
Diffraction effects are observed when electromagnetic radiation impinges on peri-
odic structures with geometrical variations on the length scale of the wavelength of
the radiation. The interatomic distances in crystals and molecules amount to
0.15–0.4 nm which correspond in the electromagnetic spectrum with the wave-
length of x-rays having photon energies between 3 and 8 keV. Accordingly, phe-
nomena like constructive and destructive interference should become observable
when crystalline and molecular structures are exposed to x-rays.

In the following sections, firstly, the geometrical constraints that have to be
obeyed for x-ray interference to be observed are introduced. Secondly, the results
are exemplified by introducing the θ/2θ scan, which is a major x-ray scattering
technique in thin-film analysis. Thirdly, the θ/2θ diffraction pattern is used to out-
line the factors that determine the intensity of x-ray ref lections. We will thereby re-
ly on numerous analogies to classical optics and frequently use will be made of the
fact that the scattering of radiation has to proceed coherently, i.e. the phase infor-
mation has to be sustained for an interference to be observed.

In addition, the three coordinate systems as related to the crystal {ci}, to the sam-
ple or specimen {si} and to the laboratory {li} that have to be considered in diffrac-
tion are introduced. Two instrumental sections (Instrumental Boxes 1 and 2) relat-
ed to the θ/2θ diffractometer and the generation of x-rays by x-ray tubes supple-
ment the chapter. One-elemental metals and thin films composed of them will
serve as the material systems for which the derived principles are demonstrated. A
brief presentation of one-elemental structures is given in Structure Box 1.

1.1
The Basic Phenomenon

Before the geometrical constraints for x-ray interference are derived the interac-
tions between x-rays and matter have to be considered. There are three different
types of interaction in the relevant energy range. In the first, electrons may be
liberated from their bound atomic states in the process of photoionization. Since
energy and momentum are transferred from the incoming radiation to the excited
electron, photoionization falls into the group of inelastic scattering processes. In
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addition, there exists a second kind of inelastic scattering that the incoming x-ray
beams may undergo, which is termed Compton scattering. Also in this process en-
ergy is transferred to an electron, which proceeds, however, without releasing the
electron from the atom. Finally, x-rays may be scattered elastically by electrons,
which is named Thomson scattering. In this latter process the electron oscillates
like a Hertz dipole at the frequency of the incoming beam and becomes a source of
dipole radiation. The wavelength λ of x-rays is conserved for Thomson scattering
in contrast to the two inelastic scattering processes mentioned above. It is the
Thomson component in the scattering of x-rays that is made use of in structural in-
vestigations by x-ray diffraction.

Figure 1.1 illustrates the process of elastic scattering for a single free electron of
charge e, mass m and at position R0. The incoming beam is accounted for by a plane
wave E0exp(–iK0R0), where E0 is the electrical field vector and K0 the wave vector.
The dependence of the field on time will be neglected throughout. The wave vec-
tors K0 and K describe the direction of the incoming and exiting beam and both are
of magnitude 2π/λ. They play an important role in the geometry of the scattering
process and the plane defined by them is denoted as the scattering plane. The an-
gle between K and the prolonged direction of K0 is the scattering angle that will be
abbreviated by 2θ as is general use in x-ray diffraction. We may also define it by
the two wave vectors according to

(1.1)

The formula is explicitly given here, because the definition of angles by two ad-
joining vectors will be made use of frequently.

The oscillating charge e will emit radiation of the same wavelength λ as the pri-
mary beam. In fact, a phase shift of 180° occurs with the scattering, but since this
shift equally arises for every scattered wave it has no effect on the interference pat-
tern in which we are interested and will be neglected. If the amplitude of the scat-
tered wave E(R) is considered at a distance R we may write according to Hertz and
Thomson
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Figure 1.1 Scattering of x-rays by a single electron.
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where ε0 and c are the vacuum permittivity and velocity of light. The field vector E
and wave vector K are oriented perpendicular to each other as is usual for electro-
magnetic waves. The sin term is of significance when the state of polarization is
considered for which two extreme cases may arise. In one case, the exciting field
E0 is confined to the scattering plane and in the second case it is normally orient-
ed. In classical optics these two cases are named π polarization and σ polarization.
The field vectors in both cases will be denoted by Eπ and Eσ. The angle between
Eσ and R is always 90° and the sin term will equal unity. For the case of π polariza-
tion, however, it may be expressed by virtue of the scattering angle according to
sin∠(E0, R) = |cos2θ|. If the character C abbreviates the sin term it may be written

(1.3)

Since the intensity is obtained from the sum of the square of both field vectors the
expression

(1.4)

is obtained. In a nonpolarized beam both polarization states will have the same
probability of occurring, 

and it is finally arrived at the intensity of the scattered beam at distance R

(1.5)

Here, use has been made of the notion of the classical radius of the electron, re =
e2/(4πε0mc2), that amounts to 2.82 × 10–15 m. The intensity of the scattering is seen
to scale with the inverse of R2 as might have been expected. It can also be seen that
I(R) scales with the ratio of squares of re over R. Since distances R of the order of
10–1 m are realized in typical laboratory setups the probability of observing the scat-
tering by a single electron tends to zero. The situation substantially improves if the
number of scattering objects is of the same order of magnitude as Loschmidt’s
number NL – as usually is the case in experiments.

It also becomes evident from this equation as to why the scattering from atomic
nuclei has not been considered in the derivation. In fact, the equation would also
hold for the scattering from atomic nuclei, but it can be seen from Eq. (1.4) that the
nuclei component will only yield a less than 10– 6 smaller intensity compared to an
electron. The difference is simply due to the mass difference, which is at least larg-
er by a factor of 1836 for any atomic species. The scattering of x-rays by nuclei may,
therefore, confidently be neglected. From the viewpoint of x-ray scattering an atom
can thus be modeled by the number of Z electrons, which it contains according to
its rank in the periodic table. In terms of the Thompson scattering model Zre may
be written in Eq. (1.3) instead of re in order to describe the scattering from an atom,
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since the primary beam is then equally scattered by all electrons. In addition, it will
be assumed temporarily that all electrons are confined to the origin of the atom.
The consequences that follow from a refinement of the model by assuming a spa-
tially extended charge distribution will be postponed to a later section. Hence, we
have a first quantitative description for the x-ray elastic scattering from an atom.

In the next step consideration is given to what the scattering will look like if it oc-
curs for a whole group of atoms that are arranged in a periodically ordered array
like a crystal lattice. Figure 1.2 visualizes such an experiment where the crystal is
irradiated with monochromatic x-rays of wavelength λ. In the special case consid-
ered here, each atom is surrounded by six neighbor atoms at distance a and the an-
gle between two atomic bonds is always 90° or multiples of it. Atomic positions can
then be described by the lattice vector rn1n2n3

= n1ac1 + n2ac2 + n3ac3 with c1, c2 and
c3 being the unit vectors of the three orthogonal directions in space. The ci axes are
the unit vectors of the crystal coordinate system {ci}, which is assigned to the crys-
tal. For some properties of the crystal this coordinate system will turn out to be ex-
tremely useful and the notion will be used throughout the book. The shape of the
crystal is assumed to be that of a parallelepiped as is accounted for by the inequal-
ities 0 ≤ ni = Ni – 1 for i = 1, 2, 3. Each node of adjacent cubes is thus occupied by
an atom. Such a structure is called simple cubic in crystallography. Only a single
element crystallizes in this structure, which is polonium exhibiting an interatomic
distance of a = 0.3359 nm. Although this metal has only very few applications, the
case shall be considered here in detail, because of its clarity and simplicity.

It will now be calculated at which points in space interferences of x-rays might be
observed that arise due to the scattering at the crystal lattice. The task is to quanti-
fy the strength of the scattered fields at a point R when elastic scattering occurs ac-
cording to Eq. (1.5) at all atoms. The reference point of R is chosen such that it
starts at the origin of the crystal lattice r000. This means that we relate the phase dif-
ference in the summation of all scattered fields to their phase at r000. This choice is
arbitrary and any other lattice point might have been equally selected.

The wave vector of the primary beam K0 is assumed to be parallel to the [100] di-
rection of the crystal. The scattering plane defined by K0 and K may coincide with
one of the (010) planes. The wavefronts of the incoming plane waves which are the
planes of constant phase are then oriented parallel to (100) planes. An atom on the
position rn1n2n3

would then cause a scattering intensity to be measured at R of the
strength

(1.6)

This expression differs from Eq. (1.2) essentially by the fact that R – rn1n2n3
oc-

curs instead of R, and for n1 = n2 = n3 = 0 it becomes equal to Eq. (1.2). The solu-
tion of our task would simply consist in a summation over all fields scattered by the
number of N1 × N2 × N3 atoms comprising the crystal. However, the physics of the
solution will become more transparent when an important approximation is made.
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It will be assumed that the interatomic distances rn1n2n3 (∼10–10 m) are much
smaller than the distances to the point of the intensity measurement R – rn1n2n3

(∼10–1 m). The denominator in Eq. (1.6) and in the sin term R – rn1n2n3
may then be

replaced by R without introducing a large error. This substitution, however, is not
allowed in the exponent of the last factor, since the interatomic distances are of the
order of the wavelength and every phase shift according Krn1n2n3

= 2πrn1n2n3/λ has
to be fully taken into account in the summation procedure. If these rules are ap-
plied the sin term may be replaced by the polarization factor C and the sum over all
scattered fields reads

(1.7)E KR K K rn n n1 2 30

1 2 3

Zr

R
C i i

n n n

e
0exp exp ( )−( ) − −( )∑

1.1 The Basic Phenomenon

Figure 1.2 Scattering of x-rays by a crystallite of simple cubic structure.
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All terms independent of the lattice vector rn1n2n3
could be placed in front of the

summation symbol. The approximation of which we have made use of is named
Fraunhofer diffraction, which is always a useful approach when the distances be-
tween scattering objects are much smaller than the distance to the measurement
point. In contrast to this approach stands the so-called Fresnel diffraction, for
which interference phenomena are investigated very close to the scattering objects.
The case of Fresnel diffraction will not be of interest here.

We have achieved a significant progress in solving our task by applying the
Fraunhofer approximation and arriving at Eq. (1.7). It can be seen that the scattered
field scales with two factors, where the first has the appearance of a spherical wave
while the second is a sum over exponentials of vector products of wave vectors and
lattice vectors. In order to improve our understanding of the summation over so
many scattering centers the geometry is shown in the lower part of Fig. 1.2. A clos-
er look at the figure reveals that the phase shift for two waves (a) scattered at r000

and (b) scattered at rn1n2n3
comprises two components due to K0rn1n2n3

and to
Krn1n2n3

. The strength of the total scattered field of Eq. (1.7) thus sensitively de-
pends on the spatial orientation of the wave vectors K0 and K with respect to the
crystal reference frame {ci}.

Because a single phase shift depends on the vector product between the lattice
vector and the wave vector difference K – K0 the latter quantity is recognized as a
physical quantity of its own significance and is named the scattering vector

Q = K – K0 (1.8)

The scattering vector has the dimensionality of an inverse length, while its di-
rection points along the bisection of incoming and scattered beam. The geometry
is demonstrated in Fig. 1.3 and a closer inspection tells that the relation |Q| =
4πsinθ/λ holds for the scattering vector magnitude. This relation will be made use
of extensively throughout the book and the reader should be fully aware of its
derivation from Fig. 1.3. It should be realized that |Q| depends on both (a) the
geometry of the scattering process via θ and (b) the wavelength λ of the probing
x-ray beam. The physical meaning of Q in a mechanical analogy is that of a
momentum transfer. By analogy with the kinetic theory of gases the x-ray photon

1 Principles of X-ray Diffraction

Figure 1.3 Geometry of scattering vector construction.
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is compared to a gas molecule that strikes the wall and is repelled. The direction of
momentum transfer follows from the difference vector between the particle’s
momentum before and after the event, p – p0, while the strength of transferred mo-
mentum derives from |p – p0|. In the case considered here the mechanical
momentum p just has to be replaced by the wave vector K of the x-ray photon. This
analogy explains why the scattering vector Q is also named the vector of momen-
tum transfer. It has to be emphasized that the scattering vector Q is a physical
quantity fully under the control of the experimentalist. The orientation of the inci-
dent beam (K0) and the position of the detector (K) decide the direction in which
the momentum transfer (Q) of x-rays proceeds. And the choice of wavelength de-
termines the amplitude of momentum transfer to which the sample is subjected.
From these considerations it is possible to understand the collection of a diffraction
pattern as a way of scanning the sample’s structure by scattering vector variation.

If the summation factor of Eq. (1.7) is expanded into three individual terms and
the geometry of the simple cubic lattice is used it is found that the field amplitude
of the scattered beam is proportional to

(1.9)

where the scattering vector Q has already been inserted instead of K – K0. This ex-
pression can be converted by evaluating each of the three terms by the formula of
the geometric sum. In order to arrive at the intensity the resultant product has to
be multiplied by the complex conjugate and we obtain the so-called interference
function

ℑ(Q) = (1.10)

that describes the distribution of scattered intensity in the space around the crys-
tallite. For large values of N1, N2 and N3 the three factors in ℑ(Q) only differ from
zero if the arguments in the sin2 function of the denominator become integral mul-
tiples of π. Let us name these integers h, k and l in the following. The necessary con-
dition to realize the highest intensity at R accordingly is

ℑ(Q) → max ⇔ (1.11)

Here, the integers h, k, l may adopt any value between –∞ and +∞. The meaning
of these integers compares to that of a diffraction order as known in optics from
diffraction gratings. The hkl triple specifies which order one is dealing with when
the primary beam coincides with zero order 000. However, the situation with a
crystalline lattice is more complex, because a crystal represents a three-dimen-
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sional grating and three integral numbers instead of only one indicate the order of
a diffracted beam. The set of Eqs. (1.11) are the Laue conditions for the special case
of cubic crystals that were derived by M. von Laue to describe the relation between
lattice vectors rn1n2n3

and scattering vector Q for crystals of arbitrary symmetry at
the position of constructive interference.

The severe condition that is posed by Eq. (1.11) to observe any measurable in-
tensity is illustrated in Fig. 1.4. The plot shows the course of the function sin2

Nx/sin2 x, for N = 15, which is the one-dimensional analogue of Eq. (1.10). It can
be seen that the function is close to zero for almost any value of x except for x = πh,
with h being an integer. At these positions the sin2 Nx/sin2 x function sharply
peaks and only at these points and in their vicinity can measurable intensity be ob-
served. The sharpness of the peak rises with increasing N and a moderate value of
N has been chosen to make the satellite peaks visible. It should be noted that in the
case of diffraction by a crystal the three equations of Eq. (1.11) have to be obeyed si-
multaneously to raise I(R) to measurable values. As a further property of interest it
has to be mentioned that sin2Nx/x2 may equally be used instead of sin2 Nx/sin2 x
for N o x. This property will enable some analytical manipulations of the inter-
ference function, which would otherwise be possible only on a numerical basis.

In order to gain further insight into the significance of the condition for observ-
able intensity, we will investigate the Laue conditions with respect to the magnitude
of the scattering vector. The magnitude of Q at I(R) → max can be obtained from
the three conditional Eqs. (1.11) by multiplying by the inverse cell parameter 1/a,
adding the squares and taking the square root. This yields as condition for maxi-
mum intensity

I(R) → max ⇔ (1.12)
Q

2

2 2 2

π
= + +h k l

a

1 Principles of X-ray Diffraction

Figure 1.4 Course of the function sin2 Nx/sin2 x for N = 15.
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which can be rewritten by inserting the magnitude of the scattering vector, |Q| =
4πsinθ/λ, known from geometrical considerations

I(R) → max ⇔ (1.13)

This is an interesting result that may be read with a different interpretation of the
hkl integer triple. The high degree of order and periodicity in a crystal can be envi-
sioned by selecting sets of crystallographic lattice planes that are occupied by the
atoms comprising the crystal. The planes are all parallel to each other and intersect
the axes of the crystallographic unit cell. Any set of lattice planes can be indexed by
an integer triple hkl with the meaning that a/h, a/k and a/l now specify the points
of intersection of the lattice planes with the unit cell edges. This system of geo-
metrical ordering of atoms on crystallographic planes is well known to be indicat-
ed by the so-called Miller indices hkl. As an example, the lattice planes with Miller
indices (110) and (111) are displayed in Fig. 1.5 for the simple cubic lattice.

The distance between two adjacent planes is given by the interplanar spacing dhkl

with the indices specifying the Miller indices of the appropriate lattice planes. For
cubic lattices it is found by simple geometric consideration that the interplanar
spacing depends on the unit cell parameter a and the Miller indices according to

(1.15)

Keeping this meaning of integer triples in mind, Eq. (1.13) tells us that to observe
maximum intensity in the diffraction pattern of a simple cubic crystal the equation

(1.15)

has to be obeyed. The equation is called Bragg equation and was applied by W.H.
Bragg and W.L. Bragg in 1913 to describe the position of x-ray scattering peaks in
angular space. The constraint I(R) → max has now been omitted, since it is
implicitly included in using θB instead of θ which stands for the position of the
maximum. In honor of the discoverers of this equation the peak maximum posi-
tion has been named the Bragg angle θB and the interference peak measured in the
ref lection mode is termed the Bragg ref lection.

2dhkl sinθ λB =

d a
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Figure 1.5 Lattice planes with Miller indices (110) and (111) in a
simple cubic lattice.
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The Laue conditions and the Bragg equation are equivalent in that they both de-
scribe the relation between the lattice vectors and the scattering vector for an x-ray
ref lection to occur. Besides deriving it from the Laue condition, the Bragg equation
may be obtained geometrically, which is visualized in Fig. 1.6. A set of crystallo-
graphic lattice planes with distances dhkl is irradiated by plane wave x-rays imping-
ing on the lattice planes at an angle θ. The relative phase shift of the wave depends
on the configuration of atoms as is seen for the two darker atoms in the top plane
and one plane beneath. The phase shift comprises of two shares, ∆1 and ∆2, the
sum of which equals 2dsinθ for any arbitrary angle θ. Constructive interference for
the ref lected wave, however, can only be achieved when the phase shift 2dsinθ is a
multiple of the wavelength. Therefore, Bragg’s equation is often written in the
more popular form 2dsinθB = nλ, where the integer n has the meaning of a ref lec-
tion order. Because we are dealing with three-dimensional lattices that act as dif-
fraction gratings, the form given in Eq. (1.14) is preferred. It should be emphasized
that the Bragg equation (Eq. (1.14)) is valid for any lattice structure, not only the
simple cubic one. The generalization is easily performed by just inserting the in-
terplanar spacing dhkl of the crystal lattice under investigation. Table 1.1 gives the
relation of dhkl and the unit cell parameters for different crystal classes.

Having arrived at this point it can be stated that we have identified the positions
in space where constructive interference for the scattering of x-rays at a crystal lat-
tice may be observed. It has been shown that measurable intensities only occur for
certain orientations of the vector of momentum transfer Q with respect to the
crystal coordinate system {ci}. Various assumptions were made that were rather
crude when the course of the intensity of Bragg ref lections is of interest. It has
been assumed, for instance, that the atom’s electrons are confined to the center of
mass of the atom. In addition, thermal vibrations, absorption by the specimen, etc.,
were neglected. More realistic models will replace these assumptions in the fol-
lowing. However, before doing so it should be checked how our first derivations
compare with the measurement of a thin metal film and how diffraction patterns
may be measured.

1 Principles of X-ray Diffraction

Figure 1.6 Visualization of the Bragg equation. Maximum scat-
tered intensity is only observed when the phase shifts add to a
multiple of the incident wavelength λ.
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1.2
The θθ/2θθ Scan

An often-used instrument for measuring the Bragg ref lection of a thin film is the
θ/2θ diffractometer. Let us introduce its operation principle by considering the re-
sults obtained with the question in mind as to how x-ray scattering experiments are
preferably facilitated. What we are interested in is the measurement of Bragg re-
f lections, i.e. their position, shape, intensity, etc., in order to derive microstructur-
al information from them. The intensity variation that is associated with the
ref lection is included in the interference function like the one given in Eq. (1.10),
while the scattered intensity depends on the distance from the sample to the de-
tection system R. We therefore should configure the instrument such that we can
scan the space around the sample by keeping the sample–detector distance R con-
stant. This measure ensures that any intensity variation observed is due to the in-
terference function and is not caused by a dependency on R. The detector should
accordingly move on a sphere of constant radius R with the sample in the center of
it. In addition, the sphere reduces to a hemisphere above the sample, since we are
only interested in the surface layer and data collection will be performed in ref lec-
tion mode. The geometry is shown in Fig. 1.7.

Because the scattering of x-rays depends sensitively on the orientation of the
crystal with respect to the scattering vector, we carefully have to define the various
coordinate systems with which we are dealing. A sample reference frame {si} is in-
troduced for this purpose that is oriented with s1 and s2 in the plane of the thin
film, while s3 is equivalent to the surface normal.

1.2 The θ/2θ Scan

Table 1.1 Interplanar spacings dhkl for different crystal systems
and their dependency on Miller indices hkl. Parameters a, b and c
give the lengths of the crystallographic unit cell, while α, β and γ
specify the angles between them.

Crystal system Constraints

Cubic a = b = c
α = β = γ = 90°

Tetragonal a = b
α = β = γ = 90°

Orthorhombic α = β = γ = 90°

Hexagonal a = b
α = β = 90°
γ = 120°

Trigonal/ a = b = c
Rhombohedral α = β = γ

Monoclinic α = γ = 90°

Triclinic None Exercise 4
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The working principle of a θ/2θ scan is visualized in Fig. 1.8 in the hemisphere
of the sample reference frame. The sample is positioned in the center of the in-
strument and the probing x-ray beam is directed to the sample surface at an angle
θ. At the same angle the detector monitors the scattered radiation. The sample co-
ordinate vectors s1 and s3 lie in the scattering plane defined by K0 and K. During
the scan the angle of the incoming and exiting beam are continuously varied, but
they remain equal throughout the whole scan: θin = θout. Note that the angle con-
vention is different from the one used in optics: in x-ray diffraction the angles of in-
coming and exiting beam are always specified with respect to the surface plane,
while they are related to the surface normal in optics. The θ/2θ scan can also be un-
derstood as a variation of the exit angle when this is determined with respect to the
extended incoming beam and this angle is 2θ for all points in such a scan. This is
the reason for naming the measurement procedure a θ/2θ scan. The quantity
measured throughout the scan is the intensity scattered into the detector. The
results are typically presented as a function of I(2θ) type.

These θ/2θ scans are extensively used for the investigation of polycrystalline
samples. The measurement of polycrystals is somewhat easier than that of single
crystals due to the fact that, among other reasons, the scattered intensity for con-
stant scattering angle is distributed on a circle rather than focused to a few points
in space. Interestingly, in a θ/2θ scan the scattering vector Q is always parallel to

1 Principles of X-ray Diffraction

Figure 1.7 Sample reference frame {si} and hemisphere above it.

Figure 1.8 Schematic representation of a θ/2θ scan from the
viewpoint of the sample reference frame {si}.
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the substrate normal s3. This fact is evident from Fig. 1.8 and the graphical defini-
tion of Q in Fig. 1.3. Due to this geometrical constraint only those lattice planes hkl
that are oriented parallel to the surface plane can contribute to a Bragg ref lection.
The selective perception of certain subsets of crystallites in a θ/2θ scan is visual-
ized in Fig. 1.9. If various ref lections hkl are measured they all stem from distinct
subsets of crystallites – except they are of harmonic order, i.e. h′k′l′ = n(hkl).

In order to demonstrate the principles developed so far, the simulation of a θ/2θ
scan of a 500 nm thin Al film is shown in Fig. 1.10. The simulation was calculated
for the characteristic radiation of a copper x-ray tube having λ(Cu Kα) = 0.154 nm
(see Instrumental Box 1 for further information). Various interesting features are
realized from this plot, which displays eight Bragg ref lections in the scattering an-
gle range from 25° to 125°. The ref lections may be assigned to their Miller indices
when use is made of the Bragg equation and the unit cell parameter of the Al lat-
tice, a = 0.4049 nm. For this purpose the d values of the 2θB ref lex positions have
been calculated according to the Bragg equation d = λ/(2sinθB) and checked for the
solution of (a/d)2 = h2 + k2 + l2. It is seen that various ref lections like 111 and 200
are observed, but other peaks like 100, 110, etc., are missing. This phenomenon has
to be understood in the sense of destructive interference, which is caused by the
structure of the Al lattice, which is distinct from the simple cubic lattice. It has to
be noted that a splitting of peaks into an α1 peak and an α2 peak cannot be ob-
served, although the feature was included in the simulation. The absence is ex-
plained from the broadness of the Bragg peaks causing a severe overlap between
both peaks such that they remain unresolved. Broad ref lections are caused by small
grain sizes and crystal lattice faults that are often observed in thin polycrystalline
films and are discussed in more detail in Chapter 3. Moreover, the diffraction pat-
tern exhibits a pronounced decrease of scattered intensity with increasing scatter-
ing angle. Therefore, the diffraction pattern is also shown in the inset with a √–

I or-
dinate in order to emphasize the smaller peaks. The square-root intensity plot is an
often-used presentation mode. It is concluded that the basic features of Section 1.1

1.2 The θ/2θ Scan

Figure 1.9 Selection principle for exclusive measurement of sur-
face-parallel lattice planes in a θ/2θ scan.
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are in accordance with the simulated measurement of a thin Al film, but some as-
pects remain to be clarified.

1.3
Intensity of Bragg Ref lections

The necessary refinement of the expression for the intensity of a Bragg ref lection
is now developed. For this purpose the finding will be used that was made by de-
riving the Bragg equation and the Laue conditions. It has been realized that the am-
plitude of the total scattered field from a charge distribution in the Fraunhofer ap-
proximation is characterized by a phase factor exp(–iQrn1n2n3

) comprising the scat-
tering vector Q and the distance rn1n2n3

between all pairs of point charges. This
result may be generalized by subjecting the sum in Eq. (1.9) to a continuous limit.
Instead of writing a discrete distance vector rn1n2n3

the continuous variable r is used
and it is argued that the scattered field depends as

(1.16)

on the electronic charge distribution ρe(r) of the scattering object. The integration
has to be performed over the volume dr to which the scattering electrons are con-
fined. Because ρe has the dimensionality of an inverse volume the integration
yields a dimensionless quantity, which is in accordance with our starting point.
This new expression can now be applied to the scattering objects in which we are
interested, i.e. atoms and crystallographic unit cells, to check whether the provi-
sional intensity function is improved.

ρe( )exp( )r Qr r−∫ i d

1 Principles of X-ray Diffraction

Figure 1.10 Simulation of a θ/2θ scan of a 500 nm thin Al film
measured with Cu Kα radiation. The inset shows the same pat-
tern with a √

–
I ordinate.
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Instrumental Box 1:

θθ/2θθ Diffractometer

The basic measurement geometry of by far the most frequently used x-ray diffraction in-
strument is depicted in Fig. i1.1. The sample should preferably exhibit a plane or f lat-
tened surface. The angle of both the incoming and the exiting beam is θ with respect to
the specimen surface. A vast number of organic and inorganic powder samples have
been measured with these instruments from which the naming of powder diffractome-
ter is understood. Its measurement geometry may also be applied to the investigation
of thin films, especially if the layer is polycrystalline and has been deposited on a f lat
substrate, as is often the case.

The diffraction pattern is collected by varying the incidence angle of the incoming x-
ray beam by θ and the scattering angle by 2θ while measuring the scattered intensity
I(2θ) as a function of the latter. Two angles have thus to be varied during a θ/2θ scan and
various types of powder diffractometers are in use. For one set of instruments the x-ray
source remains fixed while the sample is rotated around θ and the detector moves by 2θ.
For other systems the sample is fixed while both the x-ray source and the detector rotate
by θ simultaneously, but clockwise and anticlockwise, respectively. The rotations are per-
formed by a so-called goniometer, which is the central part of a diffractometer. A go-
niometer of a powder diffractometer comprises at least two circles or – equally – two ax-
es of rotation. Typically the sample is mounted on the rotational axis, while the detector
and/or x-ray source move along the periphery, but both axes of rotation coincide. In
most laboratory θ/2θ diffractometers the goniometer radius, which is the sample-to-de-
tector distance, is in the range 150–450 mm. Highly precise goniometers with 0.001°

Figure i1.1 Schematic representation of θ/2θ diffraction in
Bragg–Brentano geometry.
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precision and even lower on both the θ and the 2θ circles are commercially available. The
collected diffraction pattern I(2θ) consists of two sets of data: a vector of 2θi positions
and a second vector with the appropriate intensities Ii. The step size ∆2θi between two
adjacent 2θi should be chosen in accordance with the intended purpose of the data. For
chemical phase analysis (Chapter 2) the full width of half the maximum of the tallest
Bragg peak in the pattern should be covered by at least 5 to 7 measurement points. How-
ever, for a microstructural analysis (Chapter 3) in excess of 10 points should be meas-
ured on the same scale. The appropriate value of ∆2θi will also depend on the slit con-
figuration of the diffractometer. The preset integration time of the detector per step in
2θi should allow the integral intensity of the smallest peak of interest to exceed the noise
fluctuations σ(I) by a factor of 3 or 5, etc., according to the required level of statistical
significance.

The control of the x-rays beam bundle suffers from the constraint that lenses and oth-
er refractive elements are not as easily available as those used for visible light. For this
reason the beam conditioning in θ/2θ diffractometers is mostly performed by slits and
apertures and may be termed shadow-casting optics. In addition, powder diffractome-
ters have to deal with the divergent beam characteristic that is emitted by an x-ray tube.
Most systems operate in the so-called Bragg–Brentano or parafocusing mode. In this
configuration a focusing circle is defined as positioned tangentially to the sample sur-
face (see Fig. i1.1). The focusing condition in the Bragg–Brentano geometry is obeyed
when the x-ray source and detector are positioned on the goniometer circle where it in-
tersects the focusing circle. True focusing would indeed occur only for a sample that is
bent to the radius of the focusing circle RFC. Since RFC differs for various scattering an-
gles 2θ, true focusing cannot be obtained in a θ/2θ scan and the arrangement is thus
termed parafocusing geometry.

In a θ/2θ scan the scattering vector QQ is always parallel to the substrate normal. It is,
however, evident from the above considerations and from Fig. i1.1 that this is strictly
valid only for the central beam, while slight deviations from the parallel orientation oc-
cur for the divergent parts of the beam. If the most divergent rays deviate by ±δ from the
central beam their scattering vector is tilted by δ from the sample normal – at least for
those scattering events that are received by the detector. In many configurations of dif-
fractometer optics it suffices to consider only the central beam.

The analysis and interpretation of x-ray diffraction measurements necessitates distin-
guishing three different reference frames that are assigned to the laboratory, the sample
and the crystallites and symbolized by {llii}, {ssii} and {ccii}, respectively. The unit vectors in
each system are denoted by llii, ssii or ccii, with i ranging from 1 to 3 for the three orthogonal
directions. Transformations between these coordinate systems are frequently used, for
which unitary transformation matrices aij are defined with superscripts LS, SC, CL, etc.,
indicating the initial and the final reference frame. The relations are visualized in
Fig. i1.2.
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1.3.1
Atomic Form Factors

Formula (1.16) can be applied to atoms by inserting the square of electronic wave-
functions for the charge density ρe(r). Before the results of this procedure are pre-
sented let us first investigate what might be expected from basic physical consid-
erations. For this purpose the electrons may temporarily be imagined in the atom-
ic model of Bohr to move in circular orbits around the nuclei. If the scattering from
any two arbitrary electrons from this atom could be obtained it is evident that the
scattering may occur for many different distance vectors r being associated with a
large variation of phase shifts –iQr. The orbital smearing of the electron density
will thus lead to a cessation of coherency and a reduction in the coherently scattered
intensity. This reduction will be stronger the larger Q becomes, because it is the
scalar product Qr that determines the phase shift.

The ansatz is made that the scattering of an atom depends on the shape of the
electron density function or on its form, and we thus define an atomic form factor
f by

(1.17)

In the limit of QQ = 0 the integration just runs over the charge distribution and
yields the number of electrons of the atom Z. For QQ ≠ 0 the form factors are rea-

f i d= −∫ ρeat
( )exp( )r Qr r

Figure i1.2 The three reference frames used in x-ray diffraction
and the appropriate transformation matrices between them.
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sonably presented as a function of |QQ| or sinθ/λ. Atomic form factors have been cal-
culated with various quantum mechanical methods of increasing sophistication. A
compilation of values for all chemical elements and some important ions is given
in Ref. [1]. Moreover, very often an approximation of f in the form of the model
function

(1.18)

is used. By this approach a precision of 10– 6 is achieved for the form factors and on-
ly nine coefficients have to be given for any atom or ion to model the whole sinθ/λ
range. The coefficients aj, bj and cj are also tabulated in Ref. [1].

It is concluded that point charges Ze have to be substituted by fe in all the fore-
going expressions in order to deal correctly with the extension of atomic charge dis-
tributions. For some metallic atoms the atomic form factors as calculated by Eq.
(1.18) are displayed in Fig. 1.11. For low scattering angles they can be seen to reach
values close to the atomic number Z, but a steep decrease with increasing sinθ/λ is
clearly seen for all of them. It should be noted that the intensity scales with the
square of the atomic form factor and that an even stronger decrease will occur for
f 2. For the example of Nb the form factor for the fivefold ion Nb5+ is also given. It
can be seen that a difference between atoms and their ions is only significant for f
values at low sinθ/λ, which is a general tendency for all atoms and ions, not just for
Nb.

For some investigations the inelastic scattering of x-rays cannot be neglected and
the concept of the atomic form factors will then have to be extended by including
real and imaginary anomalous scattering factors, f ′ and f ″, that have to be added
to the atomic form factors f given above. In most cases, anomalous scattering fac-
tors f ′ and f ″ are small when compared with f. Numerical values for f ′ and f ″ are
given in the Ref. [1].

f a b cj j
j

j= −( ) +
=

∑ exp sin /2 2

1

4

θ λ

1 Principles of X-ray Diffraction

Figure 1.11 Atomic form factors of Be, Al, Cu, Cu@fccCuRT, Nb, Nb5+ and Ag.
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1.3.2
Structure Factor

The crystallographic unit cell is the smallest unit by which the periodic order in the
crystal is repeated. In the simple cubic lattice that has been considered to derive the
Bragg and Laue equations there is only one atom per unit cell. The scattered in-
tensity was found to scale with the square of the charge of this atom – or the form
factor as should be said now – and the interference function, see Eq. (1.10). For
more complex structures the integration has to be extended over the total charge
distribution of the unit cell (uc) rather than over a single atom. This quantity is
denoted as the structure factor FF that is given by

(1.19)

We will symbolize it consistently by a bold letter, since it is a complex quantity.
The expression for the structure factor may be simplified by recalling that the unit
cell comprises N atoms, numbered by n from 1 to N. It is thus possible to decom-
pose the structure factor into single shares due to the individual atoms (at)

(1.20)

and the integration just has to be performed over the charge distributions of indi-
vidual atoms. These values are known: they are given by the atomic form factors fi
of the nth atom. Accordingly, the structure factor can be written

(1.21)

The product of the scattering factor with the positions rrn of the N various atoms
in the unit cell thus has to be evaluated. The latter are specified by their fractional
coordinates (xn, yn, zn) that read for the cubic cell rrn = xnac1 + ynacc2 + znacc3. We know
that ref lection intensity may only be observed when the Laue conditions are
simultaneously obeyed which may be applied to simplify the phase factor by

(1.22)

Only if this equation is obeyed does measurable intensity from interfering x-rays
enter into the detector and the scattering of the crystal scales with

(1.23)

The structure factor thus depends on the Miller indices of the ref lection under
consideration, the positions of the atoms in the unit cell and the atomic scattering
factor. In monoatomic lattices the form factor is the same for all atoms and can be
placed in front of the sum. For the simple cubic structure N = 1 and x = y = z = 0
and thus FF = f for all hkl and ref lections are observed for each order; however, for

F( ) exp ( )hkl f i hx ky lzn n n n
n

N

= + + 
=

∑ 2
1

π

Q c c c( )x a y a z a hx ky lzn n n1 + + = + +2 3

F Qr= ( )
=

∑ f in
n

N

n
1

exp

F r Q r r r= − −( )∫∑
=

ρeat
( )exp ( )i dn

n

N

1

F r Qr r= −∫ ρeuc
( )exp( )i d
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more complicated structures the full structure factor has to be investigated. Al-
though the derivative has only been given for the cubic lattice it has to be empha-
sized that the expression for the structure factor, Eq. (1.23), is valid for crystals of
arbitrary symmetry.

The majority of one-elemental metals are found in either the face-centered cubic
(fcc), the body-centered cubic (bcc) or the hexagonal close-packed (hcp) structure.
The relative arrangement of atoms in theses lattices is presented in Structure Box
1. Aluminum, for instance, crystallizes in the fcc structure. In this case the Bragg
equation might be obeyed for certain lattice planes hkl, but for some combinations
of hkl the phase shift in the x-rays scattered by neighboring atoms may amount to
π or odd multiples of it. The scattered beams then interfere destructively and the
ref lections for these lattice planes are not extincted. In the fcc structure, for in-
stance, destructive interference occurs for hkl = 100, 110, etc.

The extinction conditions can be derived for any crystal lattice by performing the
same summation procedure that has been performed for the simple cubic lattice in
the first section and it is an instructive exercise to do so (Exercise 7). One will then
arrive at conditions comparable to Eq. (1.11) which predict under which orientation
of QQ towards {ssii} ref lections might be observed. A simpler approach instead is the
calculation of the structure factor. Inserting the fractional coordinates of all four
atoms of the fcc structure in Eq. (1.23) yields the result

(1.24)

The expression is seen to vanish for certain hkl and the lower equation is thus de-
noted as an extinction condition. It means that Bragg ref lections are only observed
for the fcc lattice if all Miller indices are either even or odd. For mixed triples de-
structive inference occurs and these ref lections are systematically absent. It is evi-
dent from the θ/2θ scan in Fig. 1.10 that this pattern in fact is in accordance with
the extinction conditions of the fcc structure. Mathematically speaking, the Bragg
equation is a necessary but not a sufficient condition for x-ray ref lections to arise.

The structure factor of the bcc lattice can be obtained in the same way and results
in

(1.25)

The extinction condition now derives from a sum over Miller indices and reads
that the sum must yield an even number for the ref lection to occur. Only if this con-
dition is obeyed is the interference nondestructive and can be detected at the posi-
tion predicted by Bragg’s equation (Eq. (1.15)). The structure factor for the hcp
structure can be derived as an exercise from the atom coordinates in the unit cell.

The structure factor FFhh from a ref lection hh is of central importance in x-ray dif-
fraction, because it relates the position of the atoms in the unit cell to the intensity
of a ref lection. Here, the Miller index triple hkl has been abbreviated by the sub-
script hh which will be used very often in the following. The intensity scales with the
product of FF and its complex conjugate FF*. As can be seen from the examples of the
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Structure Box 1:

Elementary Metals

The simple cubic structure that is used in this chapter to derive the basic formulas of x-
ray diffraction only rarely occurs in nature. It is instead observed that one-elemental crys-
tal lattices often take the face-centered cubic (fcc) or the body-centered cubic (bcc) struc-
ture. Figure s1.1 displays both of them. The interatomic distances are fully specified by
the unit cell edge a. Each atom is surrounded by eight neighbor atoms in the bcc struc-
ture or twelve in the fcc structure. Besides the cubic structures, various metals are found
to crystallize in the hexagonal close-packed (hcp) structure, also shown in Fig. s1.1. This
structure has two degrees of freedom, namely the interatomic distance a in the base
plane and the distance between two of the planes, c/2. Accordingly, two distinct inter-
atomic distances r1 and r2 occur between next neighbors in the hcp structure (Exercise
1.12). An inspection of the periodic system reveals that the majority of elements assume
one of these three basic structures under thermodynamic standard conditions (298 K,
101.6 kPa).

In both the fcc and hcp structures the atoms are arranged according to the model of
close-packed spheres. It is thereby assumed that the atoms can be modeled by rigid
spheres that all exhibit the same radius rat. The value of rat is chosen such that atomic
neighbors are in contact via their surfaces. According to this scheme the atomic radius
can be calculated and is found to be rat,fcc = in the fcc structure. In the hcp struc-
ture the condition can only be obeyed when r1 = r2 holds, which leads to rat,hcp = a or
equivalently c/a = = 1.633. The c/a parameter in general serves to define the ide-
al hcp structure, which is a close-packed one. In one-elemental metals with the hexago-
nal Mg structure the c/a ratio is always found to be very close to this ideal value (see
Table s1.1). Although these structures deviate slightly from the ideal hcp structure, they
are often considered hcp structured anyway and the value of c/a is specified additional-
ly. If the volume of atomic spheres in both the fcc and the hcp structure is calculated and
normalized with respect to the unit cell volume Vuc, a value of 0.74 results for the volume

8 3/

a 2 4/

Figure s1.1 Crystallographic unit cells of
the most frequently occurring structures of
one-elemental metals: (a) face-centered

cubic, (b) body-centered cubic and 
(c) hexagonal close-packed structure.
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ratio. This is the largest value of spatial filling that might be achieved by the packing of
spheres all having the same diameter.

It should be noted that crystallographic lattice planes in the hcp and also in other
hexagonal structures are indexed by four Miller indices (hkil), where always i = –(h + k)
holds. This indexing results from the usage of three unit vectors in the basal plane of
hexagonal unit cells. In a widely used abbreviation a period is simply inserted for the
third index: (hk.l). One immediately realizes from the occurrence of both types of Miller
index symbol that a hexagonal structure is being considered.

There exists an interesting relation between the close-packed fcc and hcp structures.
The relation becomes evident when all atoms in the fcc lattice are decomposed into
atomic (111) planes and compared with the (00.1) planes in the hcp structure (see Fig.
s1.2). The coordination within the plane is the same, i.e. each sphere is surrounded by
six neighbors to yield the highest packaging density of spheres within the plane. Looking
from above on the plane stacking reveals that there exist three distinct positions where
atoms might become situated, which are named A, B and C. In each plane atoms are po-
sitioned at A, B or C. It turns out that the stacking of planes may be accounted for by the
sequences …ABCABC… in the fcc structure, but by …ABABAB… in the hcp structure.
Therefore, both structures just differ by the vertical stacking sequence of fully occupied
atom planes.

Table s1.1 The three most common crystal structures of one-
elemental metals. Unit cell edges under standard conditions are given.

Structure Strukturbericht Space Atomic Examples with lattice 
designation group positions parameters a and c (nm)

Face-centered Copper Fm3
–
m 000 0-- Al: 0.4049; Ni: 0.3524 

cubic (fcc) structure (A1) (225) -0- --0 Cu: 0.3615; Ag: 0.4086

Body-centered Tungsten Im3
–
m 000 --- Cr: 0.2884; Fe: 0.2866 

cubic (bcc) structure (A2) (229) Nb: 0.3307; W: 0.3165

Hexagonal close- Magnesium P63/mmc 000 2⁄3 1⁄3 - Mg: 0.3209, 0.5210 
packed (hcp) structure (A3) (194) Ti: 0.2950, 0.4879 

Zn: 0.2665, 0.4947 
Zr: 0.3231, 0.5147

Figure s1.2 Stacking of close-packed planes in (a) fcc and (b) hcp structures.
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fcc and bcc lattice the magnitude of FF maximally equals the number of atoms in the
unit cell multiplied by their atomic form factor. This situation is rarely observed for
more complicated structures, because the scattering of the different groups of
atoms often causes a partial destructive interference. This fact is demonstrated
from the structure factors of technologically relevant compounds that are found in
the various structure boxes of subsequent chapters.

The structure factor has the mathematical form of a discrete Fourier transform.
The reverse transformation from the intensity of observed ref lections would thus
allow the determination of the atomic positions in the unit cell. However, the in-
tensity scales with the product of the structure factor and its complex conjugate,
FFhhFFhh*, which is associated with a severe loss of information. If the structure factor
is plotted in the Euler plane of complex numbers it may be characterized by its
magnitude |FFhh| and its phase φhh. In this picture the information loss can be envis-
aged as a loss of phase information, which is the well-known phase problem in the
structure determination by x-ray diffraction.

Regarding the effect of thermal vibrations the same arguments apply as given
above to justify the reduction in coherency by the spatial extension of electronic
charge distribution. It is well known that the atoms in a solid oscillate at their equi-
librium positions rrnn. Temperature vibrations entail a reduction of phase coherence
in the scattered beam and thus reduce the measured intensity. The phenomenon
can quantitatively be accounted for by the mean quadratic deviation u2––

of the atom
from its average position rn. The atomic form factors f have then to be replaced by
the temperature-dependent expression

(1.26)

Again, it can be seen that the scattering amplitude is exponentially damped with
increasing scattering angle and that the damping coefficient scales with the square
of momentum transfer 4π sinθ/λ. The 8π u2––

factor is often abbreviated by the sym-
bol B in the literature. Typically the average displacements of atoms √

—
u2––

at room
temperature are in the range between 0.005 and 0.03 nm, which translates into a
few percent to more than 10% of the bond length. In the fcc structured Cu lattice,
for instance, √

—
u2––

amounts to about 6% of dCu-Cu. The effect of the temperature
vibrations can be seen from Fig. 1.11, where in addition to the zero-temperature f
also the atomic form factor of Cu in the Cu lattice is shown. It is evident that the
scattering strength may be significantly reduced by thermal vibration, which holds
in particular for high scattering angles.

These results are applied to the structure factor simply by replacing the form fac-
tor with its temperature-dependent value

(1.27)

Because the thermal vibration amplitudes increase with increasing temperature
the damping of Bragg ref lections will also increase. This causes the Bragg ref lec-
tion to sink into a background of diffuse scattered intensity when the temperature

Fhkl n n n nT f B T i hx ky( ) exp ( )sin / exp (= −( ) +2 2 2θ λ π ++( )
=

∑ lzn
n

N

)
1

f f uT = −( )exp sin /8 2 2 2π θ λ
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is increased. This is in contrast to many spectroscopic techniques, where the ob-
served peaks broaden at elevated temperature.

1.3.3
Multiplicity

The multiplicity specifies the number of equivalent lattice planes that may all cause
ref lections at the same θB position. The phenomenon is visualized in Fig. 1.12, for
the laboratory in reference frame {llii}. In this coordinate system the position of the
incoming beam is set constant with its direction pointing along the {llii} system unit
vector ll1. While KK0 is fixed, KK moves on a circle during a θ/2θ scan as does the sub-
strate normal ss3. The figure displays the position during the scan when θ is at the
Bragg angle of Al (111). In the case where the sample comprises a single Al crystal
of (111) orientation three further ref lections would equally be excited at the inter-
section of the 2θ111 cone with the {llii} sphere. The ref lections would be caused by
the equally probable scattering of the incoming x-ray beam at lattice planes (1--11),
(11--1) and (111--) that all exhibit the same interplanar spacing d111 to obey the Bragg
equation. In the case of a polycrystalline sample being measured, however, the in-
tensity would look totally different. Because of the random orientation of crystal-
lites the intensity of all equivalent (111) planes would be equally distributed on a
cone of opening angle 4θ rather than being concentrated in a few singular spots.
The intensity would be smeared out over a ring shown as a grey line in Fig. 1.12.
There are m111 = 8 equivalent (111) planes, but only m200 = 6 for (200) and it is
evident that the multiplicity mhh will enter the expression of a Bragg ref lection
intensity as a scaling factor.

1 Principles of X-ray Diffraction

Figure 1.12 Scattering in the laboratory reference frame {llii} for a
111 ref lection from an Al single crystal of [111] orientation and a
polycrystalline Al powder sample.
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1.3.4
Geometry Factor

The spreading of the Bragg peak over a circular segment of the {llii} sphere as dis-
cussed above introduces a further θ dependency into the diffraction pattern of a
θ/2θ scan. The effect is visualized in Fig. 1.13 where the set of all diffracted inten-
sity for scattering angle 2θ is symbolized by a cone of opening angle 4θ. The cir-
cumferences of the intensity rings scale with sin2θ causing a dilution of intensity
by 1/sin2θ. There also arise a variety of scattering vectors QQ that lie on a cone. The
scattered intensity will scale with their density, which is sin(π/ 2  −  θ) = cosθ. The
geometry factor is the product of both density functions and it is finally obtained
as G = cosθ/sin2θ = 1/(2sinθ).

1.3.5
Preferred Orientation (Texture)

For a powder sample it may generally be assumed that all grain orientations occur
with the same probability, i.e. that the distribution function of grain orientations is
isotropic. It is a characteristic structural feature of thin polycrystalline films that
certain crystallographic lattice planes can occur with a greater probability than oth-
ers. This phenomenon is termed preferred orientation or texture. It is evident from
Fig. 1.12 that a texture might have a significant inf luence on the diffraction pat-
tern, where density-enhanced lattice planes will be associated with an increase of
the corresponding Bragg ref lection intensity Ihh. The intensity then has to be scaled
with the density of crystallite orientations that are indicated by the texture factors
Thh. For a random orientation Thh = 1 holds for all of them. The measurement of tex-
ture and the determination of orientation distribution functions are outlined in de-
tail in Chapter 5.

1.3 Intensity of Bragg Ref lections

Figure 1.13 Scattering in the laboratory reference frame {llii} to
derive the geometry factor G.
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1.3.6
Polarization Factor

The x-ray radiation emitted from a laboratory x-ray tube is of random polarization.
Therefore, the scattering by a polycrystalline sample has to be decomposed into a
σ component and a π component. These considerations have already been outlined
for the scattering by a single electron and they equally apply to the case considered
here. In the case that Iσ = Iπ = I0/2 is valid on the average, the polarization factor
takes the form

(1.28)

and it is by this factor that the intensity received by the detector has to be scaled.
The geometry factor may be different for measurement configurations other

than the θ/2θ scan. The experimentalist should check this point carefully if integral
intensities have to be analyzed quantitatively. The dependency of the geometry fac-
tor G and the polarization factor C2

—
are both shown in Fig. 1.14 as a function of scat-

tering angle 2θ. Also the Lorentz factor L is shown that will be derived later and the
product GC2

—
L of all three factors. The product function is seen to exhibit a pro-

nounced minimum close to 2θ = 120°. Up to this point GC2
—

L continuously de-
creases, but recovers for high scattering angles close to2θmax = 180°.

1.3.7
Absorption Factor

During their transit through matter x-rays suffer from an attenuation of intensity
caused by their absorption. The Lambert–Beer law, well known from optics, can de-
scribe the absorption effect. The intensity I0 that enters into the sample will be ex-
ponentially damped to an amount I0exp(–2µ�) after a path of 2�. The parameter µ

C2
21 2

2
= + cos θ

1 Principles of X-ray Diffraction

Figure 1.14 Geometry factor G, polarization factor C2—
and

Lorentz factor L as a function of 2θ. Also the product of the three
factors is shown. Note the logarithmic ordinate scale.
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is named the linear attenuation coefficient and depends on the wavelength of the
radiation used, the chemical composition of the sample and its density. The inverse
of µ would give a penetration depth for normal incidence τ1/e = 1/µ that specifies
the path length for which the intensity I0 drops to 1/e of its initial value. The di-
mensions of the attenuation coefficient are m–1 or µm–1. Often, the value of the
mass absorption coefficient µm is listed in various tables that can be converted in-
to µ = ρ µm by multiplication with the mass density ρ. For many substances at-
tenuation coefficients of the order of 105 to 107 m–1 are obtained for Cu Kα or com-
parable wavelengths. This corresponds to penetration depths τ1/e of 0.1 to 10 µm
and thus is in the range of a typical layer thickness. It can be concluded that ab-
sorption effects might significantly affect Bragg ref lections of thin films.

The dominant effect the absorption factor has on a diffraction pattern is the vari-
ation of the scattered intensity. Its derivation is shown in Fig. 1.15 for the case of a
θ/2θ scan. For any x-ray beam that has traveled through a sample to become scat-
tered into the detector the primary intensity has been reduced by the factor
exp(–2µ�). The reduction of intensity of the total x-ray beam is the sum over all pos-
sible paths of the beam within the limits of 0 to �max

(1.29)

The path 2� that is traversed by the x-ray beam may be expressed by the depth
variable z for which � = z/sinθ holds. Then � is substituted by z/sinθ, d� by
dz/sinθ and the integration is performed from 0 up to the thickness t of the film.
Here, z = 0 accounts for the surface of the film and z = t for the film–substrate
interface. The solution of the integral yields

(1.30)

In the limit of an infinitely thick sample, t → ∞ which is equivalent to t o 1/µ,
the result 1/(2µ) is obtained. In the following the absorption factor is denoted by
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Figure 1.15 Schematic representation of the absorption effect for
a thin-film sample in a θ/2θ scan.
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the ratio of the absorption for a sample of finite thickness with respect to an infi-
nitely thick sample

(1.31)

The application of this procedure results in the absorption factor for the θ/2θ
configuration

(1.32)

The subscript θ/2θ has been added in order to indicate the measurement geom-
etry. We will become acquainted with various A factors in the following chapters for
different diffractometer configurations. The A factor is also termed the thickness
factor and it is seen to cause the measured intensity to cease as a function of in-
creasing scattering angle 2θ. In Fig. 1.16 the Aθ2θ factor is displayed for thin Al and
Nb films of 500 nm and 1 µm thickness measured with Cu Kα radiation, where
use has been made of the material parameters

Al: µm = 486.7 m2 kg–1, ρ = 2700 kg m–3 ⇒ µ = 1.31 × 106 m–1

Nb: µm = 1492 m2 kg–1, ρ = 8550 kg m–3 ⇒ µ = 1.276 × 107 m–1

The general decrease of Aθ2θ can easy be understood from the fact that the x-ray
beam enters the sample under increasingly steeper angles and accordingly “sees”
less sample volume for increasing 2θ. It is seen from the plot that Aθ2θ approaches
unity the thicker the film or the larger is µ. Accordingly, the absorption factor de-
pends on the product of both, which is called the µt product in the following. It of-
ten happens in thin-film work that t and 1/µ are of the same order of magnitude
and Aθ2θ has to be considered for a proper interpretation of the pattern. The µt prod-
uct turns out to be a decisive quantity in the x-ray investigations of thin films.
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Figure 1.16 Absorption factor A for 500 nm and 1 µm thin Al and
Nb films as function of 2θ.
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1.3.8
Integration of the Interference Function

The central question of this section is now tackled regarding the integral intensity
of a Bragg peak in a θ/2θ scan. What we are interested in is the energy E that is
received by the surface dS of the detector in the time element dt′

dE = I(RR)dSdt′ (1.33)

The geometry of the quantities involved is shown in Fig. 1.17. If all the factors
outlined above, i.e. square of the structure factor |FFhh|2, multiplicity m, texture fac-
tor Thh, geometry factor G, polarization factor C2

—
and absorption factor Aθ2θ, are in-

cluded into the intensity formula, the integration has to be done for

(1.34)

This expression is rather complex, but its main problem is related to the fact that
the variables t′ and S over which the integration has to be performed are not real-
ized at first sight in the integrand. Therefore, the differential term has to be trans-
formed to quantities over which the integration might be performed. For this pur-
pose we aim at transforming dS and dt′ to quantities that allow one to integrate over
(aQQccii) terms of the interference function. It is now assumed that the intensity of
one single crystallite shall be estimated, while the corrections for the polycrys-
tallinity of the sample shall be considered by multiplying by the factors given above.
Without restricting the general validity of the derivation the crystallite is assumed
to be (001) oriented and the ref lection under consideration is of 00l type (see Fig.
1.17).

An important constraint in any x-ray scattering experiment is that the probing
beam and the detected beam unavoidably exhibit a finite divergence δ. A diver-
gence-free beam is a theoretical idealization that does not exist. Consequently, if the
x-ray source and the detector are both at Bragg position θB one could still trace in-
coming and exiting beams that are off the diffraction position. The off-angle beams
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Figure 1.17 Geometrical quantities involved in the integration of
the interference function.
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exhibit diffraction angles of θB + ∆θ. This also means in terms of the scattering vec-
tor that besides the ideal vector QQB other QQ vectors with QQ = QQB + ∆QQ would be op-
erative at the Bragg position.

It is outlined in Instrumental Box 2 that a θ/2θ scan may be carried out by rotat-
ing the sample by θ and the detector by 2θ. The detector thus rotates with a circu-
lar velocity of d(∆θ)/dt′ = θ· with respect to the sample which allows the first sub-
stitution to be made, namely dt′ = d(∆θ)/θ· and we obtain

(1.35)

The surface dS is proportional to the square of the sample–detector distance R.
A small area dxdy is illuminated on the sample surface by the incoming x-ray beam.
This infinitesimally small area corresponds by

(1.36)

with the receiving area of the detector. The sinθ term is simply caused by the tilt of
the sample area when it is portrayed on the detector window. The illuminated area
of the sample surface dxdy depends on the divergence of the beam or on how
strong ∆QQ deviates from QQB. The infinitesimal area element can thus be expressed
by the scalar product of QQ with the crystal lattice vectors cc1 and cc2 giving

(1.37)

The prefactor has to be introduced to normalize with respect to the length of QQ.
The surface detector element can thus be expressed by the sample surface element
according to

(1.38)

It should be noted that QQcc1 equals ∆QQcc1, because the product of QQB with cc1 – and
also cc2 – yields zero under the assumed geometry. The integration over
d(aQQcc1)d(aQQcc2) is thus an integration in the vicinity of the Bragg ref lection.

The transformation from d(∆θ) to d(aQQcc3) can be obtained by the derivative of the
latter quantity with respect to the first. For this purpose the decomposition θ = θB

+ ∆θ is applied

(1.39)

Finally, the differentials are adopted to the arguments in the denominator and
one arrives at

(1.40)
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Instrumental Box 2:

Generation of X-rays by X-ray Tubes

X-rays are generated when electrons with kinetic energies in the keV range and above im-
pinge on matter. The emission spectrum comprises a continuous part, called
Bremsstrahlung, and some discrete lines indicative of the chemical elements of the tar-
get material. In laboratory x-ray tubes electrons are accelerated onto an anode plate
made from a specific metal of high purity. The cross-section of such a tube is shown in
Fig. i1.1. The electrons are emitted from the cathode filament and accelerated towards
the anode plate. The anode is typically fabricated from copper, chromium, molybdenum
or another metal as listed in Table i1.1. The electron current between filament and an-
ode may be adjusted by tuning the filament current in the range of some 10 mA. When
impinging upon the anode the electrons are decelerated by their interaction with the tar-
get plate atoms leading to the emission of x-rays. The acceleration voltage (in kV) must
be greater than the energy of the characteristic radiation required by the experiment (in
keV). Energy E and wavelength λ of the radiation are related by

(i2.1)

As a rule of a thumb line energies may be converted to wavelengths by relating them
to the set point 11.1 keV ≈ 0.111 nm. This relation is precise to 0.6% and may easier be
remembered than Eq.(i2.1). Often the anode is made of copper to make use of the char-
acteristic Cu Kα line. The Cu Kα wavelength is 0.154 nm which is adequate to 8.04 keV.
Other x-ray tubes may be used if the diffraction pattern has to be contracted or expand-
ed or if the excitation of x-ray f luorescence from the sample is to be avoided. A promi-
nent example for the latter effect is given by Fe-containing samples that cause a strong
background when Cu Kα radiation is applied.

TTaabbllee  ii22..11 Metals used as anodes of x-ray tubes with charac-
teristic wavelengths λ, typical Kβ filter materials and their ap-
propriate K-edge wavelengths λK.[a]

Target Z λ (nm) Kβ f ilter λK (nm)
element

Kα1 Kα2 Kα– Kβ1

Cr 24 0.228975 0.229365 0.22909 0.20849 V 0.2269
Fe 26 0.193631 0.194002 0.19373 0.17567 Mn 0.1896
Co 27 0.178900 0.179289 0.17905 0.16208 Fe 0.1744
Ni 28 0.165794 0.166178 0.16591 0.15002 Co 0.1608
Cu 29 0.154059 0.154441 0.15418 0.139225 Ni 0.1488
Mo 42 0.709317 0.713607 0.7107 0.63230 Zr 0.6889
Ag 47 0.559422 0.563813 0.5608 0.49708 Rh 0.5339

a From various tables of the International Tables for Crystallography, Vol. C, Section 4.2.2.

E keV
nm

[ ] .
[ ]

= 1 2398
λ
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The process of impact ionization and relaxation of an x-ray emitting atom is shown
schematically in Fig. i2.2. In this sequence of processes, bound electrons are first re-
leased and subsequently an electron from a higher energy level relaxes into the emptied
state. The relaxation is associated with the emission of radiation the energy of which cor-
responds to the energy difference between the final and initial state. This energy thus
sensitively depends upon the chemical nature of the emitting atom. According to the lev-
els involved the relaxation of the emitted radiation is denoted by Kα1, Kβ2, Lα, etc. In
most x-ray scattering experiments only the characteristic emission lines are of interest.

Figure i2.1 Schematics and photographs of
laboratory x-ray tubes. This page: convention-
al x-ray tube type. Next page: ceramic x-ray

tube for less laborious change from line to
point focus mode and vice versa. (Kindly
provided by PANalytical.)
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In the majority of cases investigations are performed with Kα radiation, because of its
higher intensity compared to Kβ. A closer look at the Kα radiation reveals its doublet na-
ture. The doublet resolution increases for Bragg peaks with increasing scattering angle
2θ. Moreover, the occurrence of the splitting strongly depends on the microstructure of
the sample, and in many polycrystalline thin-film investigations the α1–α2 splitting may
not be observed. In such cases the weighted average of both lines is used denoted by Kα–

or simply Kα. The Kβ line may severely disturb the interpretation of the diffraction pat-
tern and various techniques are applied for its suppression. Very common are edge fil-
ters that are introduced into the incident beam path and make use of the fact that the
photoionization of deep levels requires a certain minimum energy. In the case of copper,
E(Cu Kβ1) = 8.9 keV and thus a thin Ni foil can be used as an edge filter that significantly

Figure i2.1 continued
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suppresses the Kβ line (see Exercise 1.14). Other foil materials for other tubes are spec-
ified in Table i2.1.

The filament and anode operate in a high-vacuum environment of the sealed tube.
The decoupling of radiation is facilitated via one of the four Be windows (300 µm thick-
ness) at each side of the tube. The dimensions of the focal-spot size on the anode plate
range between (0.4 × 10) mm and (2 × 12) mm. The anode focus is “seen” by the sam-
ple under a take-off angle between 2° and 6°. The focus either appears as a line or a spot
according to which window is used for the decoupling. The x-ray tube may thus be op-
erated in line focus mode or point focus mode depending on the experimental necessi-
ties. Remember that the point focus is not a point focus, but a line focus viewed from
the side (see Fig. i.1.3). Due to the high power dissipation at the focal spot the back of
the anode plate is water cooled.

Figure i2.2 (a) Emission of x-rays by an
atom through sequential processes of elec-
tron impact (I), ionization (II) and simulta-
neous electronic relaxation and emission of
radiation (III). (b) Elementary processes
visualized in the term scheme, where only 

transitions that obey the selection rules
∆l = ±1 and ∆j = 0, ±1 are shown.
(c) Schematic x-ray spectrum emitted by
an anode. It is composed of a continuous
Bremsstrahlung background and discrete
single lines. 
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In addition to the sealed x-ray tubes discussed above, so-called rotating anode x-ray
generating systems are also in use. These make use of an improved dissipation of the
heat introduced by impinging electron current on the anode by rotating it. Higher emis-
sion rates of x-rays by a factor of about 3–5 may be obtained. Orders of magnitude high-
er radiation intensities are available at synchrotron beamlines.

Figure i2.3 Schematic of x-ray tube head to visualize point focus operation.

The factor in front of the differential product is called the Lorentz factor L. Fre-
quently, only the term L = 1/sin2θ is denoted as the Lorentz factor. Its effect on the
course of intensity in conjunction with the geometry factor G and the polarization
factor C2

—
is depicted in Fig. 1.14.

Inserting the transformation Eq. (1.40) into the differential form for the energy
received by the detector

(1.41)

the integration may be carried out and is found to yield

(1.42)

The three integers Ni give the length of the crystallite in units of cell edges and
are related to the volume of the sample V and the unit cell Vuc by

(1.43)

If the substitution of Vuc for a3 is also performed for the Lorentz factor and the
other results from above are applied we finally end up with the expression for the
integral intensity of a Bragg ref lection in a θ/2θ scan
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(1.44)

Various points concerning the integral intensity Eq. (1.44) are of interest. Firstly,
it is realized that the intensity is proportional to |Fh|2/V 2

uc. This ratio has the char-
acter of a squared electron density and underlines again the statement made above
that x-ray diffraction patterns scale with the square electron density ρe

2 of the sam-
ple. Secondly, there are various factors active that may cause a severe reduction of
intensity with increasing scattering angle 2θ. The ratio of trigonometric functions
occurring in Eq. (1.44) has already been plotted in Fig. 1.14 and can be seen to re-
duce the integral intensity of a ref lection by an order of magnitude, depending on
where it occurs. Also the structure factor ceases strongly as a function of 2θ and
even more so for the square of it. A special feature in thin-film analysis is the damp-
ing caused by the absorption factor Aθ2θ(t) which also increases with increasing
scattering angle. The different factors make comprehensible the features of the
thin Al film diffraction pattern shown in Fig. 1.10.

In the majority of investigations the integral intensity is specified by virtue of a
scaling factor SCF that lumps together all instrumental settings like scan velocity
θ·, slit width, etc., and allows the comparison of integral intensities from one dif-
fraction pattern on a relative scale

(1.45)

The convention is also often used to abbreviate the product of Lorentz, geometry
and polarization factor by Lp = GC2

—
L and denoting it as the Lorentz-polarization

factor.
In practice, it may be a reliable rule of a thumb in thin-film work to extend the

θ/2θ scan to 2θmax = 60° to 80° when Cu Kα radiation is used while higher 2θ an-
gles are associated with too low a signal-to-noise ratio. The use of Cu Kα radiation
with λ = 0.154 nm is widespread for the investigation of inorganic layers because
it portrays interplanar spacings d from 0.355 to 0.154 nm into a 2θ range of
25–60°. However, the rule should only be taken as a recommendation and not as
dogma. In any case, the analyst should check the range of scattering angles useful
for the material and the analytical question under investigation. As a first step it
might be helpful to calculate the strength of the µt product and hence the course of
Aθ2θ(t) if the thin film thickness and composition – or reasonable estimates – are
available.

An important point regarding the integral intensity of an x-ray ref lection has to
be mentioned. If the measurement is not made with a polycrystalline thin film, but
with a single crystalline material a modification of Eq. (1.44) might become neces-
sary. In highly perfect single crystals it may happen that the incoming beam is dif-
fracted twice or even multiple times, which can effectively cause an attenuation of
the ref lection much stronger than accounted for by the absorption factor given
above. The calculation of the diffracted intensity then has to take into account all
wave fields that propagate in the crystal. The description of these phenomena is fa-
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371.4 Aplications

cilitated within the framework of the dynamical theory of x-ray diffraction, while
the considerations outlined above are denoted as kinematical theory. For many ap-
plications the results of the kinematical theory as condensed in Eq. (1.44) are suf-
ficient to explain the diffraction pattern of thin films – at least if polycrystalline lay-
ers are concerned. Solely in high-resolution work with epitaxial layers the dynami-
cal theory sometimes has to be applied as is outlined in Chapter 8.

1.4
Applications

Metals have found applications in thin-film technology due to their luster and high
electrical conductivity. Both properties are caused by the high mobility of electron-
ic charge carriers in the crystal lattice. Decorative and anticorrosion coatings of
chromium, zinc and derivative alloys for armatures, metal work, kitchen fittings,
automotive parts, etc., are mostly deposited by electroplating. The technique of
gilding of jewelry, porcelain, relics, etc., by gold leaf of only micrometers in thick-
ness has been continuously developed for more than 4000 years. Typical modern
applications of thin metal films are Al layers of less than 100 nm thickness used as
barrier coatings on food packaging and as ref lective coatings in light housings for
automobile headlights to mention only a few examples.

Laterally structured thin metal films also play an enormous role in the semicon-
ductor industry as electrical contacts between micrometer- and even submicrome-
ter-sized devices. For this purpose, metals are deposited by electroplating, chemical
or physical vapor deposition and subsequently structured by lithographic proce-
dures to yield conducting plain contacts and metal level connecting vias. Al plays a
vital role in these applications, but a severe problem that has to be addressed for
metallic interconnects is electromigration limiting the mean time to failure of in-
tegrated circuits. Due to its higher electrical conductivity, Cu has recently partly re-
placed Al, as depicted in Fig. 1.18 where the highly complex three-dimensional
stacking of Cu layers is shown [2]. Cu films deposited by electroplating were found
to exhibit a remarkable microstructural evolution after plating [3]. Among the
microstructural properties of interest in Cu interconnects are the texture and grain
size [4] that can both affect the electromigration resistance. It should be mentioned,
however, that the introduction of Cu in the Si industry has been avoided for a long
time, because Cu is an extremely fast diffuser in Si and may severely degrade inte-
grated circuit performance by acting as a deep-level recombination center. The dif-
fusion of Cu into the semiconductor has to be safely prohibited by introducing 
anti-diffusion barriers, the functionality of which has been effectively investigated
using x-ray diffraction procedures enabling their optimization [5].

Thin metal films are also of interest because of their mechanical properties and
various basic investigations have been performed with x-ray diffraction techniques
due to their model character for thin-film systems in general. Refractory Nb films,
for instance, are qualified by the high yield strength of Nb for engineering appli-
cations and were found to exhibit pronounced depth dependencies during growth



[6]. The same phenomenon was identified for titanium films that are applied as ad-
hesion layers for hard coating applications [7]. Increasing attention has been paid
in recent years to the interesting plastic properties of nanocrystalline metals. For
instance, plastic deformations in electroplated nanocrystalline Ni films could be re-
vealed by in situ investigations to be reversible upon unloading instead of produc-
ing a residual dislocation network [8]. X-ray scattering investigations of thin metal
films are used extensively to investigate grain sizes, crystalline lattice faults, texture
and residual stress. The various x-ray scattering techniques to elucidate these mi-
crostructural features are outlined in the following chapters.

38 1 Principles of X-ray Diffraction

Figure 1.18 Thin film metallic interconnect structure as used in a modern micro-
electronic chip. The multilayer system exhibits a total thickness in the µm range
(figure kindly provided by AMD, Dresden [2]).
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Exercises

1.1 The determination of the classical radius of the electron proceeds by assum-
ing that the total electric field energy ∫ D · EdV is confined to the space sur-
rounding the spherical particle of radius re. Show that re = e2/(4πε0mc2) is ob-
tained when the total field energy is identified with the energy of the rest
mass mc2.

1.2 Consider a preferably plane transparent thin film on a ref lecting substrate
(like a Si wafer). Examine it in daylight and in a room illuminated by neon
light. Which optical phenomena can be observed in both cases? Why is the op-
tical length of coherence longer in one case than in the other? How does the
coherence length depends on the frequency spectrum of the radiation?

1.3 What is the momentum of an 8 keV x-ray photon? Compare this to the aver-
age momentum of an Ar gas atom confined to a vessel under thermodynam-
ic standard conditions.

1.4 Give the general expression for 1/d2
hkl (Table 1.1) for the triclinic crystal by

starting from 1/d2
hkl = (hb1 + kb2 + lb3)

2, with the reciprocal lattice vectors bi

depending like bi = (aaj × aak )/(aai (aaj × aak )) on the unit cell vectors aai.
1.5 Show that the summation over all scattering centers according to Eq. (1.9) in-

deed yields Eq. (1.10). Make use of the geometrical sum.
1.6 Derive the atomic form factor of He by modeling it with the spherical charge

distribution of two electrons ρ(r) = (2e/π)(2/a0
3 )exp(–4r/a0) and performing

the integration (1.17). Find a numerical approximation in the form of eq.
(1.18) through a non-linear regression. What is the precision of the fit in the
sinθ/λ     range from 0 to 10 nm–1 when the numerical value for Bohr’s radius
a0 = 0.0529 nm is inserted?

1.7 Derive the structure factor Fh and extinction conditions of the three lattice
types bcc, fcc, hcp from the general expression (1.23). Show that the evalua-
tion of an expression comparable to Eq. (1.9) for the bcc lattice yields an equiv-
alent result.

1.8 What are the multiplicities mh of Bragg peaks of the thin Al film shown in Fig.
1.10?

1.9 Suppose a Bragg ref lection in a θ/2θ pattern to be observed at 2θ1 when Cu
Kα1 monochromatized radiation is applied. What would be the appropriate
position of 2θ2 for the Cu Kα2 line? In absolute values for 2θ1 = 32°?

1.10 A diffractometer is run without suppression of Kβ radiation. Where do the β
peaks occur in the diffraction pattern compared to the α peaks? General: are
the interference lines of higher energy radiation shifted towards lower or
higher scattering angles 2θ?

1.11 Calculate the c/a ratios for the hcp-structured metals given in Table s1.1. How
do they deviate from the “ideal” value of 1.633 and what is the meaning for the
two different interatomic distances d1 and d2 in the hcp structure?

1.12 Determine the distance d of an atom in the fcc and bcc structure to its near-
est neighbors as a function of the lattice parameter a. Do the same for the hcp
structure for interatomic distances within the basal plane and in the out-of-

Exercises
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plane direction. Assume that atoms may be modeled by spheres and calculate
the volume ratio of space occupied by spherical atoms Vat and the complete
unit cell volume Vuc for all three structure types.

1.13 Calculate the linear attenuation coefficient µ and the penetration depth τ1/e

for Be, Zn, Fe, Ag and Au for irradiation with Cu Kα radiation (8.04 keV). 
Determine the density and mass attenuation coefficient of the materials from
tables like Table 2.1 or from the internet.

1.14 The mass absorption coefficients for Cu Kα and Cu Kβ1 radiation in Ni are
48.8 and 279 cm2 g–1 while the mass density of Ni is 8.9 g cm3. Calculate the
intensity ratios I(Kα)/I(Kβ1) and I(Kα)/I0(Kα) after Cu K radiation with an
initial ratio I0(Kα)/I0(Kβ1) of 3:1 has been transmitted through a Ni foil of (a)
8, (b) 15 and (c) 20 µm thickness. Which of these foils would you consider as
the optimum Kβ filter?

1.15 In cubic substances two group of lattice planes may scatter simultaneously for
the same scattering angle 2θ, because dhkl = √h2 + k2 + l2 / a is not a one-to-one
unique function of Miller indices hkl. Which are the first double ref lections
to occur in a θ/2θ scan? Give the first three of them for fcc and bcc structures.

1.16 An x-ray copper tube is operated with 40 kV and 40 mA and is assumed to
have efficiency for x-ray generation of 1%. X-rays are emitted with cos2 char-
acteristic and the take-off angle is 6°. The divergence slit is 1°. By how many
x-ray photons is the sample irradiated per second? How many Cu Kα pho-
tons? Give order of magnitude estimations.

1.17 What is the varied measurement quantity in all kinds of spectrometers and
why is it inadequate to denote a diffractometer as a spectrometer? The same
arguments are valid in distinguishing a diffraction pattern from a spectrum.

1.18 Derive the dependence of the radius of the focusing circle RFC on the diffrac-
tion angle θ and goniometer radius R.

1.19 The element Polonium has only found few technical applications, since its
isotopes are all unstable with the most long-living ones decaying under emis-
sion of α particles. The most relevant application of Po is as initiator in nu-
clear fission bombs. Devices based on uranium, for instance, operate by the
gun principle and comprise two undercritical U masses that are shot into
each other for ignition. The chain reaction of fission processes is reported to
be accelerated by covering one of the masses with Po and the other by Be. The
α particles emitted from Po are then captured by Be nuclei leading to higher
Be isotopes that act as neutron emitters accelerating the U fission reaction.
About 2 × 104 nuclear weapons with the explosive power of more than 106 Hi-
roshima bombs are still stored in the arsenals of the atomic powers although
they pledged in the Non-Proliferation Treaty of 1970 ‘’to pursue negotiations
in good faith on effective measures relating to cessation of the nuclear arms
race at an early date and to nuclear disarmament, and on a Treaty on general
and complete disarmament under strict and effective international control’’
(Article VI). Various organizations exists, in which scientists are acting for
disarmament and the abolition of nuclear weapons like the International Net-
work of Scientists and Engineers for Global Responsibility (www.inesglob-
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al.com), the Pugwash movement (pugwash.org), the Union of Concerned Sci-
entists (ucsusa.org) and others. Visit the internet sites of these organizations
and evaluate what scientists can do to assure the humane and useful applica-
tion of their work.
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