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29 Aberrations2

29.1
Introduction

In this and in the following section (29.2) we will deal with monochromatic aberra-
tions only. In section 29.3 chromatic aberrations will be introduced and will then be
included in our further discussions. As we have already explained in chapter 11, in
general, a real optical imaging system does not perform ideal imaging. So, rays
emerging from one object point O will not all meet at a single image point O′. An
example with three meridional rays is shown in figure 29-1.

O'

O

optical 

system

Figure 29-1: Aberrations of an imaging system.

There are several methods used to describe how the rays miss the image point, see
section 11.2, Description of Aberrations. Very often it is convenient to think in terms of
transverse aberrations. Consider a single object point and a given position of the image
plane and on this plane consider a given reference point, which is the point where the
image should be. Usually the assumed image point will be the Gaussian image point,
but this is in fact not necessary. The position of the image plane as well as the choice of
the image reference point may differ from the Gaussian values if required. For instance,
one reason for choosing the Gaussian image plane but not the Gaussian image height
may be some distortion if distortion is not of interest. In this case the intersection of the
real chief ray with the image plane may be adequate as the image reference point. A very
common reason for choosing image planes, which are different from the Gaussian
image plane, is to study the behavior of the aberrations with a change in the focus.

There are several ways to present transverse aberrations in graphical form. We
will outline some examples for a very simple system, a single biconvex lens as
shown in figure 29-2. Two field points are considered, one field point is on the axis,
while the second field point is off the axis.

Figure 29-2: Biconvex lens, f ′ = 100 mm, F/5, image height 5 mm.



29.1 Introduction

Spot diagrams are a very popular way of presenting transverse aberrations, see
figures 29-3 and 29-4. The through-focus spot diagrams show the characteristics of
a lot of aberrations and suggest the size of the image blur. However, even with this
simple example, it can be seen that the impression of the ray intersection spots
strongly depends on the chosen ray distribution in the pupil. For figure 29-3 a
rectangular pupil grid is used and for figure 29-4 a polar pupil grid is used.

Image height 

5 mm 

0 mm 

Defocus ( mm ) - 0 . 5 - 0.25      0              0.25            0.5

0.4 mm 

Used pupil grid : 

Rectangular 

Figure 29-3: Through-focus spot diagram with rectangular pupil grid.

Image height

5 mm

0 mm

Defocus (mm)     -0.5           -0.25             0              0.25 0.5

0.4 mm

Used pupil grid :

Polar

Figure 29-4: Through-focus spot diagram with polar pupil grid.
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29 Aberrations

In general it is difficult to distinguish typical aberrations from spot diagrams.
However, for this purpose the transverse aberration fans are an adequate means, see
figure 29-5. Here the transverse aberrations of two pupil sections are represented:
For the on-axis image the ray bundle is symmetric with respect to the optical axis, so
all information is contained in the presentation of the meridional section only. The
meridional pupil section is also called the tangential pupil section. For an image
height of 5 mm, in the tangential pupil section, due to the rotational symmetry of
the system, all aberrations are in the image y-direction. From the sagittal pupil sec-
tion the rays have aberration components � y′ in image y-direction as well as compo-
nents � x′ in the image x-direction and these components exhibit characteristic sym-
metries (point symmetry and mirror symmetry, respectively) as shown in figure
29-5. Usually, for the sagittal section, only the more important x-component of the
aberration is shown. As will be explained later, the transverse aberration fans in
figure 29-5 are clearly dominated by spherical aberration and also by coma.

Image 

height 0 mm 5 mm 5 mm 5 mm

Aberration ∆ y' ∆ y'  ∆ x' ∆  y'

Pupil section      meridional meridional    sagittal  sagittal

0.2 mm 0.2 mm 0.2 mm 0.2 mm

Figure 29-5: Transverse ray aberrations.

The use of transverse aberrations is a powerful method and all types of aberration,
such as spherical aberration, coma, astigmatism, field curvature and distortion, as
well as axial chromatic aberration and lateral chromatic aberration can be under-
stood and represented as transverse aberrations.

Nevertheless, there are situations where it is desirable to use longitudinal aberra-
tions. For instance, astigmatism and field curvature are easily understood as longitu-
dinal phenomena. But spherical aberration, coma, and axial chromatic aberration
can also be understood as longitudinal aberrations. Figure 29-6 shows the spherical
aberration and the astigmatic field curves of the system considered in figure 29-2 as
longitudinal aberrations. The only aberrations, which cannot be described as long-
itudinal aberrations, are distortion and lateral chromatic aberration.
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Figure 29-6: Longitudinal ray aberration curves.

For optical systems which image to infinity, the transverse as well as the longitu-
dinal aberrations do not make sense, as they both become infinite. In this case, for
the image at infinity, instead of transverse aberrations measured in length units,
angular aberrations measured in angle units will be adequate. So angle aberrations,
which were introduced in section 11.2, Description of Aberrations, correspond to
transverse aberrations and exhibit the respective properties. Also, for longitudinal
aberrations there is an adequate representation when the image is at infinity:
Instead of the longitudinal aberration itself, the reciprocal value of the intersection
lengths is used. As the unit of dimension diopters are normally used. To express an
intersection length S′ in diopters, S′ should be measured in m. Then the corre-
sponding value �S′ in diopters is defined as

�S′ diopter� � � 1
S′ m� �. (29-1)

So aberrations measured in diopters correspond to the longitudinal aberrations. For
instance, in vision optics, diopters are the preferred aberration description.

Transverse and longitudinal ray aberrations are easy to understand, and they rep-
resent a complete and powerful method of describing the aberrational behavior of
an optical imaging system. So, for what reason do we need wave aberrations? There
are, in fact, some specific advantages connected with the understanding and the use
of wave aberrations. The most important benefits of a description based on wave
aberrations are as follows.

� Wavefront aberrations can be measured very easily and very accurately by
means of interferometric methods. This is a big advantage because the mea-
surement of ray aberrations with any comparable completeness and accuracy
is almost impossible.
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� In spite of the fact that wavefront aberrations are strictly a geometrical optics
method there is a strong relationship to physical image formation. As
pointed out in chapter 12, the wave aberration is the essential input for calcu-
lating the diffraction image. As an aberration-free system would image an
object point not as a single image point but as the Airy pattern, it is under-
standable that very small aberrations would not change the Airy pattern sig-
nificantly. In this case the image quality is determined more by diffraction
effects than by geometrical aberrations. When working with wave aberrations
there is a very useful rule of thumb, the so-called Rayleigh limit: If the wave
aberration is less than one quarter of the wave length, the system can be
regarded as diffraction limited.

� When considering surface contributions, wave aberrations are convenient in
that the single surface contributions sum up directly to the total aberration. It
is possible to obtain a surface contribution formula for transverse aberra-
tions, see section 29.8.4, Aldis Theorem, but these formulae are not as plausi-
ble as are the wave aberrations.

� Finally, aberration theory informs us that there are distinct types of aberra-
tions such as spherical aberration, coma, astigmatism, etc. For the proof of
this statement, see section 29.2, where we show that wave aberrations are
much more convenient than ray aberrations.

Consider an imaging system and a single object point O. Instead of investigating
the rays itself emerging from the object point, we now look into the behavior of the
wavefronts. In principle, there is no new information about the aberrations, as the
wavefronts are strictly connected to the rays. The wavefront is defined as the locus
of a constant optical path measured from the object point. As a reminder: the optical
path is the geometrical distance multiplied by the local refractive index. It can be
shown that the wavefronts are usually perpendicular to the rays. So in object space,
where all rays pass through the object point, the wavefronts have the shape of con-
centric spheres, with the object point as center. In image space, when there are no
aberrations at all, the wavefronts are again spheres, centered on the image point. In
the case of aberrations, the wavefronts in the image space are no longer spheres,
and the deviation to a suitable reference sphere is the wave aberration. There is
some arbitrariness in choosing the reference sphere, but in practice this is not a
problem. According to figure 29-7 the reference sphere is determined by its center
O′, which is the assumed image point, and by its radius R. Usually the radius R is
chosen so that the reference sphere contains the intersection point of the chief ray
with the optical axis, point Q in figure 29-7, that is the location of the exit pupil. In
the case of an infinite image, as the image point is at infinity, the radius R becomes
infinite and the reference “sphere” becomes a plane, perpendicular to the chief ray.
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O

O'
P

Q

B

R

Chief ray

Figure 29-7: Wave aberrations.

We denote the optical path length from the object point O to a point B by [OB].
From figure 29-7 it can be seen that

[OB] = [OQ] (29-2)

as B and Q are points on the same wavefront. So, the wave aberration W is defined
as the optical path along the ray from the reference sphere to the wavefront:

W = [OB] – [OP] = [OQ] – [OP]. (29-3)

An alternative designation for the wave aberration W is the optical path difference
OPD = W.

The given procedure used to determine the reference sphere radius R, using the
position of the exit pupil, breaks down when the imaging system is telecentric in
the image space. In this case the chief rays are parallel to the optical axis and the
exit pupil is at infinity. Nevertheless for telecentric systems it also makes sense to
define wave aberrations relative to a reference sphere. Since for practical use the
actual size of the reference sphere radius R is unimportant, the radius can be chosen
to have any plausible size. The only thing that must be avoided is a reference sphere
radius that is too small, which means that the reference sphere should be far
enough from the focal region where the rays from the imaging ray bundle intersect
each other. An example is shown in figure 29-8.

The graphical presentation of the wave aberration for the same example as shown
in figure 29-2 is given in figure 29-9.
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Chief ray O'

Optical

system

R

Optical axis

Image 

plane

Figure 29-8: Wave aberration and reference sphere for a system
which is telecentric in the image space. The aberrations are
strongly exaggerated for clarity.

Image 

height                    0 mm 5 mm 5 mm   

Pupil section      meridional                          meridional  sagittal

10 λ 10 λ 10 λ 

Figure 29-9: Wave aberrations for the system in figure 29-2.

29.2
Power Series Expansions

The wave aberration clearly depends on the chosen ray. When the wave aberration
for all rays emerging from the object point O and passing through the exit pupil is
to be described, the rays concerned are identified by their pupil coordinates xp and
yp and the wave aberration W(xp,yp) is a function of two variables. It must be pointed
out that this function W(xp,yp) only describes the aberrational behavior for the fixed
chosen object point. To obtain complete information about the system aberrations
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one has to consider not only one object point but the whole object field. If we char-
acterize an object point by its object plane coordinates x and y, then the wave aberra-
tion becomes a function of four variables W(x,y,xp,yp). This function of four vari-
ables is really necessary when optical systems without rotational symmetry are to be
investigated [29-1]. In the more usual case, when the rotational symmetry of the
optical system is given, there is redundancy in the four variables. In figure 29-10 we
will see that, in this case, three variables are actually needed to describe the systems
aberrations completely.

Object

x

y

F

y

x

Fϕ
Pupil

P

xp

yp

z

yp

xp

Pϕ

Figure 29-10: Equivalent rays by rotational symmetry.

In figure 29-10, from the rotationally symmetric optical system, only the object
plane and the pupil plane are shown. We regard a single ray with object coordinates
x and y and pupil coordinates xp and yp (the red ray in figure 29-10). For this ray the
wave aberration is denoted by W(x,y,xp,yp). Now, when this ray is rotated about the
optical axis by an arbitrary amount (the green ray in figure 29-10), due to the rota-
tional symmetry of the system, the wave aberration will not change. So, instead of
describing the ray by the four variables x, y, xp, and yp, the Cartesian object and pupil
coordinates, we have to find adapted variables which are invariant with respect to
rotation about the optical axis. Let �F indicate the object vector from the object plane
origin to the object point (x, y) and �P the pupil vector from the pupil plane origin to
the pupil point (xp,yp). Let the lengths of these vectors be F and P respectively, then
such rotationally invariant variables are:
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� the square of the object or field vector length �F ��F � F2 � x2 � y2

� the square of the pupil vector length �P ��P � P2 � x2
p � y2

p
� the scalar product of the field vector and the pupil vector

�P ��F � P � F � cos ��F � �P� � xp � x � yp � y.

The last quantity �P ��F contains not only the lengths of the field and pupil vectors,
but also the angle �F � �P between these two vectors.

With these new variables the wave aberration for an arbitrary ray can be written
as W � W��P ��P��P ��F��F ��F�.

As the wave aberration is now dependent only on the length of the object vector,
on the length of the pupil vector, and on the angle �F � �P between the object and
pupil vector, without loss of generality we can choose the object point on the y-axis.
So, we set x = 0 and for the wave aberration we obtain

W � W�x2
p � y2

p� ypy� y2�. (29-4)

In eq. (29-4) y represents the object field coordinate. In the case of an object at infi-
nity y should be understood as the object field angle. The function (29-4) can now be
expanded as a power series in three variables, arranging the terms in the proper
order we get:

W � W�x2
p � y2

p� ypy� y2�
W � a0 � b1�x2

p � y2
p� � b2yyp � b3y2

� c1�x2
p � y2

p�2 � c2yyp�x2
p � y2

p� � c3y2y2
p � c4y2�x2

p � y2
p� � c5y3yp � c6y4

� d1�x2
p � y2

p�3 � d2yyp�x2
p � y2

p�2 � d3y2y2
p�x2

p � y2
p� � d4y2�x2

p � y2
p�2 � d5y3yp�x2

p � y2
p�

� d6y3y3
p � d7y4y2

p � d8y4�x2
p � y2

p� � d9y5yp � d10y6

� terms with higher order�

(29-5)

The designation of the expansion coefficients ai, bi, ci, di,... corresponds to the sum
of the powers in the variables. Going back to the original Cartesian coordinates y, xp,
and yp, the total powers are zero for a0, two for bi, four for ci, and six for di. It will be
shown that the bi terms represent the primary aberrations and the ci represent the
secondary aberrations.

This power expansion is strictly mathematical. As the wave aberration is not an
arbitrary function to be expanded, but is defined in such a way that it vanishes at the
pupil center (xp= yp = 0), all coefficients in expressions with no dependence on the
pupil coordinates must be zero. So, a0, b3, c6, d10,... are set to zero.

This procedure of ignoring the terms which only depend on the field coordinate,
when setting the coefficients b3, c6, d10,...to zero, may appear a little strange. Usually
mathematical results have some physical meaning. As we will see in section 29.5,
these terms will actually have meaning when the pupil aberrations are addressed.

For some further discussion it is advantageous to express the pupil dependence
of the wave aberration not only in Cartesian coordinates as in (29-5) but also in polar
coordinates. As shown in figure 29-11 we define the length of the pupil vector r and
the azimuth angle � as
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y
p

x
p

r
ϕ

Figure 29-11: Polar coordinates for the pupil.

r �
��������������
x2

p � y2
p

�
(29-6)

xp � r � sin�

yp � r � cos��
(29-7)

In terms of polar coordinates in the pupil the wave aberration W reads:

W � b1r2 � b2yr cos�

� c1r4 � c2yr3 cos�� c3y2r2 cos 2�� c4y2r2 � c5y3r cos�

� d1r6 � d2yr5 cos�� d3y2r4 cos 2�� d4y2r4 � d5y3r3 cos�

� d6y3r3 cos 3�� d7y4r2 cos 2�� d8y4r2 � d9y5r cos�

� terms with higher order�

(29-8)

According to eqs (11-12) and (11-13) the transverse ray aberrations � x′ and � y′ can
be calculated to a good approximation by differentiating the wave aberration with
respect to xp and yp , respectively:

� x ′ � � R
n′

� ∂W
∂xp

, (29-9)

� y′ � � R
n′

� ∂W
∂yp

, (29-10)

where R is the radius of the reference sphere and n′ is the refractive index in image
space. The approximation inherent in eqs (29-9) and (29-10) is adequate for deriving
the primary transverse aberrations. In the case of vanishing primary aberrations,
eqs (29-9) and (29-10) can also be used to derive the secondary transverse aberra-
tions. So, applying these equations to (29-5) the power series expansion of the trans-
verse ray aberrations can be derived:
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� x ′ � � R
n′

2b1xp � 4c1xp�x2
p � y2

p� � 2c2yxpyp � 2c4y2xp � ���
� �

(29-11)

� y′ �
� R

n′
2b1yp � b2y � 4c1yp�x2

p � y2
p� � c2y�x2

p � 3y2
p� � 2�c3 � c4�y2yp � c5y3 � ���

� �
�

(29-12)

With the help of eqs (29-6) and (29-7) and using the identities (29-13) and (29-14)

2 cos 2� � 1 � cos 2�, (29-13)

2 sin� cos� � sin 2�, (29-14)

the transverse aberrations � x ′ and � y′ can be expressed in polar coordinates in the
pupil:

� x ′ � � R
n′

2b1r sin�� 4c1r3 sin�� c2yr2 sin 2�� 2c4y2r sin�� ���	 
 (29-15)

� y′ � � R
n′

2b1r cos�� b2y � 4c1r3 cos�� c2yr2�2 � cos 2�� � 2�c3 � c4�y2r cos�� c5y3 � ���	 
�
(29-16)

In the power series expansions eqs (29-5), (29-8), (29-11), (29-12), (29-15),(29-16) the
single summands are clearly distinguished by the different powers of the field vari-
able y and of the pupil variables xp and yp for Cartesian coordinates in the pupil and
r for polar coordinates in the pupil. The sum of the powers for the field and aperture
(pupil) variables give the order of the single aberration, while the distribution of the
power sum between the field and aperture variables determines the type of different
aberrations.

According to eq. (29-5) the lowest power sum is two in the terms with the coeffi-
cients b1 and b2 (a0 and b3 are identified to be zero). So, b1 and b2 seem to represent
the lowest order and therefore usually seem to be the most important aberrations.
However, this is not the case, as usually these two terms are not regarded as aberra-
tions at all. The terms originate from the choice of the reference image point, which
is the center of the reference sphere. An axial displacement of the reference image
point results in a term b1(xp

2+yp
2) = b1r2. The related wave aberration, as discussed in

section 11.5.3, is that of a defocus and can be canceled by proper focusing. A dis-
placement of the reference image point perpendicular to the axis, which means the
choice of the image height, results in a term b2yyp � b2yr cos�. This corresponds to
a tilt of the reference sphere (see section 11.5.2). As this term is linear in y, the field
variable, it can be canceled by the proper choice of image scale, or magnification. As
soon as the chromatic aberrations are also addressed (next paragraph), the coeffi-
cients b1 and b2 will become a new significance.
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The terms with the coefficients c1 to c6 all have the power sum four. As c6 is iden-
tified to be zero there are five terms which represent the five monochromatic pri-
mary aberrations. These are: spherical aberration, coma, astigmatism, (sagittal) field
curvature, and distortion. These aberrations, consisting of the terms with the lowest
powers which are regarded as aberrations, are also called third-order aberrations and
also Seidel aberrations. The designation “third-order” relates to the power sum in
the expressions (29-11) to (29-16) for the transverse aberrations. As the transverse
aberrations are derived from the wave aberrations by differentiation with respect to
the pupil coordinate, see eqs (29-9) and (29-10), the power sum of a transverse aber-
ration term is always one less than the power sum in the corresponding wave aber-
ration term. The transverse aberrations have been the basis of Seidel’s investiga-
tions, and so, for historical reasons, these monochromatic primary aberrations are
called third-order aberrations although considered as wave aberrations, the order is
four.

29.3
Chromatic Aberrations

Now we will have a preliminary look at chromatic aberrations, which result from a
change in the refractive indices when the wavelength is changed. Clearly, all the
monochromatic aberrations will have their chromatic variations. Informally, one
speaks about colored coma, colored astigmatism, etc. For the chromatic variation in
the spherical aberration there is a separate designation, known as spherochroma-
tism or in German “Gaussfehler”. But when varying the refractive indices the para-
xial or Gaussian quantities, such as the axial image position and the image size, also
have their chromatic variations, and these chromatic variations turn out to represent
the primary chromatic aberrations. Axial chromatic aberration or in short axial color
must be regarded as the chromatic variation of image position or chromatic focal
shift. Lateral chromatic aberration or a chromatic difference in the magnification or
short lateral color is the chromatic variation of the image size.

It is accepted procedure to use the wave aberration description not only for mono-
chromatic but also for chromatic aberrations. In order to do this, some conditions
must be met. For monochromatic aberrations the wavefront, which passes through
the center of the exit pupil, is compared with a reference sphere which represents
the ideal wavefront. When defining chromatic aberrations as wave aberrations two
wavefronts, which are based on different wavelengths, are compared. This seems
slightly artificial, but it turns out to be very helpful to have the same basic under-
standing of monochromatic as well as chromatic aberrations.

So, axial color as a wave aberration, see figure 29-12 and eq. (29-18), has the same
dependence on the pupil and field coordinates as the term containing b1 represent-
ing the monochromatic focal shift in eqs (29-5) and (29-8). For lateral color the wave
aberration dependence on aperture and field corresponds to the term containing b2

representing the monochromatic change in the image size.
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Wavefront (λ)

Wavefront (λ + δλ )

P2

P1

O2' O1'

yp

Figure 29-12: Axial color as a wave aberration.

In figure 29-12 the wavefront based on the wavelength �can be regarded as the
reference sphere and the chromatic change in the wave aberration �W when the
wavelength is changed to �+��is the optical path from P1 to P2

�W � P1�P2� �. (29-17)

When calculating the optical path [P1,P2], which is the geometrical path multiplied
by the refractive index of the image space medium, it is not evident whether the
index n′ (for wavelength �) or the index n′+ �n′ (for wavelength �+ ��) should be
applied. In this context the wavelength change ��is assumed to be small, so that
when calculating the optical path based on the geometrical path, n′ can be used and
�n′ can be neglected.

In figure 29-12 the wavefront (�) can be seen as a sphere with its center at O1′
then the wavefront (�+ ��) can be assumed to be a sphere with a different radius
and center at O2′. The distance from O1′ to O2′ is the axial color as a longitudinal
aberration. For the axial color as a wave aberration, from the geometry in figure
29-12, it can be derived, to a first approximation, that

�W � �b1 � �x2
p � y2

p� � �b1 � r2� (29-18)

The coefficient �b1 is different from the coefficient b1 in eqs (29-5) and (29-8), �b1

describes the amount of axial chromatic aberration.
Concerning lateral color there are similar considerations. When the wavefront

for �is regarded as the reference sphere then to a good approximation the wavefront
for �+ ��is a sphere with almost the same radius and it is tilted with respect to the
reference sphere, as shown in figure 29-13.
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Wavefront (λ)

Wavefront (λ + δλ )
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Figure 29-13: Lateral color as a wave aberration.

The distance from O1′ to O2′ represents the lateral color as a transverse aberra-
tion.

The dependence of the corresponding wave aberration on the aperture and field
coordinates is given by

�W � �b2 � yyp � �b2 � yr cos�. (29-19)

The coefficient �b2 is different from the coefficient b2 in eqs (29-5) and (29-8), �b2

describes the amount of lateral chromatic aberration.
During these considerations of the primary chromatic aberrations we have

assumed, that only the type of aberration which we have just considered, appears in
the system and that all other aberrations are set to zero.

From eqs (29-18) and (29-19) it can be seen that the power sum of the pupil and
field coordinates is two. So the primary chromatic aberrations are second-order
wave aberrations (and first-order transverse aberrations).
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29.4
Primary Aberrations

29.4.1
Aperture and Field Dependence

The field and the aperture dependence of the primary aberrations are listed in table
29-1. In this table the Seidel sums, which will be defined in (29-23) – (29-29), are
already included.

Table 29-1: Powers of the primary wave aberrations. Aperture variables are the pupil
coordinates xp, yp and r, respectively; the field variable is the field coordinate y.

Aberration Coeffi-
cient

Seidel
sum

Wave
aberration

Transverse
aberration

Longitudinal
aberration

Aperture Field Aperture Field Aperture Field

Spherical aberr. c1 SI 4 0 3 0 2 0

Coma c2 SII 3 1 2 1 1 1

Astigmatism c3 SIII 2 2 1 2 0 2

Field curvatures (sagittal)
c4

(Petzval)
SIV

2 2 1 2 0 2

Distortion c5 SV 1 3 0 3 – –

Axial color �b1 CI 2 0 1 0 0 0

Lateral color �b2 CII 1 1 0 1 – –

Table 29-1 also includes the longitudinal aberrations. As can be seen from this
table the powers for the aperture variables decrease by one when going from wave
aberration to transverse aberration as well as from transverse aberration to longitu-
dinal aberration, see section 11.5. On the other hand, the powers for the field vari-
able do not depend on the type of aberration description: wave, transverse or long-
itudinal.

In the following sections we will discuss the single primary aberrations in more
detail.

Based on eqs (29-8), (29-18) and (29-19) the typical shape of the primary wave
aberrations can be calculated. Figure 29-14 shows the monochromatic and figure
29-15 the chromatic primary aberrations in a three-dimensional representation.
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Figure 29-14: Primary monochromatic wave aberrations.
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29.4.2
Symmetry and Periodicity Properties

Often it is helpful to investigate symmetry and periodicity properties of the single
aberration type when analyzing the total aberrations of an optical system. This may
help to identify the dominating aberrations. For these considerations the field
dependence of the aberrations does not play a role. In figure 29-16 (primary mono-
chromatic aberrations) and figure 29-17 (primary chromatic aberrations) symmetry
and periodicity is shown for the wave aberrations as well as for the transverse aberra-
tions. Three different types of symmetry occur:

1. Rotational symmetry with reference to an axis and to a point, respectively.
Spherical aberration, field curvature and axial chromatic aberration all exhibit
this type of symmetry.

2. Mirror symmetry with reference to two planes and to two straight lines,
respectively. This produces the appearance of astigmatism.

3. Mirror symmetry with reference to one plane and to one straight line, respec-
tively. Coma and lateral chromatic aberration possess this type of symmetry.

The periodicity is defined as the period of the aberration for a single ray, while the
pupil coordinates of this ray move through a concentric circle in the pupil. That
means r = constant and � = 0 – 2� , keeping the field variable constant. It is impor-
tant to note that wave aberrations and transverse aberrations show the same symme-
try but different periodicity. For our treatment of the transverse aberrations in fig-
ures 29-16 and 29-17 we use two circles in the pupil, first with a radius r (for
instance the maximum pupil radius) and second with radius r/2. In figures 29-16
and 29-17 the spot diagrams for these rays are shown. The proportional relation-
ships given for the transverse aberrations and the corresponding figures are gener-
ated from eqs (29-15) and (29-16) by suppressing the constants.

It should be mentioned that the identification of aberrations by this method,
which is based on symmetry properties, is not quite trouble-free. With higher order
aberrations new types of aberration show up and exhibit symmetry properties which
do not correspond completely to the above results for the primary aberrations. For
example when regarding fifth-order aberrations (see section 29.6.1) the so-called ob-
lique spherical aberration exhibits mirror symmetry with reference to two planes,
see figure 29-46 .So, the fifth- order oblique spherical aberration has the same type
of symmetry as third-order astigmatism. But this inconsistency does not really cause
a problem if kept in mind.
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Figure 29-16: Symmetry and periodicity of monochromatic primary aberrations.
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Figure 29-17: Symmetry and periodicity of chromatic primary aberrations.

29.4.3
Presentation of Aberrations and their Impact on Image Quality

Aberrations are represented in different ways. In the figures 29-18 – 29-21 and 29-27
– 29-29 for the primary aberrations we show the typical diagrams for wave aberra-
tions, for transverse aberrations and, if it makes sense, for longitudinal aberrations.
In addition, the corresponding through-focus spot diagrams are shown and the
impact on image quality is illustrated by giving the modulation transfer function
MTF versus frequency as well as versus the defocus (see section 30.9). To allow easy
comparison for the different aberration types, constant preconditions are used.

� The numerical aperture is NA = 0.25.
� The amount of single aberrations is chosen to result in a y-direction spot

diameter of 0.01 mm.
� The wavelength is 500 nm.
� The scale used in the diagrams is not changed except for the scale for

the focus shift in spot and MTF diagrams for astigmatism, figure 29-27 and
29-28, and for field curvature, figure 29-29.

It should be noted that, in real optical systems, the different aberration types
usually appear simultaneously as has already been shown in figure 29-5. In figures
29-18 – 29-21 and 29-27 – 29-29, the aberrations are displayed separately in order to
show their characteristics. Only when the typical appearance of the different aberra-
tions is known in an aberration diagram of a real system, can the dominating aber-
rations be detected.

The following discussion on the different types of aberration curves can be com-
pared with eq. (29-5) for the wave aberrations and with eqs (29-11) and (29-12) for
the transverse aberrations.
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Spherical aberration
As shown in figure 29-18, for spherical aberration, the wave aberration curves are of
fourth power, so the transverse aberration curves are third-power polynomials.
Spherical aberration is the only aberration for which the aberrations from the tan-
gential and sagittal pupil section are identical. In the given example the spherical
aberration is under-corrected, which means that the upper marginal ray hits the axis
in front of the paraxial image and so the intersection height in the paraxial image
plane is negative. Spherical aberration with the opposite sign is called over-cor-
rected. From the through-focus analysis in the spot diagrams, as well as in the MTF,
it can be seen that the best image quality is obtained not at the paraxial image plane
but at an inward defocused position. Figure 29-19 represents the same spherical
aberration but focused to get the maximum MTF. Because of the defocusing in the
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Primary spherical aberration at paraxial focus
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Figure 29-18: Spherical aberration at paraxial focus.
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Figure 29-19: Spherical aberration of figure 29-18 with compensating defocus.
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wave aberration curves, a second-power term is added and in the transverse aberra-
tion curves this is a linear term. These additional terms balance the aberrations as
well as possible. In figure 29-20 the corresponding longitudinal aberrations are pre-
sented. In this diagram the amount of balancing defocus can be clearly seen.

Coma

For primary coma it is typical that the wave aberration is zero for the sagittal section,
see figure 29-21. In the tangential section the wave aberration is a third-power poly-
nomial, so the transverse aberration is a second-power polynomial. A characteristic
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Figure 29-21: Coma.
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property of the coma can be seen in the transverse aberration of rays in the sagittal
pupil section where the x-component is zero while the y-component, representing
the sagittal coma (the coma from the sagittal pupil section), is similar to the y-com-
ponent from the tangential pupil section, representing the tangential coma. Actually
the sagittal coma is one-third of the tangential coma. It is interesting to note that
coma is the only aberration which possesses contributions in the y-component from
the sagittal section. This is an important feature when the transverse aberrations of
a real system which incorporates different aberration types are analyzed. The y-com-
ponent from the sagittal section always shows the pure sagittal coma and no other
aberrations. On the other hand, in the usual representation of the transverse aberra-
tions from the sagittal pupil section, only the x-component is shown while the
y-component is disabled. From through-focus analysis with help of spot diagrams
and also the through-focus MTF, it is obvious that any defocus cannot improve the
imaging. A further interesting property of coma can be seen from the through-focus
MTF. In spite of the different sizes of the through-focus spot diagrams, the tangen-
tial MTF (resolution in the y-direction) is almost constant over a certain defocus
range, while the sagittal MTF (resolution in the x-direction) shows a clear maximum
at the focus with the smallest spot diagram.

As can be seen in figures 29-16 and 29-21, coma has the most complex spot dia-
gram. Figure 29-22 demonstrates the geometrical coma spot in a three-dimensional
arrangement. The quantities “tangential coma” (from the chief ray intersection
point C to the tangential ray intersection point T) and “sagittal coma” (from the chief
ray intersection point C to the sagittal ray intersection point S) are illustrated in this
figure.
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sagittal ray

sagittal ray

tangential ray

tangential ray y'

x'

xp

yp

C
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CT

tangential coma

CS

sagittal coma
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Figure 29-22: Geometric spot for primary coma.
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Due to the term 2� in eqs (29-15) and (29-16) for the transverse aberrations � x′
and � y′ rays running through a concentric circle with radius r in the pupil, form a
circle in the image with a radius proportional to r2 and the image circle is decentered
with respect to the chief ray by a factor which is also proportional to r2. Figure 29-23
is a schematic illustration of the ray path in a simple two- dimensional configuration
as calculated from eqs (29-15) and (29-16).

Pupil Image

Figure 29-23: Schematic ray path for primary coma.

Depending on the sign of the coefficient c2 in eqs (29-5), (29-8), and (29-11) –
(29-16), the coma is designated either as an outer or as an inner coma. In figure
29-22 an outer coma is shown. All rays have image intersection points which have a
larger distance to the image center than does the intersection point of the chief ray.
Loosely speaking, the coma is driven outwards. In the opposite case when the aber-
ration is driven inwards, it is designated as inner coma. In figure 29-24 outer and
inner coma are shown schematically in one diagram.

x'

y'

inner

coma

outer

coma

optical

axis

Figure 29-24: Outer and inner coma.
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Figure 29-25 represents an example of outer coma but in this figure the purely
geometrical spot is not shown but instead the physical intensity distribution is giv-
en. The rotational symmetry with respect to the optical axis, the image center, is evi-
dent.

Coma as ray aberration is usually understood as transverse aberration. Neverthe-
less, sometimes it may be convenient to interpret coma as a longitudinal aberration:

y’

x’

Figure 29-25: Symmetry and intensity of coma.

chief ray

upper coma ray

lower coma ray

lows'

reference 

image plane

optical 

system

last 

surface

tangential 

coma

(transverse)

ups'

Figure 29-26: Definition of longitudinal coma.
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� s′coma �
s′up � s′low

2
. (29-20)

Figure 29-26 is a sketch illustrating the definition for longitudinal coma, which is
determined by the intersection points of the upper and lower coma ray with the
chief ray. The upper and lower coma rays are also called meridional or tangential
coma rays.

Astigmatism and Field Curvature

As shown in figures 29-27 and 29-28, astigmatism corresponds to a difference in the
focus position for the sagittal and tangential pupil section. In figure 29-27 the focus

Wave aberration

tangential                            sagittal

λ2λ2

Primary astigmatism at sagittal focus

Transverse ray aberration 
y′∆ x′∆ y′∆

Pupil:     y-section                            x-section                         x-section   

0.01 mm 0.01 mm 0.01 mm

Modulation Transfer Function  MTF

 MTF at paraxial focus    MTF through focus for 100 cycles per mm

Geometrical spot through 

focus

0
.0

2
 m

m

sagittal

tangential

tangential

sagittal

z/mm
-0.04 0.040.0-0.02 0.02

1

0

0.5

0 100 200
cyc/mm /mz m

1

0

0.5

0.040.0-0.04

Figure 29-27: Astigmatism at sagittal focus.
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is set to the sagittal image, as it is calculated in eqs (29-15) and (29-16). In figure 29-
28 the mid-position between the sagittal and tangential focus is chosen as the receiv-
ing image plane. In general this is of course only possible for a chosen image
height. Figure 29-29 summarizes three cases: the paraxial image plane, the image
plane at the sagittal focus for maximum field, and the image plane at medial focus
for maximum field.
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Figure 29-28: Astigmatism of figure 29-27 with compensating defocus.
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Astigmatism, sagittal and tangential field curvature

Figure 29-29: Sagittal and tangential field curvature as longitudinal aberration.

As shown in figure 29-29, the field dependence of the longitudinal sagittal and
tangential field curvature is of second power. The astigmatism is defined as the
longitudinal distance (parallel to the z-axis of the optical system) of the tangential
field measured from the sagittal field. A further discussion of astigmatism, sagittal
and tangential field curvatures, and Petzval curvature follows in the next paragraph,
when the Seidel sums are introduced.

29.4.4
Calculation of the Seidel Sums

According to table 29-1 the coefficients c1 to c5 represent the amount of primary
aberrations. These coefficients depend on the system parameters (radii, separations,
materials) and in addition they may depend on the position of the object as well as
the position of the aperture stop. There are different sets of formulae to calculate the
primary aberration coefficients for a given system. We will use the simplest formula
set which also provide a clear insight into how the single aberrations depend on the
different parameters. But instead of calculating the coefficients c1 to c5 used in the
mathematical derivation of the power series, we will define a new set of coefficients,
the so-called Seidel sums: SI, SII, SIII, SIV, and SV which also represent the amount
of primary aberrations. The relation between the ci-coefficients and the S-coeffi-
cients will be given later. To make the equations as simple as possible the following
paraxial quantities are defined for each surface of the system:

A � n�hc � u� � n � i � n′ � i′ (29-21)

�A � n��hc � �u� � n ��i � n′ ��i′ (29-22)

All quantities with a bar refer to the chief ray, the corresponding quantities without
the bar refer to the marginal ray. As usual n is the refractive index, i is the paraxial
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incidence angle, u is the paraxial convergence angle, h is the paraxial incidence
height at the surface, and c is the surface curvature. In figure 29-30 these paraxial
quantities are shown for the marginal ray. Actually all these quantities have an index
which indicates the surface number, but here the index is suppressed. So A and �A
are the refraction invariants at the chosen surface.

u u'

i

i’h

n'n

r=1/c

Figure 29-30: Quantities used to calculate the refraction invariant.

The increment on refraction is designated by � �x� � x ′ � x. H is the Lagrange
invariant containing the aperture and the maximum field, see section 2.5, Invar-
iants. For the chromatic aberrations we have the refractive index n for the reference
wavelength �and the refractive index n + �n for the wavelength �+ ��.

Based on these quantities, which are to be calculated by tracing two paraxial rays,
namely the marginal ray for full aperture and the chief ray for the maximum field,
the following expressions define the Seidel sums [29-2].

Spherical aberration SI � �
�

A2 � h � �
u
n

� �
(29-23)

Coma SII � �
�

�AA � h � �
u
n

� �
(29-24)

Astigmatism SIII � �
�

�A2 � h � �
u
n

� �
(29-25)

Petzval SIV � �
�

H2 � c � �
1
n

� 	
(29-26)

Distortion SV � �
� �A3

A
� h � �

u
n

� �
�

�A
A
� H2 � c � �

1
n

� 	
 �
(29-27)

Axial color CI �
�

A � h � �
�n
n

� 	
(29-28)

Lateral color CII �
�

�A � h � �
�n
n

� 	
(29-29)

where the summation is taken over all surfaces of the system.
Concerning the chromatic aberrations given in eqs (29-28) and (29-29) it must be

mentioned that the height h and the refraction invariants A and �A actually depend
on the wavelength. As for most imaging systems the influence of this dependence is
small, h, A and �A are calculated only for the primary wavelength and the wavelength
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dependence is neglected, as it is done in eqs (29-28) and (29-29). A more compre-
hensive treatment is given by Wynne [29-3].

It should be mentioned that also for reflecting mirror surfaces the formulae (29-
23) to (29-29) should be applied. As usual for a reflective surface the refractive
indices are set to n′ � �n. Looking at eqs (29-28) and (29-29) it is evident that reflect-
ing surfaces possess zero color aberrations. From eqs (29-23) – (29-27) for mono-
chromatic aberrations, eq. (29-26) for the Petzval curvature becomes a special case
due to the term � 1�n� �. In fact, mirror surfaces will play a notable role in the correc-
tion of the Petzval curvature, see chapter 31, Correction of Aberrations.

The Seidel sums SI – SV and CI – CII are calculated for the maximum aperture
and the maximum field. So, to express the wave aberration (29-8) in terms of these
Seidel sums, the pupil coordinate r and the field coordinate y must be redefined as
relative and dimensionless coordinates:

� � r
r max

�

� � y
y max

�
(29-30)

With these quantities the total primary monochromatic wave aberration reads

W����� �� �
1
8

SI�
4 � 1

2
SII��

3 cos�� 1
2

SIII�
2�2 cos 2�� 1

4
SIII � SIV� ��2�2 � 1

2
SV�3� cos��

(29-31)

The constants 1/8 , 1/2 , etc. in (29-31) are a consequence of the common definition
of the Seidel sums (29-23) – (29-29). As can be seen by a comparison of (29-8) and
(29-31) there is a correspondence between the c-coefficients in the power series
expansion and the Seidel coefficients. Table 29-2 gives an overview.

Table 29-2: Wave aberration expansions: power series and corresponding Seidel coefficients.

Aberration Power series coefficient
Dimension unit: (length)–3

Seidel coefficient
Dimension unit: (length)

Spherical aberration c1 SI

Coma c2 SII

Astigmatism (half astigmatic difference) c3 SIII

Sagittal field c4 SIII + SIV

Tangential field c4 + 2c3 3SIII + SIV

Petzval field c4 – c3 SIV

Distortion c5 SV
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It should be noted that there is an important difference in the dimension units of
the c-coefficients and the S-coefficients. While the S-coefficients have the dimension
of length (due to h in eqs (29-23) – (29-29)) the c-coefficients have the dimension of
(length)–3.

From table 29-2 the relations between the aberrations of astigmatism, sagittal
field curvature, tangential field curvature, and Petzval field curvature can clearly be
seen. These four aberrations are calculated from two coefficients, either c3 and c4 or
SIII and SIV . On the other hand, when any two of these four aberrations are known,
the other two can de determined. This can be seen from table 29-2 as well as from
eqs (29-32) and (29-33). When the astigmatism is zero, SIII = 0 , the tangential and
the sagittal field coincide with the Petzval field and SIV represents the curved image
plane. That is the only situation when there is a typical image formation at the loca-
tion of the Petzval field. When the astigmatism is not zero, the Petzval field just
serves as a basis to determine the sagittal and tangential field and SIV = 0 is a pre-
condition for a flat field. As seen from eqs (29-23) – (29-29) the Petzval field SIV is
the only Seidel coefficient which is completely independent of the ray quantities u,
h, and A from the marginal as well as �h and �A from the chief ray, so SIV is indepen-
dent of object, image, and stop position. It is only the surface curvatures of the sys-
tem and the refractive indices which determine the Petzval field SIV. The Lagrange
invariant H appears as a factor because the given formulation of the Seidel coeffi-
cients are related to the full aperture and the maximum field.

PST

field∆s'ast

∆s'pet

∆s'tan

∆s'sag

∆ s’

Figure 29-31: Longitudinal aberrations related to the Petzval,
sagittal, and tangential field curvatures.
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The longitudinal aberrations � s′pet, � s′sag, � s′tan, and � s′ast � � s′tan � � s′sag which
are measured parallel to the optical axis from the paraxial image plane to the related
field are shown in figure 29-31. Eqs (29-32) and (29-33), which were already given in
chapter 11, are in accordance with table 29-2,

� s′ast � � s′tan � � s′sag� (29-32)

� s′pet �
3 � � s′sag � � s′tan

2
� (29-33)

The relation between the Seidel coefficients and the related longitudinal aberrations,
are given in (29-78) – (29-81).
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Figure 29-32: Different amounts of astigmatism with a constant Petzval field.
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In figure 29-32 a constant, inwardly curved Petzval field is assumed and the sagit-
tal and tangential fields for different amounts of astigmatism are shown. In parti-
tion (a) a typical uncorrected situation with some negative astigmatism is shown. In
partition (b) the astigmatism is corrected to zero, but the image is not flat, but it is
curved according to the Petzval field. Partition (c) represents a special situation, the
tangential field is flat, but due to the negative Petzval field, which is held constant
for all partitions, the sagittal field is negative and so there is some positive astigma-
tism. Partition (d) shows another specific situation when the sagittal field is negative
and the tangential field is positive with the same absolute value. So, the medium
field between the sagittal and tangential field is flat. This can be seen as a possible
compromise when optimizing a system, if the Petzval field cannot be further
reduced. In fact the astigmatism is larger than in partition (c), but in (c) the inter-
mediate image between the sagittal and tangential is curved. The next partition (e)
shows a flat sagittal field. The disadvantage of this situation, compared with the flat
tangential field in (c), is the relatively large astigmatism. Partition (f) shows an even
larger astigmatism with the result that both the sagittal and tangential fields are pos-
itive.

There is an interesting systematic in the formulae for the Seidel sums (29-23) –
(29-29) which can easily be seen when the single summands, the so-called surface
contributions, are designated by square brackets in the following way:

SI �
�

�

sI� �� (29-34)

SII �
�

�

sII� �� �
�

�

�A
A

sI� �� (29-35)

SIII �
�

�

sIII� �� �
�

�

�A
A

sII� �� (29-36)

SIV �
�

�

sIV� �� (29-37)

SV �
�

�

sV� �� �
�

�

�A
A�

sIII� ��� sIV� ��
� 


(29-38)

CI �
�

�

cI� �� (29-39)

CII �
�

�

cII� �� �
�

�

�A
A

cI� �� (29-40)

A graphical presentation of the single surface contributions can be very helpful in
order to get a specific insight as to which surfaces contribute which amount of the
various aberrations. As an example, figure 29-33 shows a cross-section of a retrofo-
cus-type photographic lens and figure 29-34 gives the associated surface contribu-
tions for the Seidel aberrations in a bar diagram [29-4]. It should be noticed that the
scale for the various aberrations is different.
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Figure 29-33: Retrofocus-type photographic lens, modified from [29-5].
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Figure 29-34: Bar diagram showing Seidel sums and related
surface contributions for the lens in figure 29-33.
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It can be seen in figure 29-34 that, for all aberrations, the Seidel sums in the last
column are essentially smaller than the main surface contributions, which partly
cancel each other. Further, in combination with figure 29-33 it can be seen that rela-
tively large surface contributions arise at surfaces where the associated rays have
large incidence angles. For instance: regarding spherical aberration, the marginal
ray exhibits relatively large incidence angles at surfaces 5 and 10, while for distortion
the chief ray exhibits large incidence angles at surfaces 4, 6, and 7.

When correcting the aberrations of an optical system it is usually not enough to
obtain small aberrations for the whole system, but the single surface contributions
should also be small, so that the system is not too sensitive to manufacturing toler-
ances. See chapter 35 for a further discussion.

29.4.5
Stop Shift Formulae

As can be seen from eqs (29-23) – (29-29) SI is completely independent of the chief
ray, which is expected, because SI represents spherical aberration. SIV is dependent
on H , the Lagrange invariant and so SIV depends on the maximum aperture and
the maximum field, but SIV is independent of the marginal ray quantities h, u, A,
and also independent of the chief ray quantities �A. The Seidel sums which depend
on the chief ray are: SII, SIII, and SV. As the chief ray is determined by the stop posi-
tion, SII, SIII, and SV must change when the stop position in the system is changed.
There are so-called stop shift formulae which are very simple and provide an inter-
esting insight into the impact of shifting the stop. These stop shifts are specified in
a way that the marginal ray does not change, that means that while shifting the stop
position, the size of the stop is adapted to the marginal ray as shown in figure 29-35.

old position

new position

old chief ray

new chief ray

old
h

new
h

Figure 29-35: Stop shift.
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The stop position can be characterized at each surface by the so-called Seidel
eccentricity

E �
�h
h

, (29-41)

which indicates the eccentricity of the oblique ray bundle relative to the axial bundle.
The main advantage in describing the stop position at each surface with this para-
meter E is the handling of a stop shift. When the stop is shifted a certain distance,
as shown in figure 29-35, at a chosen surface the chief ray intersection heights
change from �hold to �hnew and the Seidel eccentricity is changed by the amount

�E �
�hnew � �hold

h
. (29-42)

It transpires that, for a given stop shift, this quantity �E has the same value for all
surfaces of the system. Thus �E indicates a certain stop shift.

Let S�
I to S�

V and C�
I and C�

II indicate the Seidel sums after a stop shift represented
by �E, then there is a very simple and instructive set of formulae describing the
transformation of the Seidel sums, the so-called stop shift formulae:

S�
I � SI (29-43)

S�
II � SII � �E � SI (29-44)

S�
III � SIII � �E � SII � �E2 � SI (29-45)

S�
IV � SIV (29-46)

S�
V � SV � �E � 3SIII � SIV� � � 3�E2 � SII � �E3 � SI (29-47)

C�
I � CI (29-48)

C�
II � CII � �E � CI (29-49)

From these formulae, for instance, it can be seen that with a stop shift the coma
(SII) changes in the same rate as the spherical aberration (SI) occurs in the system.
So, more or less theoretically, if SI is unequal to zero, then the coma can be made
zero by the appropriate localization of the stop position. On the other hand the
coma will be unaffected by a stop shift if the spherical aberration is zero. Such types
of statements based on the stop shift formulae (29-43) – (29-49) are valid of course
only for primary aberrations. With higher order aberrations equivalent statements
would be much more complicated. Corresponding formulae are therefore not in
use.
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29.4.6
Several Aberration Expressions from the Seidel Sums

Based on the Seidel sums SI – SV and CI – CII as given in eqs (29-23) – (29-29) all
primary aberrations of a given optical system can be calculated.

There are in particular: wave aberrations, transverse aberrations, angular aberra-
tions, fractional expressions, and all field curvatures.

In several of these expressions u′ designates the image side convergence angle
(maximum aperture) and n′ is the refractive index in the image space. The tables
29-3 – 29-8 summarize these results.

Table 29-3: Wave aberrations based on Seidel sums.

Primary wave aberrations

Spherical aberration Wspherical �
SI

8
�4 (29-50)

Coma Wcoma �
SII

2
��3 cos� (29-51)

Astigmatism Wast �
SIII

2
�2�2 cos 2� (29-52)

Petzval field Wpetzval �
SIV

4
�2�2 (29-53)

Sagittal field Wsag �
SIII � SIV

4
�2�2 (29-54)

Tangential field Wtan � 3SIII � SIV

4
�2�2 (29-55)

Distortion Wdist �
SV

2
�3� cos� (29-56)

Axial color Wac �
CI

2
�2 (29-57)

Lateral color Wlc � CII�� cos� (29-58)
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Table 29-4: Transverse aberrations based on Seidel sums.

Primary transverse aberrations

Spherical aberration (meridional ray) � y′ � SI

2n′u′
yp

r max

� 	3

(29-59)

Sagittal coma (sagittal in the pupil) � y′ � SII

2n′u′
�

xp

r max

� 	2

(29-60)

Tangential coma (tangential in the pupil) � y′ � 3SII

2n′u′
�

yp

r max

� 	2

(29-61)

Sagittal field (sagittal ray) � x ′ � SIII � SIV

2n′u′
�2 xp

r max

� 	
(29-62)

Tangential field (meridional ray) � y′ � 3SIII � SIV

2n′u′
�2 yp

r max

� 	
(29-63)

Length of astigmatic focal line (full aperture) � y′ � 2SIII

n′u′

����
�����2 (29-64)

Distortion � y′ � SV

2n′u′
�3 (29-65)

Axial color (transverse) � y′ � CI

nu

yp

r max

� 	
(29-66)

Lateral color � y′ � CII

nu
� (29-67)

Table 29-5: Angular aberrations based on Seidel sums.

Primary angular aberrations

� w ′y is the angle difference (radians) in the tangential plane
� w ′x is the angle difference (radians) in the sagittal plane

Spherical aberration (meridional ray) � w ′y �
SI

2n′r max

yp

r max

� 	3

(29-68)

Sagittal coma (sagittal in the pupil) � w ′y �
SII

2n′r max

�
xp

r max

� 	2

(29-69)

Tangential coma (tangential in the pupil) � w ′y �
3SII

2n′r max

�
yp

r max

� 	2

(29-70)

Sagittal field (sagittal ray) � w ′x � SIII � SIV

2n′r max

�2 xp

r max

� 	
(29-71)

Tangential field (meridional ray) � w ′y �
3SIII � SIV

2n′r max

�2 yp

r max

� 	
(29-72)

Distortion � w ′y �
SV

2n′r max

�3 (29-73)

Axial color � w ′y �
CI

n′r max

yp

r max

� 	
(29-74)

Lateral color � w ′y �
CII

n′r max

� (29-75)
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Table 29-6: Longitudinal aberrations based on Seidel sums.

Primary longitudinal aberrations

Spherical aberration (meridional ray) � s′ � � SI

2n′u′2
yp

r max

� 	2

(29-76)

Coma � s′coma � � 3SII

2n′u′2
�

yp

r max

� 	
(29-77)

Sagittal field (Gaussian image to s-focus) � s′sag � �SIII � SIV

2n′u′2
�2 (29-78)

Tangential field (Gaussian image to t-focus) � s′tan � � 3SIII � SIV

2n′u′2
�2 (29-79)

Astigmatism (from s- to t-focus) � s′ast � � s′tan � � s′sag � � SIII

n′u′2
�2 (29-80)

Petzval field (Gaussian image to Petzval) � s′pet � � SIV

2n′u′2
�2 (29-81)

Axial color � s′ � � CI

n′u′2
(29-82)

Table 29-7: Fractional aberrations based on Seidel sums.

Primary fractional aberrations

Fractional distortion
SV

2n′u′y′ max

�2 � SV

2H
�2 (29-83)

Fractional lateral color
CII

2n′u′y′ max

� CII

H
(29-84)

Table 29-8: Field curvature aberrations based on Seidel sums.

Primary image surface curvatures

Sagittal field curvature csag � � SIII � SIV

n′u′2y′2max

� �n′�SIII � SIV�
H2

(29-85)

Tangential field curvature c tan � � 3SIII � SIV

n′u′2y′2max

� �n′�3SIII � SIV�
H2

(29-86)

Petzval field cpet � � SIV

n′u′2y′2max

� � n′SIV

H2
(29-87)
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29.4.7
Thin Lens Aberrations

In eqs (29-23) – (29-29) the surface contributions of the primary aberrations are
given. Often it is advantageous to work with the contributions of a thin lens. The
idealization of zero lens thickness leads to a considerable simplification of the for-
mulae. Although there are no thin lenses in the real world, the results from the thin
lens theory hold in many cases to a good approximation. To get the thin lens contri-
butions, two surface summands of eqs (29-23) – (29-29) must be considered and
should be expressed in terms of the parameters of a thin lens. These thin lens
parameters are the bending parameter X and the position or conjugate or magnifica-
tion parameter M (see sections 10.1.1 Bending of Lenses, and 10.1.2 Position Para-
meter),

X � c1 � c2

c1 � c2

(29-88)

where c1 and c2 are the curvatures of the two surfaces, and

M � u2 ′ � u1

u2 ′ � u1

(29-89)

where u1 and u2′ are the angles of the paraxial marginal ray before and after the
lens, respectively. Let n be the refractive index of the lens, then the refractive power
reads

� � �n � 1��c1 � c2�. (29-90)

For the chromatic aberrations we will use the Abbe number, which in this context is
defined as

� � n � 1
�n

. (29-91)

To get the essential information from the thin lens contribution formulae, it is suffi-
cient to assume the stop at the lens, so that the incidence height of the chief ray is
zero. If the influence of a remote stop position is to be incorporated, it is easy to
apply the stop shift formulae (29-43) – (29-49).

With these parameters the primary aberrations of the thin lens (stop at the lens)
are:

SI �
� 3h4

4
3n � 2

n
M2 � 4n � 4

�n � 1�n XM � n � 2

�n � 1�2n
X2 � n2

�n � 1�2

� �
(29-92)

SII �
H� 2h2

2
2n � 1

n
M � n � 1

�n � 1�n X

� 	
(29-93)

SIII � H2� (29-94)
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SIV � H2�
n

(29-95)

SV � 0 (29-96)

CI �
� h2

�
(29-97)

CII � 0. (29-98)

Again, to calculate the Seidel sums, the paraxial rays for both maximum aperture
and maximum field must be used. As the Lagrange invariant H contains both the
aperture and the field size as linear factors, the dependence of the Seidel contribu-
tions on the aperture and field can easily be checked.

From eq. (29-92) it can be seen that the spherical aberration SI depends quadrati-
cally on both M, the conjugate parameter, and on X, the bending parameter. In fig-
ures 29-36, 29-37 and 29-38 this behavior is illustrated. In figure 29-36 the spherical
aberration is shown as a function of the bending parameter X for several conjugate
parameters M and for a refractive index n = 1.5. In figures 29-37 and 29-38 contour
plots and a section for M = 3 are shown for two different refractive indices, for n= 1.5
and for n= 1.9. With the help of the lines for zero spherical aberration it can be seen
that, in the range of real imaging (neither virtual object nor image) represented by
–1 ≤ M ≤ +1, the spherical aberration is positive, which implies under-correction.
Only for extremely large conjugate parameters M and the appropriate bending pa-
rameters X can the spherical aberration vanish or even exhibit over-correction. Fig-
ure 29-38 shows that for the high refractive index n = 1.9 the smallest M which
allows approximately zero spherical aberration is M = 3, the appropriate bending
parameter is then X = 4. Because of the symmetry of the eq. (29-92) the spherical
aberration is also very close to zero when changing the sign of both M and X, i. e.
for M = –3 and X = –4.

20

40
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-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7

X

M=-6 M=6
M=-3 M=3

M=0

Spherical

Aberration

Figure 29-36: Spherical aberration,
4

� 3h4
SI of a thin lens as a

function of the bending parameter X and the conjugate para-
meter M. The refractive index is n = 1.5.
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Figure 29-37: Spherical aberration,
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SI of a thin lens as a

function of the bending parameter X and the conjugate para-
meter M. The refractive index is n = 1.5.
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Virtual image                                Virtual object
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Figure 29-39: Single lens with zero spherical aberration with
minimum M� � for n = 1.5 and for n = 1.9.

In figure 29-39 it is demonstrated again that the condition for zero primary spher-
ical aberration for a single lens is possible only in virtual imaging and for a strongly
meniscus shaped lens. For the refractive indices n = 1.5 and n = 1.9 the minimum
values for the absolute conjugate parameter M� � which allow zero spherical aberra-
tion are used, together with the appropriate lens bending X. In fact eq. (29-92) is
based on thin lenses but in figure 29-39 finite lens thicknesses are introduced for
more clarity. On the other hand these thicknesses have low influence and can often
be neglected.

For a given conjugate parameter M the bending parameter X, which delivers the
minimum spherical aberration can be calculated from eq. (29-92):

Xsph min � 2 n2 � 1� �
n � 2

M. (29-99)

A special application of this formula yields the optimal bending of a single thin
lens, for the object at infinity, which means the incoming light is collimated and the
conjugate parameter is M = +1. A lens with this bending parameter,

X min � 2�n2 � 1�
n � 2

, (29-100)

is called the lens with the optimal bending with respect to spherical aberration.
According to eq. (29-100) the optimal bending depends on the refractive index n. For
n = 1.686 one gets X = 1, the plano-convex lens with the convex surface on the object
side. For indices n <1.686 the optimal bending shape is biconvex and for n >1.686
the best form is a meniscus shape.
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Eq. (29-93) for SII shows that coma depends linearly on the conjugate parameter
M as well as on the bending parameter X. So, for a lens, whatever the conjugate
parameter may be, there is always a suitable bending

X � �2n � 1��n � 1�
�n � 1� M (29-101)

which makes the primary coma zero. If the stop is not at the lens, the contribution
to coma due to the spherical aberration according to the stop shift formula (29-44)
must also be taken in account.

From eqs (29-94)–(29-96) we see that astigmatism, Petzval curvature and distor-
tion are independent of both the lens bending (X) and the conjugate position (M).
But with a remote stop due to the contributions from spherical aberration and also
from coma, which take effect through the stop shift formulae (29-45) and (29-47),
astigmatism and distortion are no longer independent of the lens bending (X) and
of the conjugate position (M). The primary chromatic aberrations CI and CII are
always independent of both X and M.

29.5
Pupil Aberrations

After the discussion of the influence of a stop shift on the primary aberrations in
paragraph 29.4.5, it sounds reasonable to also investigate an object shift. Of course
in most optical designs an object shift does not have the relevance of a pupil shift but the
object shift is studied in order to obtain a better theoretical insight, [29-6], [29-7]. The
best way of doing this is to exchange the function of the object and the pupil. More pre-
cisely: rather than considering the imaging of the object onto the image through the
pupil, the imaging of the entrance pupil onto the exit pupil through the object and
image are examined instead. In this process, as shown in figure 29-40 the

O O'

stop and

entrance pupil

optical system

 exit pupil

object
image

Object imaging Pupil imaging

Blue rays

Red rays

Marginal rays

Marginal raysChief rays

Chief rays

Figure 29-40: Object and pupil imaging.
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marginal rays of the normal imaging become the chief rays of the pupil imaging
and the chief rays of the normal imaging act as marginal rays in the pupil imaging.

In fact there is a complete dualism in object and pupil imaging. So all the given
formulae can be used for the pupil imaging to calculate pupil aberrations, provided
that the quantities based on the marginal ray such as u, A, h and so on are replaced
by their corresponding quantities �u� �A� �h based on the chief ray, and vice versa. These
considerations are not really difficult but lengthy and – much more important – the
results are usually not in use. Nevertheless there are some interesting conclusions
from this pupil aberration theory which should be quoted here:

� Wave aberration power series expansion
Primary spherical pupil aberration only depends on the field coordinate. As a
wave aberration it depends on the 4th power in the field coordinate, which
corresponds to the term c6y4 in the power series expansion (29-5) for the wave
aberration. This term was set to zero, because at that time only image aberra-
tions were considered. So, all terms in the power series expansion have
indeed meaning, if it is not only the image aberrations but also the pupil
aberrations that are taken into account.

� Distortion
The spherical pupil aberration plays a part when, for normal imaging, the
distortion is investigated independently of the object and corresponding im-
age shift. In fact, the change in distortion is proportional to the pupil spheri-
cal aberration in the exit pupil. So, if the distortion is to be independent of
the object position, then the spherical pupil aberration must be zero. Under
the precondition of zero spherical pupil aberration the distortion is zero if
the so-called tangent condition [29-8] if fulfilled. The tangent condition reads

tan �U ′
tan �U

� constant for all field angles �U and �U ′� (29-102)

� Obscuration
When two parts of an interlinked optical system, for example, an objective
and an eyepiece, are put together, both the field positions and the pupil posi-
tions must be matched. In greater detail: the object plane of the eyepiece has
to match the image plane of the objective and the entrance pupil of the eye-
piece has to match the exit pupil of the objective. When the parts to be com-
bined are designed simultaneously this usually doesn’t represent a problem,
but when they are designed independently, then pupil aberrations, in particu-
lar, may frustrate the combination. A similar situation occurs with the combi-
nation of an eyepiece and the eye of the observer. This case is actually more
critical, since the pupil of the eye is not really fixed. Particularly in wide-angle
eyepieces, where the observer has to rotate the eye to look from one to the
other end of the field of view. Due to this rotation the pupil of the eye takes a
decentered position and, dependent on the size of the exit pupil of the eye-
piece and the size of the eye pupil, this may result in a decreased image
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illumination. If the eyepiece exhibits a strong spherical pupil aberration, then
the decentered eye pupil may result in a partial obscuration of the image
field. An example of a significant pupil aberration is given in figures 29-41 to
29-43. Figure 29-41 shows an eyepiece with a rather large pupil aberration,
together with an idealized eye. The curve of the transverse spherical pupil
aberration is given in figure 29-42. Note the maximum values of about ± 4
mm in the zone of the pupil. This large aberration is the reason for the ob-
scuration increasing with the decentering of the eye pupil, as displayed in
figure 29-43. When the pupil of the eye is decentered, the rays in the zone of
the pupil are truncated first, as can be understood from the ray path in the
insert of figure 29-41. Therefore, the intensity first drops in a zonal region of
the retina image. A certain area in the image even shows zero intensity. If
high-quality imaging of the pupil of the instrument is required, then the
decentering would cause a uniform decrease in the intensity.

eyepiece
lens and 
pupil of 
the eye

retina

caustic of the pupil 
image enlarged

instrument 
pupil

Figure 29-41: A ray path in the eyepiece with an idealized eye.
The system suffers from a large spherical pupil aberration, see
figure 29-42. The ray caustic is also shown in an enlarged illus-
tration.
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y' ∆
5 mm

yp

Figure 29-42: Spherical pupil aberration as a transverse
aberration of the eyepiece in figure 29-41.

Figure 29-43: Illumination of the retina image for the system
shown in figure 29-41 with different values of the decentered eye
pupil. The offset of the pupil causes a truncation of the ray bun-
dles and therefore the intensity is locally decreased.

� Ray aiming
Pupil aberrations play a role in another field , which is more closely related to
practical ray tracing than to image aberrations. In order to trace a selected
ray, such as a marginal ray or a chief ray, through an optical system, then for
fast ray tracing, the entrance pupil is very often used to aim the ray. As the
entrance pupil is defined as the paraxial image of the aperture stop through
that part of the system which is in front of the stop, it may occur that rays
aimed towards the entrance pupil cannot pass through the system. This is
due to large pupil aberrations. An example is given in figure 29-44 (a), which
shows a wide-angle lens modified from [29-9] to demonstrate this effect.
None of the rays from the maximum oblique bundle, when aimed towards
the entrance pupil can pass through the lens. In such systems with large pu-
pil aberrations the rays to be traced must be aimed towards the real aperture
stop as shown in figure 29-44 (b). This is more time consuming but does
solve the problem.
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a

Aperture

stop
Entrance

pupil

Entrance beam

equal to axial beam

b

Aperture

stop

Entrance beam

larger than axial beam

Figure 29-44: Pupil aberration and ray aiming. (a) Ray aiming towards
the paraxial entrance pupil; (b) ray aiming towards the aperture stop.

� Illumination
As can be seen in figure 29-44 (b), when the rays are traced to the aperture
stop, there is also an effect on the meridional bundle diameters. With in-
creasing field angle the meridional bundle diameters also increase, which re-
duces the illumination fall-off in the image. By further studying this effect it
can be shown that the increased entrance beam diameter in the oblique bun-
dles is a consequence of pupil coma aberration: when imaging the aperture
stop on the entrance pupil there is a considerable amount of outer coma.

� Petzval curvature
The Seidel Petzval sum for usual and pupil imaging is identical. So the Petz-
val curvature in the exit pupil, when assuming a flat entrance pupil, is the
same as in the image.
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29.6
High-order Aberrations

The primary or third-order aberrations discussed in section 29.4 represent the basic
principles of aberration theory. In practice, already the secondary or fifth-order aber-
rations are not usually used in complete detail to analyse the aberrations of an opti-
cal system. As we will see in the next paragraph, the set of nine fifth-order aberra-
tions contain new types of aberration, particularly with regard to the pupil or aper-
ture dependence of the aberrations. Nevertheless, the main problem in lens design
is to prevent or to correct all, including the higher-order aberrations. It is well
known by the experienced optical designer that, during the optimization of an opti-
cal system, the third-order aberrations are much more movable than the higher-
order aberrations. So, if it is not possible to correct the aberrations to zero, the result
of the optimization is a balancing of third-order against higher-order aberrations of
the same, or at least of a similar, type. In this view the amount of third-order aberra-
tions is chosen to balance the uncorrectable higher-order aberrations. For this rea-
son, in the next paragraph, the fifth-order aberrations are grouped together with the
related third-order aberrations.

29.6.1
Fifth-order Aberrations

The terms containing the coefficients d1 to d9 in eqs (29-5) and (29-8) represent the
nine secondary or fifth-order wave aberrations. In the following figures (29-45 –
29-52) the pupil dependence of these fifth-order aberrations are arranged with the
related third-order types.

Primary, 3rd Order Secondary, 5th Order

Spherical Aberration

yp
xp ypxp

4

1 rcW ⋅= 6

1 rdW ⋅=

Figure 29-45: Primary and secondary spherical aberration.

The primary spherical aberration is of 4th power in the aperture. The secondary
spherical aberration is of 6th power in the aperture. Higher power spherical aberra-
tion is easy to detect. As an example, in figure 29-53, a microscope objective with at
least ninth-order spherical aberration is shown.
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Primary, 3rd Order Secondary, 5th Order

Spherical Aberration

Oblique Spherical Aberration

yp
xpypxp

4

1 rcW ⋅= ϕ⋅= 242

3 cosrydW 42

4 rydW ⋅=

yp
xp

Figure 29-46: Primary and oblique spherical aberration.

The oblique spherical aberration (the sum of the d3 and d4 terms) is of 4th power
in aperture as is the primary spherical aberration. But the field dependence of the
oblique spherical aberration is of 2nd power and due to the d3 term the amount of
wave aberration is different in the tangential and sagittal directions. In practical lens
design the resulting component in the sagittal direction is often dominant and is
called: the “oblique spherical sagittal aberration”. As mentioned in the discussion
about the symmetry properties of aberrations in section 29.4.2, the oblique spherical
aberration does not have rotational symmetry as does the third-order spherical aber-
ration.

Primary, 3rd Order Secondary, 5th Order

Coma

yp
xp yp

xp

ϕ⋅= cos3

2 yrcW ϕ⋅= cos5

2 yrdW

Linear coma

Figure 29-47: Primary and secondary linear coma.

The designation “linear” coma describes the linear field dependence of this aber-
ration. The higher power appears only in the pupil coordinate. It should be noted
that this higher-order aberration is included in the scope of the sine condition and
the “offence against the sine condition” just because it is linear in the field coordi-
nate as discussed in section 29.8.1.
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Primary, 3rd Order

Elliptical coma

Coma

Secondary, 5th Order

yp
xp yp

xp yp
xp

ϕ⋅= cos3

2 yrcW ϕ⋅= cos33

5 rydW ϕ⋅= 333

6 cosrydW

Figure 29-48: Primary and elliptical coma.

The designation “elliptical” coma results from the appearance of the associated
transverse aberration. The circles in the image spot shown in figure 29-23 for third-
order coma, originating from concentric circles in the pupil, will change to ellipses
in the case of elliptical coma. The coefficient d6 controls the shape of the ellipses.
An example analog to figure 29-23 is shown in figure 29-49.

sagittal

Pupil Image

tangential

chief

Figure 29-49: Schematic ray path for elliptical coma.

Primary, 3rd Order Secondary, 5th Order

Astigmatism

ypxp ypxp

ϕ⋅= 222

3 cosrycW ϕ⋅= 224

7 cosrydW

Figure 29-50: Primary and secondary astigmatism.
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Primary, 3rd Order Secondary, 5th Order

Field curvature (sagittal)

ypxp ypxp

22

4 rycW ⋅= 24

8 rydW ⋅=

Figure 29-51: Primary and secondary sagittal field curvature.

Fifth-order astigmatism and fifth-order field curvature as shown in figures 29-50
and 29-51 are both easy to understand: it is just the field dependence which is of
fourth power instead of second power for the primary aberrations. As the field vari-
able is not a parameter for the wave surfaces shown, the figures for primary and
secondary aberrations appear identical in these cases.

Primary, 3rd Order Secondary, 5th Order

Distortion

yp
xp yp

xp

ϕ⋅= cos3

5 rycW ϕ⋅= cos5

9 rydW

Figure 29-52: Primary and secondary distortion.

For distortion, in a similar way to astigmatism and field curvature, the fifth-order
aberration is only influenced by the field variable which is of fifth power for fifth
order and of third power for third order. So the figures for fifth and third order
appear identical.

29.6.2
Seventh and Higher-order Aberrations

We have seen that there are five third-order and nine fifth-order aberration types.
The number N of aberration types increases with the order n according to

N � �n � 3��n � 5�
8

� 1� (29-103)
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So, there are 14 seventh-order and 20 ninth-order aberrations. From these higher-
order aberrations, only those which are easy to understand and easy to recognize
(especially spherical aberration and distortion) are used occasionally by the lens
designers. As an example, Figure 29-53 shows the wave aberration of a microscope
objective. The order of spherical aberration can be estimated by the number of max-
ima in the curve representing the wave aberration: the central maximum may be
due to defocus, so the next minimum indicates at least third order, and the following
three extreme values denote at least fifth, seventh and ninth order.

One analytical method of identifying the different orders of an aberration is to
calculate the Zernike coefficients, which will be discussed in the next section. In
order to analyze this example, let us use this powerful Zernike method. The result is
shown in figure 29-54, and from this figure it can be seen that there are even higher
orders of spherical aberration but there is an intense contribution of the ninth order.
The indicated bar of the first-order spherical aberration of course represents the
amount of balancing defocus.

(a)

(b) (c)

wavefront surface wavefront section

0.1

Figure 29-53: Microscope objective with up to ninth-order spherical
aberration. (a) Microscope objective (modified version of USP 4588264)
[29-10]; (b) wave aberration; (c) OPD-plot (cross-section through (b)).
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Figure 29-54: Spherical Zernike coefficients of the microscope objective of figure 29-53.

29.7
Zernike Polynomials

The Zernike polynomials are covered in detail in section 11.5.4. As stated there the
Zernike polynomials can be used to describe the wave aberration of an optical sys-
tem for a chosen field. One of the main advantages of the Zernike polynomials is
their ability to describe arbitrary wavefronts or wave aberrations without any con-
straints to symmetry. This property is necessary, for instance, to describe the results
of interferometric measurements. With rotationally symmetric optical systems the
wave aberration is always symmetric about the meridional plane. Nevertheless, due
to current computational power, Zernike polynomials are increasingly used in lens
design. The first nine low-order Zernike polynomials are related to the Seidel aberra-
tions as can be seen from table 29-9.

It should be noted that, in general, there is no strict correspondence between Sei-
del aberrations and the appropriate Zernike polynomial. This means that the Seidel
coefficients cannot be calculated from the corresponding Zernike coefficients and
vice versa. Only in the case when there are no higher aberrations than third order
(Seidel aberrations) does a strict correlation between Seidel and Zernike coefficients
exist. This is because the high-order Zernike polynomials also contain lower-order
aberrations. The advantage of building the Zernike polynomials with several orders
is that the highest order is balanced by the lower orders. For spherical aberration
(fifth-order and seventh-order) this can easily be seen from table 29-9.
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Table 29-9: Zernike polynomials and wave aberrations based on the power series expansion.

Zernike polynomials Power series

Z1 � 1 Piston a0 Constant (� 0
per definition)

Z2 � r cos� Tilt y b2yr cos�
c5y3r cos�

Image scale
Distortion

Z3 � r sin� Tilt x ≡ 0 (due to symmetry)

Z4 � 2r2 � 1 Defocus + Piston b1r2

c4y2r2

Defocus
Field curvature

Z5 � r2 cos 2� Astigmatism y c3y2r2 cos 2� Astigmatism

Z6 � r2 sin 2� Astigmatism x ≡ 0 (due to symmetry)

Z7 � �3r3 � 2r� cos� Coma y c2yr3 cos� Coma

Z8 � �3r3 � 2r� sin� Coma x ≡ 0 (due to symmetry)

Z9 � 6r4 � 6r2 � 1 Third-order spherical
+ Defocus
+ Piston

c1r4 Spherical
aberration

Z16 � 20r6 � 30r4 � 12r2 � 1 Fifth-order spherical
+ Third-order spherical
+ Defocus
+ Piston

d1r6 Fifth-order
spherical

Z25 � 70r8 � 140r6 � 90r4 � 20r2 � 1 Seventh-order spherical
+ Fifth-order spherical
+ Third-order spherical
+ Defocus
+ Piston

e1r8 Seventh-order
spherical

29.8
Special Aberration Formulae

The power series expansion of the wave aberration as given in eq. (29-8) is the basis
for the definition of the aberration types. There are further fundamental aberration
formulae, which make statements not limited to just the primary aberrations. The
most remarkable results in this area are Abbes sine condition together with its
expansions (see 29.8.1) and the Aldis theorem (see section 29.8.4).
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29.8.1
Sine Condition and the Offence against the Sine Condition

The Abbe sine condition is discussed in section 11.4 and the different formulations
and interpretations are repeated here. As usual let u and U designate the paraxial
and finite slope angle of an aperture ray, respectively.
The Abbe presentation reads [29-11]:

sin U
u

� sin U ′
u′

(29-104)

for all rays in the axial aperture pencil. With magnification m (and finite conjugates)
the sine condition takes the form

m � nu
n′u′

� n sin U
n′ sin U ′

(29-105)

for all rays in the axial aperture pencil, and for an object at infinity with the incom-
ing marginal ray height h (where h is used for both, the paraxial and the finite mar-
ginal ray) and focal length f ′ becomes

f ′ � � h
u′

� � h
sin U ′

(29-106)

for all rays in the axial aperture pencil. In the form of the Lagrange invariant, with
paraxial object and image heights y and y′, respectively, the sine condition reads

ny sin U � n′y′ sin U ′ (29-107)

for all rays in the axial aperture pencil.
All the formulae for the sine condition given so far break down for afocal systems.

In this case the sine condition is based on the intersection heights of the rays in the
axial bundle on the first and last surface of the afocal system. H1 and Hk are the
intersection heights of the finite rays and h1 and hk are the corresponding paraxial
heights. Then the sine condition reads

H1

Hk

� h1

hk

(29-108)

for all rays in the axial aperture pencil.
Under the precondition of zero spherical aberration (for the entire aperture) the

fulfillment of the sine condition is a necessary and sufficient requirement for zero
linear coma. Linear coma is not only the primary coma but includes all higher
orders of coma, that are linear in the field variable. So the linear coma as a wave
aberration is given by the sum

WlinComa �
�

m

Cmyyp�x2
p � y2

p�m �
�

m

Cmyr2m�1 cos� (29-109)

where the term with m = 1 represents the primary coma and all other terms are
higher order linear coma.

The sine condition can be easily derived from the optical sine theorem which is a
generalization of the Lagrange invariant and gives the paraxial image height y′s
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made by finite, sagittal rays of arbitrary aperture U in object space and U′ in image
space, as shown in figure 29-55. The optical sine theorem states

ny sin U � n′y′s sin U ′� (29-110)

x'p

x'

y'

x

y

z'

y'p

yp

xp

UU

U'

U'

y

y's

Figure 29-55: Optical sine theorem

It is essential to understand that in the optical sine theorem the image height y′s
indicates the intersection point of the sagittal rays with apertures U and U′, respec-
tively, and no statement is made about other rays. Because of the restriction to a
paraxial field, the aperture angles U and U′ are also found in the axial ray pencil.

Now, the “sagittal magnification” ms is calculated from the optical sine theorem
(29-110) as

ms �
y′s
y
� n sin U

n′ sin U ′
� (29-111)

Abbe found that, under the condition of zero spherical aberration, linear coma must
be zero, if ms is constant for all sagittal rays. For constant ms, when U tends to zero,
ms is

ms �
n sin U

n′ sin U ′
� n sin u

n′ sin u′
� m (29-112)

which is the sine condition as formulated in (29-105). A system with zero spherical
aberration and zero linear coma is called aplanatic. The aplanatic surface will be dis-
cussed in section 29.8.6 in detail.
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In practice, the situation that the spherical aberration is exactly zero and the sine
condition is strictly fulfilled, seldom occurs. But based on continuity arguments it is
obvious that when the spherical aberration is small and the sine condition is
“almost” fulfilled, the linear coma must also be small. A quantitative predication for
this situation is given by the “Offense against the Sine Condition”, OSC. The OSC
gives the transverse sagittal linear coma relative to the height of the paraxial chief
ray. Figure 29-56 shows the quantities used in the OSC definition. M is the intersec-
tion point of the marginal ray with the optical axis, so � s′ is the longitudinal spheri-
cal aberration. Q is the intersection point of the chief ray in the plane defined by M
and B′s is the intersection point of the sagittal rays of the oblique bundle. As the
field is assumed to be small, B′s is also in the plane defined by M. The transverse
distance QB′s is the sagittal coma.

 ∆ s'

Gaussian 

image 

plane

 

M

s'p
S'

Last surface
Pupil

B's

Q

Sagittal 

coma

s'

Marginal ray

Paraxial chief ray

Figure 29-56: Quantities to define the OSC.

OSC � QB′s
MQ

(29-113)

with the help of the optical sine theorem (29-110) this can easily by shown to be
[29-2], [29-12]

OSC � u′ sin U
u sin U ′

1 � � s′
S′ � s′p

� 	
� 1� (29-114)

To determine OSC (i. e. the relative transverse sagittal coma) only the finite marginal
ray, the paraxial marginal ray, and the paraxial chief ray must be traced. For the
object at infinity the paraxial as well as the finite marginal ray have to be calculated
with the same incidence height on the object side. Then the OSC reads
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OSC � u′
sin U ′

1 � � s′
S′ � s′p

� 	
� 1� (29-115)

This form can also be used when the paraxial angle u is set equal to sinU.
Whenever the OSC for an imaging optical system is known from some calcula-

tion the transverse coma for small fields (linear coma) can easily be calculated from
(29-113). QB′s represents the sagittal coma and, according to eqs (29-60) and (29-61)
for the primary aberration, the tangential coma is three times this value. Eqs (29-114)
and (29-115) clearly show the influence of both, the sine condition as well as the spheri-
cal aberration, on the OSC. Only for a system which is telecentric in image space does
the spherical aberration have no influence, because the exit pupil is at infinity,
s′p � ∞ and that makes the bracketed term in (29-114) and (29-115) equal to one.

29.8.2
Herschel Condition

Let us consider an optical system which images an axial object point monochromati-
cally, without aberration. The sine condition (29-105) can then be understood as the
condition that the image remains free of aberrations when the object, and accord-
ingly the image, is shifted a small distance perpendicular to the optical axis. “Small”
means that aberrations, which depend quadratically or to an even higher power on
the field coordinate, can be neglected. The Herschel condition [29-7], [29-8] is the
corresponding condition for a small object (and image) shift along the axis. In the
formulation analog to the sine condition (29-105) the Herschel condition reads

�m � n sin 2 U�2� �
n′ sin 2 U ′�2� � (29-116)

for all rays in the axial aperture pencil.
�m designates the longitudinal magnification

�m � �z′
�z

� n′
n

m2 (29-117)

as shown in figure 29-57.
It can be shown that the Abbe sine condition and the Herschel condition can only

be satisfied simultaneously in a trivial case which is when the system is a plane mir-
ror with m � 1 and �m � 1. So, in general, an optical system cannot image a small
volume without aberrations.

zδ z'δ

n n'

Figure 29-57: Longitudinal magnification.



29.8 Special Aberration Formulae

29.8.3
Aplanatism and Isoplanatism

The sine condition and the OSC are the basis for understanding aplanatism and iso-
planatism. A system is called alpanatic when both the spherical aberration and the
linear coma are zero. The OSC is sometimes also called the isoplanatic condition,
and a system is called isoplanatic when the OSC equals zero [29-12]. The signifi-
cance of isoplanatism is the stationarity of the aberration with regard to a small shift
in the field. This means that when the object point is shifted by a small amount, the
aberration at the new image point will be the same as it was before the shift. For the
axial image point the only aberration which may change with a small image shift, is
the linear coma. So the system is isoplanatic (on the axis) if the OSC equals zero. In
the theory of image formation, isoplanatism is an important principle and the term
isoplanatism is generally not restricted to the axial image point as it means local
stationarity of the aberrations over an expanded field. For the axial case, the OSC is
a very simple method of checking for isoplanatism. Aplanatism, in general, means
the same stationarity but with zero aberrations.

29.8.4
Aldis Theorem

The Aldis theorem is a noteworthy aberration formula which calculates the finite
transverse aberrations dx′ and dy′ in the Gaussian image plane of an arbitrary ray
with respect to the associated paraxial chief ray [29-2], [29-13]. Currently this result
can be obtained by simple raytracing. The outstanding feature of Aldis theorem is
that these formulae give the finite aberrations as a sum of the surface contributions.
This is extremely useful for locating the source of an aberration, especially when it
is used in parallel with the Seidel third-order formulae, because the Aldis theorem
gives the entire aberration, including all orders.

Let the system to be analyzed have k spherical surfaces. To use the Aldis theorem
only two rays must be traced through the system, one paraxial ray and one finite ray.
The paraxial ray emerging from the axial object point with an arbitrary aperture
(the aperture cancels out in the formulae) provides the refraction invariant (see eq.
(29-21)) Aj � njij � nj�hjcj � uj� at each surface of the system and also the final aper-
ture angle u′k. Further, the Lagrange invariant H must be calculated based on the
chosen paraxial aperture and also based on the field, for which the aberrations are to
be calculated. For instance, H can be calculated in the image space as H � n′ku′ky′
with the paraxial image height y′.

The finite ray emerging from the object related to y′ is the ray for which the trans-
verse aberrations dx′ and dy′ are to be calculated. This finite ray provides the inci-
dence points on each surface with coordinates xj, yj, zj and the direction cosines Lj,
Mj, Ni in each space.

Let � �x� � x ′ � x designate the increment on refraction. With these quantities
the transverse aberrations dx′ and dy′ are, according to the Aldis theorem,
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dx ′ � �1
n′ku′kN ′k

�k

j�1

Ajzj� Lj �
Ajxj

N ′j � Nj

� L2
j � M2

j

� �� �
� (29-118)

dy′ � �1
n′ku′kN ′k

�k

j�1

Ajzj� Mj �
Ajyj � H

N ′j � Nj

� L2
j � M2

j

� �� �
� (29-119)

The proof of the Aldis theorem is not really difficult but it is rather lengthy and it
does not give any additional insight into this interesting matter [29-2]. But there is a
useful specialization of the Aldis theorem, which relates to longitudinal spherical
aberration only, see the next paragraph.

The difference between the Seidel surface contributions and the Aldis surface
contributions can be demonstrated by a rather simple example. For this purpose the
spherical aberration of an achromat, see figure 29-58, will be analyzed.

31
2

∆y’

0.5

-0.5

Transverse

spherical aberration
F/2  Achromat,  f’=100

Figure 29-58: An achromat.

In table 29-10 the Seidel surface contributions according to eq. (29-23) as well as
the Aldis surface contributions according to eq. (29-119) are listed. As the Aldis con-
tributions depend on the chosen ray, in table 29-10 the Aldis contributions are given
for two rays, for full aperture � � 1 and for half the aperture � � 0�5.

Table 29-10: Seidel and Aldis surface contributions for the achromat in figure 29-58.

Surface Seidel
SI

Aldis
� y′�� � 0�5�

Aldis
� y′�� � 1�

1 0.455 –0.118 –1.047

2 –0.730 0.209 2.604

3 0.577 –0.151 –1.345

Sum 0.302 –0.060 0.212
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Figure 29-59: Aldis versus Seidel surface contributions for the achromat shown in figure 29-58.
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Because Seidel and Aldis contributions are quite different types of quantities, a
direct comparison is difficult. Much more insight is gained when the corresponding
transverse aberrations are calculated from the Seidel coefficients according to eq.
(29-59). The result is shown in figure 29-59. It can be seen that the main difference
between Seidel and Aldis occurs at surface 2, the cemented surface. As can be seen
from figure 29-58 at this surface the marginal ray has the largest incidence angles
and so surface 2 contributes the largest amount of fifth-order aberration. The Aldis
curve for the sum over all surfaces at the bottom of figure 29-59 exactly represents
the transverse spherical aberration as is also shown in figure 29-58.

29.8.5
Spherical Aberration, a Surface Contribution Formula

A simple formula for longitudinal spherical aberration on a surface-by-surface basis
can be derived from the Aldis theorem (29-118) and (29-119) or it can be derived
directly [29-14]. The formula reads

ds′ � �1
n′ku′k sin U ′k

�k

j�1

Aj� Qj (29-120)

with the same nomenclature as in (29-118) and (29-119). ds′ is the total longitudinal
spherical aberration of the ray with the finite aperture angle U′k in image space and
Qj designates the perpendicular distance from the surface vertex to the ray at the surface
number j as shown in figure 29-60. To make use of this surface contribution formula
(29-120) from the axial pencil a finite and an arbitrary paraxial ray must be traced.

From (29-120) it can be seen that the surface number j does not introduce spheri-
cal aberration if Aj � njij or � Qj is zero. For further discussion it is useful to modify
eq. (29-120) so that � Qj � Q ′j � Qj is expressed as a product of different quantities
that can vanish independently. Let AP designate the chord from the surface vertex A
to the intersection point P of the ray, as shown in figure 29-60.

U
Q

A

P

AP

Figure 29-60: Chord AP and perpendicular Q , to the ray.

By using the ray tracing formulae and pure geometrical arguments it is not diffi-
cult [29-14] to prove that

� Qj � Q ′j � Qj � 2APj sin
I ′j � Ij

2
sin

I ′j � Uj

2
(29-121)

where Ij and I′j represent the finite incidence angles as usual.
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Now, together with eq. (29-120) it follows that there are four cases where a spheri-
cal surface does not introduce spherical aberration:

1. AP � 0
2. ni � 0
3. I ′ � I � 0
4. I ′ � U � 0�

The discussion of these four cases follows.

1. The case AP = 0

The calculated finite aperture ray hits the surface at the vertex as shown in figure 29-
61. It is obvious that the surface cannot introduce spherical aberration to this ray. If
the paraxial object and image location is on the surface vertex and if there is no
spherical aberration in the incoming axial pencil, then for each ray in this pencil
one obtains

U � �I and U ′ � �I ′� (29-122)

To check the sine condition we have

n sin U
n′ sin U ′

� n sin I
n′ sin I ′

� 1 (29-123)

and with the corresponding paraxial quantities the magnification in this case is

m � nu
n′u′

� ni
n′i′

� 1 (29-124)

so that the sine condition is fulfilled and we have an aplanatic case.

2. The case ni = n′i′ = 0

This is the only paraxial condition of the four cases. There are two possibilities.
First, i = i′ = 0, which means that the location of the intermediate object and inter-
mediate image is the center of curvature of the surface. So the paraxial ray does not
change the direction when passing the surface. This situation looks similar to case 3,
but here the finite incoming axial pencil may have a lot of spherical aberration as we
have the paraxial condition. That means the finite marginal rays may not be perpen-
dicular to the surface. Nevertheless, as long as the condition i = i′ = 0 is fulfilled, the
surface contribution to the spherical aberration will be zero. This configuration is
called the concentric surface. The paraxial intersection lengths are equal to the
radius of curvature,

s′ � s � r� (29-125)

and the magnification for the concentric surface is

m � ns′
n′s

� n
n′

� (29-126)
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If there is no spherical aberration in the incoming axial pencil, of course the sine
condition is fulfilled and again we have an aplanatic case. There is also a second
possibility; that is the trivial case, n = n′ where the surface is a dummy surface and
has no effect on the rays.

3. The case I ′– I = 0

Similar to case 2, but here related to a finite aperture ray. Again we have the two
possibilities, the first is: I′ = I = 0, the perpendicular incidence of the chosen aper-
ture ray, see figure 29-61. The surface contribution to spherical aberration for this
special finite ray is zero. But for all other rays in the pencil for which the condition
I′ = I = 0 is not fulfilled (due to spherical aberration in the incoming pencil) the
surface contribution will not generally be zero. The second possibility is the trivial
one, n = n′, the surface is a dummy surface and there is no effect on the rays from
this surface.

n n'

M

O O'

n n'>n

OO'M

UU'

I

I'

n

O O' M

n'>n

1. Case:

Object O and image O' at 

surface vertex

2. Case: Paraxial ray

3. Case: Finite ray

Object O and image O' at 

the center of curvature M

4. Case:

I'+U = I+U' = 0

“Aplanatic“ condition
2

 
 









=
n'

n
m

n'

n
m

 
=

1=m

Figure 29-61: Cases with zero spherical aberration.
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4. The case I′ + U = 0
This is the most important case, which turns out to describe the actual aplanatic
condition, and which plays an important role in lens design. But in the first instance
this condition is again a condition for a chosen finite aperture ray, similar to that
discussed in cases 1 and 3. In this generality we have the statement of a zero spheri-
cal aberration contribution only for the chosen aperture ray. But when the incoming
axial pencil has no (or in practice at least low) spherical aberration, this configura-
tion becomes highly interesting. A more detailed discussion for this case follows in
the next paragraph.

From figure 29-61 it can be seen that, for a given surface with radius r and refrac-
tive indices n and n′, there are three special object positions which exhibit zero
spherical aberration: Case 1: object at the vertex of the surface; Case 2: object at the
center of curvature, that is the concentric position; Case 3: object at the aplanatic
object point. For all other object positions the spherical aberration must be unequal
to zero, as we used a rigorous mathematical case differentiation to find these three
conditions. In figure 29-62 the spherical aberration is shown as a function of the
object position. As an example, a surface with a positive power and positive radius is
chosen as in figure 29-61. The radius is r = 100, the aperture angle U is held con-
stant. The position of the aplanatic point depends on the ratio of the refractive
indices. In the example shown,

S � n � n′
n

r � 2�5r�

∆∆s'

0 50 100 150 200 250 300
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

Saplanatic

concentricvertex

Figure 29-62: Spherical longitudinal aberration � s′ as a function of the object position
S for a constant aperture angle with sin U � 0�2. The surface radius is r = 100 and the
refractive indices are n = 1 and n′ = 1.5.
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However, figure 29-62 must not be misinterpreted. In most situations, when the
intersection length S is not so close to the surface vertex as in the main range of this
figure, a surface with positive power exhibits under-correction as can be seen in fig-
ure 29-62 for S < 0 and for S > 2.5r. It is interesting to note that, for an intersection
length, which is about 80% of the aplanatic intersection length, the spherical aberra-
tion possesses a maximum over-correction. Occasionally this can be used in the
design process.

29.8.6
Aplanatic Surface and Aplanatic Lens

If the condition I′ + U = 0 is fulfilled for each ray in the axial pencil, then the aplana-
tic surface is described. From this condition several conclusions relating to the inter-
section lengths S and S′ of the finite aperture rays, the magnification m, and the
radius of curvature r can be derived from the raytracing formulae (see section
11.6.2):

I ′ � U � I � U ′ � 0� (29-127)

S � n � n′
n

r and S′ � n � n′
n′

r� (29-128)

Eq. (29-128) shows that any given surface with parameters r, n, n′, can work as an
aplanatic surface with the appropriate object and image position. These object and
image points are called the aplanatic points of the surface. On the other hand,

r � nS
n � n′

� n′S′
n � n′

� SS′
S � S′

� (29-129)

Eq. (29-129) shows that for any given object intersection length S (or image intersec-
tion length S′) and given refractive indices n and n′ the surface radius of curvature r
can be determined, in such a way that the surface will be an aplanatic one:

nS � n′S′� (29-130)

1
S
� 1

S′
� 1

r
� (29-131)

m � ns′
n′s

� nS′
n′S

� n
n′

� �2

� (29-132)

n sin U
n′ sin U ′

� n sin I ′
n′ sin I

� n
n′

� �2

� m� (29-133)
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Figure 29-63: Aplanatic surfaces with positive and negative radii r,
with positive and negative power � .
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Eq. (29-133) represents the fulfillment of the sine condition, so that the designation
“aplanatic surface” is justified. In figure 29-63 aplanatic surfaces are shown for sur-
faces with positive and negative radii r and, due to the arrangement of the refractive
indices, for positive and negative powers � . As seen from eqs. (29-128) the object
and image distance S and S′ both have the same sign as the surface radius r. As the
object and image are always on the same side of the surface the imaging of an apla-
natic surface is always virtual. This can also be seen from the magnification m,
which is always positive, see eq. (29-132). As shown in figure 29-63, the effect of an
aplanatic surface is to change the magnification, or in other words, to increase or to
decrease the convergence or the divergence, as the case may be.

It should be understood that the aplanatic condition I′+U = 0 makes the surface
contribution to the spherical aberration zero only for the rays which exactly fulfill
the condition. If there is some spherical aberration in the incoming axial ray bundle,
most of the rays cannot fulfill the condition and so these rays will have some spheri-
cal aberration at the surface considered. If there is no spherical aberration in the
incoming ray bundle, all rays can fulfill the condition and then there will be no con-
tribution to spherical aberration at the surface considered.

To construct a single aplanatic lens the combination of concentric and aplanatic
surfaces can be used. The possible configurations are discussed in section 11.6.3 as
shown in figure 11-22. It should be kept in mind that such aplanatic surfaces as well
as aplanatic lenses make aplanatic imaging suitable only for the appropriate object
and image position.
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