John Wiley & Sons Cellulose Science and Technology Cover This book addresses concepts and novel developments in the rapidly evolving field of cellulose chemi.. Product #: 978-1-119-21758-9 Regular price: $185.98 $185.98 Auf Lager

Cellulose Science and Technology

Chemistry, Analysis, and Applications

Rosenau, Thomas / Potthast, Antje / Hell, Johannes (Herausgeber)

Cover

1. Auflage Februar 2019
480 Seiten, Hardcover
Wiley & Sons Ltd

ISBN: 978-1-119-21758-9
John Wiley & Sons

Kurzbeschreibung

This book addresses concepts and novel developments in the rapidly evolving field of cellulose chemistry, providing an emphasis on the fundamental aspects of nanocellulose and microfibrillated cellulose. The book describes current attempts to provide and widen the scope of applications of cellulosics in biomass utilization and biomaterial production by combining contributions of the world´s leading cellulose scientists. Addressing three main topics (chemistry, analysis and novel applications of cellulosic materials), this book provides a panoramic snapshot of state-of-the-art cellulose research.

Jetzt kaufen

Preis: 199,00 €

Preis inkl. MwSt, zzgl. Versand

Weitere Versionen

epubmobipdf

This book addresses both classic concepts and state-of-the-art technologies surrounding cellulose science and technology. Integrating nanoscience and applications in materials, energy, biotechnology, and more, the book appeals broadly to students and researchers in chemistry, materials, energy, and environmental science.

* Includes contributions from leading cellulose scientists worldwide, with five Anselm Payen Cellulose Award winners and two Hayashi Jisuke Cellulose Award winners
* Deals with a highly applicable and timely topic, considering the current activities in the fields of bioeconomies, biorefineries, and biomass utilization
* Maximizes readership by combining fundamental science and application development

Author Biography xv

List of Contributors xvii

Preface xxiii

Acknowledgements xxv

1 Aminocelluloses - Polymers with Fascinating Properties and Application Potential 1
Thomas Heinze, Thomas Elschner, and Kristin Ganske

1.1 Introduction 1

1.2 Amino-/ammonium Group Containing Cellulose Esters 2

1.2.1 (3-Carboxypropyl)trimethylammonium Chloride Esters of Cellulose 2

1.2.2 Cellulose-4-(N-methylamino)butyrate (CMABC) 7

1.3 6-Deoxy-6-amino Cellulose Derivatives 9

1.3.1 Spontaneous Self-assembling of 6-Deoxy-6-amino Cellulose Derivatives 10

1.3.2 Application Potential of 6-Deoxy-6-amino Cellulose Derivatives 13

1.4 Amino Cellulose Carbamates 21

1.4.1 Synthesis 21

1.4.2 Properties 22

Acknowledgment 24

References 24

2 Preparation of Photosensitizer-bound Cellulose Derivatives for Photocurrent Generation System 29
Toshiyuki Takano

2.1 Introduction 29

2.2 Porphyrin-bound Cellulose Derivatives 31

2.3 Phthalocyanine-bound Cellulose Derivatives 34

2.4 Squaraine-bound Cellulose Derivative 40

2.5 Ruthenium(II) Complex-bound Cellulose Derivative 42

2.6 Fullerene-bound Cellulose Derivative 44

2.7 Porphyrin-bound Chitosan Derivative 45

2.8 Conclusion 47

References 47

3 Synthesis of Cellulosic Bottlebrushes with Regioselectively Substituted Side Chains and Their Self-assembly 49
Keita Sakakibara, Yuji Kinose, and Yoshinobu Tsujii

3.1 Introduction 49

3.2 Strategy for Accomplishing Regioselective Grafting of Cellulose 52

3.3 Regioselective Introduction of the First Polymer Side Chain 55

3.3.1 Introduction of Poly(styrene) at O-2,3 Position of 6-O-p-Methoxytritylcellulose (1) 55

3.3.2 Introduction of Poly(ethylene oxide) at O-2,3 Position of 6-O-p-Methoxytritylcellulose (1) 57

3.4 Regioselective Introduction of the Second Polymer Side Chain 58

3.4.1 Introduction of Poly(styrene) at O-6 Position of 2,3-di-O-PEO Cellulose (5) via Grafting-from Approach 58

3.4.2 Introduction of Poly(styrene) at O-6 Position of 2,3-di-O-PEO Cellulose (5) via Grafting to Approach Combining Click Reaction 58

3.5 SEC-MALLS Study 61

3.6 Summary and Outlook 64

Acknowledgments 64

References 64

4 Recent Progress on Oxygen Delignification of Softwood Kraft Pulp 67
Adriaan R. P. van Heiningen, Yun Ji, and Vahid Jafari

4.1 Introduction and State-of-the-Art of Commercial Oxygen Delignification 67

4.2 Chemistry of Delignification and Cellulose Degradation 70

4.3 Improving the Reactivity of Residual Lignin 73

4.4 Improving Delignification/Cellulose Degradation Selectivity During

Oxygen Delignification 79

4.5 Improving Pulp Yield by Using Oxygen Delignification 90

4.6 Practical Implementation of High Kappa Oxygen Delignification 92

References 93

5 Toward a Better Understanding of Cellulose Swelling, Dissolution, and Regeneration on theMolecular Level 99
Thomas Rosenau, Antje Potthast, Andreas Hofinger,Markus Bacher, Yuko Yoneda, KurtMereiter, Fumiaki Nakatsubo, Christian Jäger, Alfred D. French, and Kanji Kajiwara

5.1 Introduction 99

5.2 Cellulose Swelling, Dissolution and Regeneration at the Molecular Level 102

5.2.1 The "Viewpoint of Cellulose" 109

5.2.2 The "Viewpoint of Cellulose Solvents" 113

5.3 Conclusion 118

References 120

6 Interaction ofWaterMolecules with Carboxyalkyl Cellulose 127
HitomiMiyamoto, Keita Sakakibara, IsaoWataoka, Yoshinobu Tsujii, Chihiro Yamane, and Kanji Kajiwara

6.1 Introduction 127

6.2 Carboxymethyl Cellulose (CMC) and Carboxyethyl Cellulose (CEC) 128

6.3 Differential Scanning Calorimetry (DSC) 131

6.4 Small-Angle X-ray Scattering (SAXS) 133

6.5 Molecular Dynamics 136

6.6 Chemical Modification and Biodegradability 138

Acknowledgments 140

References 140

7 Analysis of the Substituent Distribution in Cellulose Ethers - Recent Contributions 143
PetraMischnick

7.1 Introduction 143

7.2 Methyl Cellulose 146

7.2.1 Average DS and Methyl Pattern in the Glucosyl Unit 146

7.2.2 Distribution Along and Over the Chain 149

7.2.3 Summary 153

7.3 Hydroxyalkylmethyl Celluloses 153

7.3.1 Hydroxyethylmethyl Celluloses 159

7.3.2 Hydroxypropylmethyl Celluloses 160

7.3.3 Summary 165

7.4 Carboxymethyl Cellulose 166

7.5 Outlook 166

Acknowledgment 167

References 167

8 AdhesiveMixtures as Sacrificial Substrates in Paper Aging 175
Irina Sulaeva, Ute Henniges, Thomas Rosenau, and Antje Potthast

8.1 Introduction 175

8.2 Materials and Methods 177

8.2.1 Chemicals 177

8.2.2 Preparation of Adhesive Mixtures and Films from Individual Components 177

8.2.3 Preparation of Coated Paper Samples 177

8.2.4 Accelerated Heat-Induced Aging 179

8.2.5 GPC Analysis 179

8.2.6 Contact Angle Measurements 180

8.2.7 Analysis of Paper Brightness 180

8.3 Results and Discussion 180

8.3.1 GPC Analysis of Adhesive Mixtures and Individual Components 180

8.3.2 Molar Mass Analysis of Paper Samples 182

8.3.3 Contact Angle Analysis 184

8.3.4 UV-Vis Measurements of Paper Brightness 185

8.4 Conclusion 186

Acknowledgments 187

References 187

9 Solution-state NMR Analysis of Lignocellulosics in Nonderivatizing Solvents 191
Ashley J. Holding, AlistairW. T. King, and Ilkka Kilpeläinen

9.1 Introduction 191

9.2 Solution-state 2D NMR of Lignocellulose andWhole Biomass 195

9.3 Solution State 1D and 2D NMR Spectroscopy of Cellulose and Pulp 203

9.4 Solution-state NMR Spectroscopy of Modified Nanocrystalline Cellulose 211

9.5 Solution State 31P NMR Spectroscopy and Quantification of Hydroxyl Groups 212

9.6 Conclusions and Future Prospects 218

References 219

10 Surface Chemistry and Characterization of Cellulose Nanocrystals 223
Samuel Eyley, Christina Schütz, andWimThielemans

10.1 Introduction 223

10.2 Cellulose Nanocrystals 225

10.3 Morphological and Structural Characterization 228

10.3.1 Microscopy 228

10.3.2 Small Angle Scattering 230

10.3.3 Powder X-ray Diffraction 230

10.3.4 Solid-State NMR Spectroscopy 234

10.4 Chemical Characterization 237

10.4.1 Infrared Spectroscopy 237

10.4.2 Elemental Analysis 238

10.4.3 X-ray Photoelectron Spectroscopy 240

10.4.4 Other Methods 243

10.5 Conclusion 245

Acknowledgments 246

References 246

11 Some Comments on Chiral Structures fromCellulose 253
Derek G. Gray

11.1 Chirality and Cellulose Nanocrystals 253

11.2 Can CNC Form Nematic or Smectic-ordered Materials? 255

11.3 Why Do Some CNC Films Not Display Iridescent Colors? 256

11.4 IsThere Any Pattern to the Observed Expressions Of Chirality At Length Scales from the Molecular to the Macroscopic? 257

Acknowledgments 259

References 259

12 Supramolecular Aspects of Native Cellulose: Fringed-fibrillar Model, Leveling-off Degree of Polymerization and Production of Cellulose Nanocrystals 263
Eero Kontturi

12.1 Introduction 263

12.2 Fringed-fibrillarModel: Crystallographic, Spectroscopic, and Microscopic Evidence 264

12.3 Leveling-off Degree of Polymerization (LODP) 267

12.4 Preparation of Cellulose Nanocrystals (CNCs) 270

12.5 Conclusion 271

References 271

13 Cellulose Nanofibrils: FromHydrogels to Aerogels 277
Marco Beaumont, Antje Potthast, and Thomas Rosenau

13.1 Introduction 277

13.2 Cellulose Nanofibrils 278

13.3 Hydrogels 282

13.3.1 Cellulose Nanofibrils 284

13.3.2 Composites 288

13.3.3 Modification 293

13.4 Aerogels 296

13.4.1 Drying of Solvogels 297

13.4.2 Mechanical Properties 301

13.4.3 Conductive Aerogels 305

13.4.4 Hydrophobic Aerogels and Superabsorbents 307

13.4.5 Other Applications 315

13.5 Conclusion 317

Acknowledgments 318

References 318

14 High-performance Lignocellulosic Fibers Spun from Ionic Liquid Solution 341
Michael Hummel, AnneMichud, YiboMa, Annariikka Roselli, Agnes Stepan, Sanna Hellstén, Shirin Asaadi, and Herbert Sixta

14.1 Introduction 341

14.2 Materials and Methods 347

14.2.1 Pulp Dissolution and Filtration 348

14.2.2 Rheological Measurements 349

14.2.3 Chemical Composition Analysis 349

14.2.4 Molar Mass Distribution Analysis 349

14.2.5 Fiber Spinning 350

14.2.6 Mechanical Analysis of Fibers 351

14.3 Results and Discussion 351

14.3.1 Lignocellulosic Solutes 351

14.3.2 Rheological Properties 352

14.3.3 Fiber Spinning 354

14.3.4 Fiber Properties 355

14.3.5 Summary of the Influence of Noncellulosic Constituents on the Fiber Properties 360

14.4 Conclusion 361

References 362

15 Bio-based Aerogels: A New Generation of Thermal Superinsulating Materials 371
Tatiana Budtova

15.1 Introduction 371

15.2 Cellulose I Based Aerogels and Their Composites 373

15.3 Cellulose II Based Aerogels and Their Composites 378

15.4 Pectin-based Aerogels and Their Composites 380

15.5 Starch-based Aerogels 386

15.6 Alginate Aerogels 386

15.7 Conclusions and Prospects 387

References 388

16 Nanocelluloses at the Oil-Water Interface: Emulsions Toward Function and Material Development 393
Siqi Huan, Mariko Ago, MaryamBorghei, and Orlando J. Rojas

16.1 Cellulose Nanocrystal Properties in the Stabilization of O/W Interfaces 393

16.2 Surfactant-free Emulsions 395

16.3 Emulsions Stabilized with Modified Nanocelluloses 398

16.4 Surfactant-assisted Emulsions 402

16.5 Emulsions with Polymer Coemulsifiers 406

16.6 Double Emulsions 409

16.7 Emulsion or Emulsion-precursor Systems with Stimuli-responsive Behavior 413

16.8 Closing Remarks 418

Acknowledgments 418

References 418

17 Honeycomb-patterned Cellulose as a Promising Tool to InvestigateWood CellWall Formation and Deformation 423
Yasumitsu Uraki, Liang Zhou, Qiang Li, Teuku B. Bardant, and Keiichi Koda

17.1 Introduction 423

17.2 Theory of Honeycomb Deformation 425

17.3 HPRC with Cellulose II Polymorphism and Their Tensile Strength 426

17.4 Validity of Deformation Models 428

17.5 Deposition of Wood Cell Wall Components on the Film of HPBC Film 430

Acknowledgment 432

References 433

Index 435
Thomas Rosenau, PhD, is a professor at BOKU University Vienna, holding the Chair of Wood, Pulp and Fiber Chemistry and heading both the Division of Chemistry of Renewable Resources and the Austrian Biorefinery Center Tulln.

Antje Potthast, PhD, is a professor in the Department of Chemistry and is the deputy head of both the Division of Chemistry of Renewable Resources and the Austrian Biorefinery Center Tulln.

Johannes Hell, PhD, is a technical manager at a Viennese chocolate factory.