drop
of curve 2 (Fig. 3). It is kncwn [2] that the characteristic size of the random
network consisting of connected metallic bends is of the order

1
Lty = — 15
T o)
(in units of the lattice constant). This is the correlation radius of the percolation
theory [2]. Index » =~ 0.9 in the three-dimensional case. It is clear that the finite
size of a ““sample” becomes important when the correlation radius L(r) reaches
the size of the cube . The corresponding value of 7 is

lt] = 1=V = W,. (16)

The number of metallic channels inside the cube is of the order of unity for this
7. So we can estimate the conductivity o, which precedes the break of the last

i ?
/ | ! ! Fig. 3. The results of the W.J.C. [6] computer
0 a7 02 03 04 experiment. (1)k = 1.2 X 1073; (2) b = 1075
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channel. Insertion of (16) into (1) gives

= = l_t/" .
o on (17)
Taking #; = 1.6, »; = 0.9 for I = 18 we obtain lg 6, = —2.3 which agrees

exactly with the W.J.C. result.

It is important that the percolation threshold xy of a cube with size [ is an
uncertain value which can fluctuate from one set of random variables to another.
Its dispersion is of the order of W; (16). Equations (1) and (3) which describe
infinite systems are valid if {v] >> W;. Then one can estimate the conductivity
0, which follows the break of the last metallic channel by insertion of (16) into
(3). This gives

Ty = 22 — jab (18)

oM
Taking g5 = 1, 3 = 0.9 for [ = 18 and » = 10-% we obtain lg 6, = —3.6. The
W.J.C. result is lg 6, = —3.7.

Now we explain the absence of discontinuity on curve 1 of Fig. 3 which cor-
responds to a larger value of A. It was emphasized that (1) and (3) are valid
only if |7] is much larger than the interval 4 = hs/t (see Fig. 1). If |7| < 4 the
values of conductivity corresponding to v and —7 are nearly equal and are given
by (2). The discontinuity is absent if W; is smaller than 4. One can estimate
the maximum value of A for which a discontinuity takes place by solving
the equation W; = A%, This gives

hy = 1w, (19)

Taking t; = 1.6, s; = 0.62, »3 = 0.9 for [ = 18 we obtain lg ;3 = —3.6. That
is why a discontinuity indeed has to be absent if 2~ = 1.2 X 103, and one can
conclude that curve 1 corresponds to an infinite lattice. Then we can determine
the index s from this curve. Taking x, = 0.18 we find that lg o(z,) = —1.85.
Insertion of & = 1.2 X 10-3 into (2) gives s; = 0.65 which agrees with the above
result s, = 0.62.

3. [om, op(w)] Problem

Now we suppose that the conductivity of the dielectric component is given
by (6). One can reduce this new problem to the previous one considering com-
plex values of the frequency w. The conductivity op(w) is real and positive if
Rew = 0, Im w > 0. (Only the case g, > 0 is considered.) For these values of

@ we obtain using (2)
G, zg) = T2 %) :("D(“’)> : (20)

oM oM

It is well-known that imaginary values of w with Im w > 0 describe an ex-
ponentially increasing current and that capacitances for this current are equiv-
alent with resistances for the direct current. So (20) has a simple physical
interpretation. But o(w) has to be an analytic function within the upper half
plane of . Then we can perform an analytic continuation which shows that
(20) is valid for real values of w, too. Now we can find the real and imaginary
parts of (20). We begin with the case 0%, = 0, op(w) = —iwe,/4n. Then using
the definition (5) we obtain (7) and (11).
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Near the percolation threshold the complex conductivity o(w, ) depends on
two variables. One is the complex variable h(w) = op(w)/oy and the other is
the real one v = z — x,. Using the same scaling arguments as we used in the
(0> 0p) problem we write ¢ in the form

G = hiw) p (hl,,;) (1)

where p is an unknown function and (0) = 1. The function »(z) is equal to
@(z) (12) for real z. It is real if Re w = 0, Im & > 0. Then it follows from (12)
and (13) that m = s/t. The function (21) can be obtained within the upper half
plane of w as analytic continuation of the function (12) from the imaginary axis.
We suppose for simplicity that o} = 0 and we return to the general case in

Section 4. Then
T —iwe, |~
= == . 22

© T T[ 4oy ] 22)

Let us find the form of p(z) for large 2, i.e. for v — 0. If ® = |w]| exp (i7/2) and
7 < 0 we obtain arg z = x. Then p(z) = @(z) and for large |2| it is determined
by (14). But A%p(z) is an analytic function of w in the upper half plane. Then
we obtain

pe) =2 q=-—t (23)

for |2| > 1 and for all arg z in the interval

s s
< < e
which corresponds to 0 < arg w < #. Then we obtain for real @ and v <0

s x
(arg 2z =0 + r §>
20,

0= — ,
47ZGM

7] —¢; 7<0.

Using the definition (5) we obtain

& .
(—o)’
which agrees with (10). It is valid if || > (we,/dmoy)*.

In the case 7 >0 we have argz = 0 if arg w = n/2. Then y(z) = @(z) and
for large z it is determined by (13). This gives

plz) =28 forlz| > 1 (26)

gw, x) =

T<0 (25)

and

s T s T
—_— < < — —.

Equation (26) leads to (1).

The expressions (23) and (26) for p(z) are different because g &= —¢t. Then the
intervals (24) and (27) cannot include common points. This condition is fulfilled
if s/t < 1. So we obtain a new inequality relating indexes s and ¢. The values of
indexes discussed above satisfy this inequality.
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In the lowest approximation (23) and (26) the conductivity o is real forz > 0
and is imaginary for v < 0. Now we find the next terms of the expansion of
9(z) for large |2]. If v <C 0 the next term describes the dissipation of energy inside
the isolated metallic clusters which are immersed in the dielectric medium. It
is clear that it has to be Re ¢ ~ w? Equation (23) gives ¢ ~ iw. Then the ratio
of the next term to the main term has to be proportional to 7w, i.e. z—¥s, This
gives

() = %[1 + const z 5], (28)

This equation is valid if |z| 3> 1 within the interval (24). Then we substitute (22)
into (28) and (21) and obtain the result (8). Now we find the correction term in
(26) which determines the dielectric constant in the case v > 0. The dielectric
constant ¢(w, ) must tend to a non-zero and finite limit when w — 0 and 7 is
non-zero. This means that Im ¢ ~ w. Equation (26) leads to real ¢ which does
not depend on w. Then again the ratio of the next term to the main term is
proportional to tw

w(z) = 2* (1 4+ const z—4) . (29)

Equations (29), (22), and (21) lead to (25) in the case 7 > 0, 7> (wey/4may)*t.
So we have shown that the index ¢ in (25) is the same for T > 0 and 7 < 0.
4. Non-Zero DC Conductivity of a Dielectric

In the preceding section we assumed ¢} = 0. Now we discuss the most
interesting consequences of the non-zero value of 6. If t = 0 (¢ = «,) one can
use (20) and (6). This gives

. s
TE,
o) =~ 1

30
our (30)

One can see that our results (7) and (11) are valid if 47o% /e, << w. In the opposite
case 4mothe, > w the real conductivity Re o(x,) is given by (2) and does not

depend on frequency. The unexpected result is that in this case e(w, #,) is large
(curve 3 in Fig. 2). It follows from (30)

o\~ we
elw, x;) = & (0__134> 5 oh > —4;0 31
D

Thus a sharp increase of ¢(w, ) near the MNMT threshold can be observed at
any small frequencies if only o} <oy. One can obtain G(w,7) substituting
h = op(w)/oy in (21) and using (28) for v > 0 and (29) for 7 < 0. In general the
broadening of the singularity of o(w,7) near the percolation threshold occurs
in the 7 interval of the order of 4 = | (o} /oy) — (fwe,/4moy)|*". Thus the interval
is determined by the largest from these two terms (see Fig. 2).

The behaviour of Re ¢ at low frequencies in the case 7 < 0 is also interesting.
One can obtain from (28) and (21) that Re ¢ is the sum of two terms. The first
term is given by (3) with oy, = 0% and the second one is given by (8). The first
term is the main one at sufficiently small frequencies.
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5. The Role of Im oy

It was supposed above that the conductivity of the metal, oy, is real. However
free electrons inevitably create an 1mag1nary part so that oy(w) = oy —
(eme/47i). The Drude model for example gives ey = o¥ir, where 7, Is the
relaxatlon time. For sufficiently small frequencies Im oy < o3 One can show
that a non-zero Im oy does not change the above results if x < «,. To do this
one can replace oy by oy(w) in (20), (23), and (28). If, however, 8M>60 (25)
for the dielectric constant is changed for x > x, sufficiently far from the transi-
tion point x,. Indeed e(w, ) has to tend to —ey if # — 1 rather than to a value
of the order of g, which follows from (25). Replacing oy by oy(w) in (21), (22),

and (29) we obtain
&(w, T) = gt — eyT' . (32)

The second term in (32) becomes important far from the transition point if
T = Xy = X, + (gfen)? .. This term leads to negative e{w,t) for large
7 (e(w,7) = —ey if T = 1). Of course (32) is valid only if 7 < 1.

6. Specific Features of Two-Dimensional Problems

When we discuss the conductivities o(w, ), oy, and ¢y, in the two-dimensional
case we mean the two-dimensional conductivities which are the conductances
of squares with unit area. These conductivities are measured in units of Q-1
Then we see from (5) and (6) that e(w, x) and ¢, are not dimensionless and these
values need special discussion.

Let us consider a two-component film where the local conductivity does not
depend on the coordinate perpendicular to the film. This is just the two-
dimensional system for the percolation theory. The two-dimensional film con-
ductivity o, is obtained from the bulk conductivity o, using the relation ¢, = o,d
where d is the film thickness. The same relation can be used also for the dielectric
constant g, = gd. But it is clearly valid only if the total current (with the dis-
placement current) flows mainly inside the film. This condition is fulfilled if
the film thickness is large enough or if the conductivity op(w) is large. The
current leaves the film and flows in vacuum around the dielectric regions as
displacement current in the opposite case of an extremely thin film (Fig. 4).
The relation &, = e;,d is meaningless in this case. Moreover, the [0y, op(w)]
problem cannot be reduced to the two-dimensional (o, op) problem in such
a case. But it can be reduced to another interesting dc problem. Let us consider
a metallic film with holes randomly punched in it (or a two-dimensional wire
lattice with partly removed bonds). We obtain the two-dimensional (oy, op)
problem if this film (or lattice) is pressed to conductive paper. However, we
obtain a new (o, op,) problem if the film is in a three-dimensional medium with
non-zero conductivity. For example it can be immersed in a conductive liquid.?)

N N
Sh——F Fig. 4. The distribution of the electric field in

—1
w \t:// a two-component thin film. The metallic regions
are shaded

2) This technical idea belongs to M. E. Levinshtein.
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The [0y, op(w)] problem for thin films is obviously reduced to the (ow,, op,)
problem.

We can formulate the scaling law for the (oy,, op,) problem and show that the
indexes are connected by (4). However, the numerical values of the indexes
for this problem are unknown.
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