John Wiley & Sons RF and Microwave Circuit Design Cover This textbook covers a typical modern syllabus in radio frequency or microwave design at final year .. Product #: 978-1-119-11463-5 Regular price: $85.89 $85.89 Auf Lager

RF and Microwave Circuit Design

Theory and Applications

Free, Charles E. / Aitchison, Colin S.

Microwave and Wireless Technologies Series


1. Auflage Oktober 2021
528 Seiten, Hardcover
Wiley & Sons Ltd

ISBN: 978-1-119-11463-5
John Wiley & Sons

Jetzt kaufen

Preis: 91,90 €

Preis inkl. MwSt, zzgl. Versand

Weitere Versionen


This textbook covers a typical modern syllabus in radio frequency or microwave design at final year undergraduate or first year postgraduate level. The content has been chosen to include all of the basic topics necessary to give a rigorous introduction to high-frequency technology. Both the content and presentation reflect the considerable experience which both authors have in teaching and research at university level. The material is presented from first principles, and relies only on students having a reasonable grasp of basic electronic principles. One of the key features of the book is the inclusion of an extensive set of worked examples to guide the student reader who has no prior knowledge of the subject.


1. RF Transmission lines

1.0 Introduction

1.1 Voltage, current and impedance relationships on a transmission line

1.2 Propagation constant

1.2.1 Dispersion

1.2.2 Amplitude distortion

1.3 Lossless transmission lines

1.4 Matched and mismatched transmission lines

1.5 Waves on a transmission line

1.6 The Smith chart

1.6.1 Derivation of the chart

1.6.2 Properties of the chart

1.7 Stubs

1.8 Distributed matching circuits

1.9 Manipulation of lumped impedance using the Smith chart

1.10 Lumped impedance matching

1.10.1 Matching a complex load impedance to a real source impedance

1.10.2 Matching a complex load impedance to a complex source impedance

1.11 Equivalent lumped circuit of a lossless transmission line

1.12 Supplementary problems

1.13 Appendices

Appendix A1.1 Coaxial cable

A1.1.1 Electromagnetic field patterns in coaxial cable

A1.1.2 Essential properties of coaxial cables

Appendix A1.2 Coplanar waveguide

A1.2.1 Structure of coplanar waveguide (CPW)

A1.2.2 Electromagnetic field distribution on a CPW line

A1.2.3 Essential properties of coplanar (CPW) lines

A1.2.4 Summary of key points relating to CPW lines

Appendix A1.3 Metal waveguide

A1.3.1 Waveguide principles

A1.3.2 Waveguide propagation

A1.3.3 Rectangular waveguide modes

A1.3.4 The waveguide equation

A1.3.5 Phase and group velocities

A1.3.6 Field theory analysis of rectangular waveguides

A1.3.7 Waveguide impedance

A1.3.8 Higher-order rectangular waveguide modes

A1.3.9 Waveguide attenuation

A1.3.10 Sizes of rectangular waveguide, and waveguide designation

A1.3.11 Circular waveguide

Appendix A1.4 Microstrip

Appendix A1.5 Equivalent lumped circuit representation of a transmission line


2. Planar Circuit Design I: Designing using Microstrip

2.0 Introduction

2.1 Electromagnetic field distribution across a microstrip line

2.2 Effective relative permittivity,

2.3 Microstrip design graphs and CAD software

2.4 Operating frequency limitations

2.5 Skin depth

2.6 Examples of microstrip components

2.6.1 Branch-line coupler

2.6.2 Quarter-wave transformer

2.6.3 Wilkinson power divider

2.7 Microstrip coupled-line structures

2.7.1 Analysis of microstrip coupled lines

2.7.2 Microstrip directional couplers Design of microstrip directional couplers Directivity of microstrip directional couplers Improvements to microstrip directional couplers

2.7.3 Examples of other common microstrip coupled-line structures Microstrip DC break Edge-coupled microstrip band-pass filter Lange coupler

2.8 Summary

2.9 Supplementary problems

2.10 Appendix A2.1: Microstrip design graphs


3. Fabrication processes for RF and microwave circuits

3.1 Introduction

3.2 Review of essential materials parameters

3.2.1 Dielectrics

3.2.2 Conductors

3.3 Requirements for RF circuit materials

3.4 Fabrication of planar high-frequency circuits

3.4.1 Etched circuits

3.4.2 Thick-film circuits (direct screen printed)

3.4.3 Thick-film circuits (using photoimageable materials)

3.4.4 LTCC (low temperature co-fired ceramic) circuits

3.4.5 Use of ink jet technology

3.5 Characterization of materials for RF and microwave circuits

3.5.1 Measurement of dielectric loss and dielectric constant Cavity resonators Dielectric characterization by cavity perturbation Use of the split post dielectric resonator (SPDR) Open-resonator Free-space transmission measurements

3.5.2 Measurement of planar line properties The microstrip resonant ring Non-resonant lines

3.5.3 Physical properties of microstrip lines

3.6 Supplementary problems


4. Planar Circuit Design II: Refinements to basic designs

4.1 Introduction

4.2 Discontinuities in microstrip

4.2.1 Open-end effect

4.2.2 Step width

4.2.3 Corners

4.2.4 Gaps

4.2.5 T-junctions

4.3 Microstrip enclosures

4.4 Packaged lumped-element passive components

4.4.1 Typical packages for RF passive components

4.4.2 Lumped-element resistors

4.4.3 Lumped-element capacitors

4.4.4 Lumped-element inductors

4.5 Miniature planar components

4.5.1 Spiral inductors

4.5.2 Loop inductors

4.5.3 Interdigitated capacitors

4.5.4 MIM (metal-insulator-metal) capacitors

4.6 Appendix 4.1: Insertion loss due to a microstrip gap


5. S-parameters

5.1 Introduction

5.2 S-parameter definitions

5.3 Signal flow graphs

5.4 Mason's non-touching loop rule

5.5 Reflection coefficient of a 2-port network

5.6 Power gains of two-port networks

5.7 Stability

5.8 Supplementary Problems

5.9 Appendix A5.1 Relationships between network parameters

A5.1.1 Transmission parameters (ABCD parameters)

A5.1.2 Admittance parameters (Y-parameters)

A5.1.3 Impedance parameters (Z-parameters)


6. Microwave Ferrites

6.1 Introduction

6.2 Basic properties of ferrite materials

6.2.1 Ferrite materials

6.2.2 Precession in ferrite materials

6.2.3 Permeability tensor

6.2.4 Faraday rotation

6.3 Ferrites in metallic waveguide

6.3.1 Resonance isolator

6.3.2 Field displacement isolator

6.3.3 Waveguide circulator

6.4 Ferrites in planar circuits

6.4.1 Planar circulators

6.4.2 Edge-guided-mode propagation

6.4.3 Edge-guided-mode isolator

6.4.4 Phase shifters

6.5 Self-biased ferrites

6.6 Supplementary problems


7. Measurements

7.1 Introduction

7.2 RF and Microwave connectors

7.2.1 Maintenance of connectors

7.2.2 Connecting to planar circuits

7.3 Microwave vector network analyzers

7.3.1 Description and configuration

7.3.2 Error models representing a VNA

7.3.3 Calibration of a VNA

7.4 On-wafer measurements

7.5 Summary


8. RF Filters

8.1 Introduction

8.2 Review of filter responses

8.3 Filter parameters

8.4 Design strategy for RF and microwave filters

8.5 Multi-element low-pass filter

8.6 Practical filter responses

8.7 Butterworth (or maximally-flat) response

8.7.1 Butterworth low-pass filter

8.7.3 Butterworth band-pass filter

8.7.3 Butterworth band-pass filter

8.8 Chebyshev (equal ripple) response

8.9 Microstrip low-pass filter, using stepped impedances

8.10 Microstrip low-pass filter, using stubs

8.11 Microstrip edge-coupled band-pass filters

8.12 Microstrip end-coupled band-pass filters

8.13 Practical points associated with filter design

8.14 Summary

8.15 Supplementary problems

8.16 Appendix A8.1 Equivalent lumped T-network representation of a transmission line


9. Microwave Small-Signal Amplifiers

9.1 Introduction

9.2 Conditions for matching

9.3 Distributed (microstrip) matching networks

9.4 DC biasing circuits

9.5 Microwave transistor packages

9.6 Typical hybrid amplifier

9.7 DC finger breaks

9.8 Constant gain circles

9.9 Stability circles

9.10 Noise circles

9.11 Low-noise amplifier design

9.12 Simultaneous conjugate match

9.13 Broadband matching

9.14 Summary

9.15 Supplementary problems


10. Switches and Phase Shifters

10.1 Introduction

10.2 Switches

10.2.1 PIN diodes

10.2.2 FETs (Field Effect Transistors)

10.2.3 MEMS (Microelectromechanical Systems)

10.2.4 IPCS (Inline Phase Change Switch) devices

10.3 Digital phase shifters

10.3.1 Switched-path phase shifter

10.3.2 Loaded-line phase shifter

10.3.3 Reflection-type phase shifter

10.3.4 Schiffman 90° phase shifter

10.3.5 Single switch phase shifter

10.4 Supplementary problems


11. Oscillators

11.1 Introduction

11.2 Criteria for oscillation in a feedback circuit

11.3 RF (transistor) oscillators

11.3.1 Colpitts oscillator

11.3.2 Hartley Oscillator

11.3.3 Clapp-Gouriet Oscillator

11.4 Voltage controlled oscillator (VCO)

11.5 Crystal-controlled oscillators

11.5.1 Crystals

11.5.2 Crystal-controlled oscillators

11.6 Frequency synthesizers

11.6.1 The phase-locked loop Principle of a phase-locked loop Main components of a phase-locked loop Gain of a phase-locked loop Transient analysis of a phase-locked loop

11.6.2 Indirect frequency synthesizer circuits

11.7 Microwave oscillators

11.7.1 Dielectric resonator oscillator

11.7.2 Delay line stabilized oscillator

11.7.3 Diode oscillators Gunn diode oscillator IMPATT diode oscillator

11.8 Oscillator noise

11.9 Measurement of oscillator noise

11.10 Supplementary problems


12. RF and Microwave Antennas

12.1 Introduction

12.2 Antenna parameters

12.3 Spherical polar coordinates

12.4 Radiation from a Hertzian dipole

12.4.1 Basic principles

12.4.2 Gain of a Hertzian dipole

12.5 Radiation from a half-wave dipole

12.5.1 Basic principles

12.5.2 Gain of a half-wave dipole

12.5.3 Summary of the properties of a half-wave dipole

12.6 Antenna arrays

12.7 Mutual impedance

12.8 Arrays containing parasitic elements

12.9 Yagi-Uda array

12.10 Log-periodic array

12.11 Loop antenna

12.12 Planar antennas

12.12.1 Linearly polarized patch antennas

12.12.2 Circularly polarized planar antennas

12.13 Horn antennas

12.14 Parabolic reflector antennas

12.15 Slot radiators

12.16 Supplementary problems

12.17 Appendix: Microstrip design graphs for substrates with r = 2.3


13. Power Amplifiers and Distributed Amplifiers

13.1 Introduction

13.2 Power amplifiers

13.2.1 Overview of power amplifier parameters Power gain Power added efficiency (PAE) Input and output impedances

13.2.2 Distortion Gain compression Third-order intercept point

13.2.3 Linearization Pre-distortion Negative feedback Feedforward

13.2.4 Power combining

13.2.5 Doherty amplifier

13.3 Load matching of power amplifiers

13.4 Distributed amplifiers

13.4.1 Description and principle of operation

13.4.2 Analysis

13.5 Developments in materials and packaging for power amplifiers


14. Receivers and Sub-Systems

14.1 Introduction

14.2 Receiver noise sources

14.2.1 Thermal noise

14.2.2 Semiconductor noise

14.3 Noise measures

14.3.1 Noise figure (F)

14.3.2 Noise temperature (Te)

14.4 Noise figure of cascaded networks

14.5 Antenna noise temperature

14.6 System noise temperature

14.7 Noise figure of a matched attenuator

14.8 Superhet receiver

14.8.1 Single-conversion superhet receiver

14.8.2 Image frequency

14.8.3 Key figures-of-merit for a superhet receiver

14.8.4 Double-conversion superhet receiver

14.8.5 Noise budget graph for a superhet receiver

14.9 Mixers

14.9.1 Basic mixer principles

14.9.2 Mixer parameters

14.9.3 Active and passive mixers

14.9.4 Single-ended diode mixer

14.9.5 Single balanced mixer

14.9.6 Double balanced mixer

14.9.7 Active FET mixers

14.10 Supplementary problems

14.11 Appendices

Appendix A14.1 Error function table

Appendix A14.2 Measurement of noise figure

Answers to selected supplementary problems
Dr Charles Free, Senior Lecturer, University of Sussex, UK. Free started his career as a Research Engineer at GEC-Marconi and went into academia in 1973. He specializes in RF electronics, systems and circuits, microwave engineering, and analogue communications. His teaching and research activities have taken him to Finland, Poland, Germany and Japan, and he has contributed to over 150 journal articles internationally.

Professor Colin S. Aitchison studied at Imperial College, London, and has had a diverse career within academia and industry. He is a part Chair of European Microwave Conference and has contributed to almost 200 articles and conference proceedings.