John Wiley & Sons Communication Engineering Principles Cover For those seeking a thorough grounding in modern communication engineering principles delivered with.. Product #: 978-1-119-27402-5 Regular price: $98.13 $98.13 Auf Lager

Communication Engineering Principles

Otung, Ifiok

Cover

2. Auflage Februar 2021
944 Seiten, Hardcover
Wiley & Sons Ltd

ISBN: 978-1-119-27402-5
John Wiley & Sons

Jetzt kaufen

Preis: 105,00 €

Preis inkl. MwSt, zzgl. Versand

Weitere Versionen

epubmobipdf

For those seeking a thorough grounding in modern communication engineering principles delivered with unrivaled clarity using an engineering-first approach

Communication Engineering Principles: 2nd Edition provides readers with comprehensive background information and instruction in the rapidly expanding and growing field of communication engineering.

This book is well-suited as a textbook in any of the following courses of study:
* Telecommunication
* Mobile Communication
* Satellite Communication
* Optical Communication
* Electronics
* Computer Systems

Primarily designed as a textbook for undergraduate programs, Communication Engineering Principles: 2nd Edition can also be highly valuable in a variety of MSc programs.

Communication Engineering Principles grounds its readers in the core concepts and theory required for an in-depth understanding of the subject. It also covers many of the modern, practical techniques used in the field.

Along with an overview of communication systems, the book covers topics like time and frequency domains analysis of signals and systems, transmission media, noise in communication systems, analogue and digital modulation, pulse shaping and detection, and many others.

Preface 0-3

Acknowledgements 0-7

1 OVERVIEW OF COMMUNICATION SYSTEMS 1-3

1.1 INTRODUCTION 1-4

1.2 NON-ELECTRICAL TELECOMMUNICATION 1-5

1.2.1 VERBAL NON-ELECTRICAL TELECOMMUNICATION 1-5

1.2.2 VISUAL NON-ELECTRICAL TELECOMMUNICATION 1-8

1.2.2.1 Flags, Smoke and Bonfires 1-8

1.2.2.2 Heliography 1-9

1.2.2.3 Semaphore 1-9

1.2.2.4 Demerits of Visual Non-electrical Telecommunication 1-11

1.3 MODERN TELECOMMUNICATION 1-12

1.3.1 DEVELOPMENTS IN CHARACTER CODES 1-14

1.3.1.1 Morse Code 1-14

1.3.1.2 Baudot Code 1-15

1.3.1.3 Hollerith Code 1-17

1.3.1.4 EBCDIC Code 1-18

1.3.1.5 ASCII Code 1-19

1.3.1.6 ISO 8859 Code 1-22

1.3.1.7 Unicode 1-23

1.3.2 DEVELOPMENTS IN SERVICES 1-27

1.3.2.1 Telegram 1-27

1.3.2.2 Telex 1-28

1.3.2.3 Facsimile 1-29

1.3.2.4 The Digital Era 1-31

1.3.3 DEVELOPMENTS IN TRANSMISSION MEDIA 1-34

1.3.3.1 Copper Cable 1-35

1.3.3.2 Radio 1-37

1.3.3.3 Optical Fibre 1-41

1.4 COMMUNICATION SYSTEM ELEMENTS 1-44

1.4.1 INFORMATION SOURCE 1-45

1.4.1.1 Audio Input Devices 1-45

1.4.1.2 Video Input Devices 1-47

1.4.1.3 Data Input Devices 1-47

1.4.1.4 Sensors 1-48

1.4.2 INFORMATION SINK 1-49

1.4.2.1 Audio Output Device 1-49

1.4.2.2 Visual Display Devices 1-52

1.4.2.3 Storage Devices 1-56

1.4.3 TRANSMITTER 1-59

1.4.4 RECEIVER 1-62

1.5 CLASSIFICATION OF COMMUNICATION SYSTEMS 1-63

1.5.1 SIMPLEX VERSUS DUPLEX COMMUNICATION SYSTEMS 1-64

1.5.2 ANALOGUE VERSUS DIGITAL COMMUNICATION SYSTEMS 1-66

1.5.3 BASEBAND VERSUS MODULATED COMMUNICATION SYSTEMS 1-70

1.5.3.1 Analogue Baseband Communication System 1-70

1.5.3.2 Discrete Baseband Communication System 1-72

1.5.3.3 Digital Baseband Communication System 1-76

1.5.3.4 Modulated Communication Systems 1-81

1.5.4 CIRCUIT VERSUS PACKET SWITCHING 1-87

1.5.4.1 Circuit Switching 1-89

1.5.4.2 Packet Switching 1-91

1.6 EPILOGUE 1-97

1.7 REFERENCES 1-98

1.8 REVIEW QUESTIONS 1-98

2 INTRODUCTION TO SIGNALS AND SYSTEMS 2-3

2.1 INTRODUCTION 2-4

2.2 WHAT IS A SIGNAL? 2-5

2.3 FORMS OF TELECOMMUNICATION SIGNALS 2-6

2.4 SUBJECTIVE CLASSIFICATION OF TELECOMMUNICATION SIGNALS 2-9

2.4.1 SPEECH 2-9

2.4.2 MUSIC 2-11

2.4.3 VIDEO 2-12

2.4.4 DIGITAL DATA 2-13

2.4.5 FACSIMILE 2-15

2.4.6 ANCILLARY & CONTROL SIGNALS 2-16

2.5 OBJECTIVE CLASSIFICATION OF TELECOMMUNICATION SIGNALS 2-16

2.5.1 ANALOGUE OR DIGITAL 2-16

2.5.2 PERIODIC OR NONPERIODIC 2-20

2.5.3 DETERMINISTIC OR RANDOM 2-22

2.5.4 POWER OR ENERGY 2-22

2.5.5 EVEN OR ODD 2-23

2.6 SPECIAL WAVEFORMS AND SIGNALS 2-27

2.6.1 UNIT STEP FUNCTION 2-29

2.6.2 SIGNUM FUNCTION 2-29

2.6.3 RECTANGULAR PULSE 2-30

2.6.4 RAMP PULSE 2-30

2.6.5 TRIANGULAR PULSE 2-31

2.6.6 SAWTOOTH AND TRAPEZOIDAL PULSES 2-32

2.6.7 UNIT IMPULSE FUNCTION 2-33

2.6.8 SINC FUNCTION 2-36

2.7 SINUSOIDAL SIGNALS 2-38

2.7.1 QUALITATIVE INTRODUCTION 2-39

2.7.2 PARAMETERS OF A SINUSOIDAL SIGNAL 2-41

2.7.2.1 Angle 2-47

2.7.2.2 Amplitude 2-48

2.7.2.3 Angular Frequency 2-48

2.7.2.4 Frequency 2-48

2.7.2.5 Period 2-49

2.7.2.6 Wavelength 2-49

2.7.2.7 Initial Phase 2-49

2.7.2.8 Phase Difference 2-51

2.7.3 ADDITION OF SINUSOIDS 2-55

2.7.3.1 Same Frequency and Phase 2-55

2.7.3.2 Same Frequency but Different Phases 2-55

2.7.3.3 Multiple Sinusoids of Different Frequencies 2-60

2.7.3.4 Beats involving two Sinusoids 2-61

2.7.4 MULTIPLICATION OF SINUSOIDS 2-63

2.8 LOGARITHMIC UNITS 2-64

2.8.1 LOGARITHMIC UNITS FOR SYSTEM GAIN 2-67

2.8.2 LOGARITHMIC UNITS FOR VOLTAGE, POWER AND OTHER QUANTITIES 2-69

2.8.3 LOGARITHMIC UNIT DOS AND DON'TS 2-72

2.9 CALIBRATION OF A SIGNAL TRANSMISSION PATH 2-78

2.10 SYSTEMS AND THEIR PROPERTIES 2-80

2.10.1 MEMORY 2-82

2.10.2 STABILITY 2-84

2.10.3 CAUSALITY 2-85

2.10.4 LINEARITY 2-86

2.10.5 TIME INVARIANCE 2-92

2.10.6 INVERTIBILITY 2-95

2.11 SUMMARY 2-98

2.12 QUESTIONS 2-100

3 TIME DOMAIN ANALYSIS OF SIGNALS AND SYSTEMS 3-2

3.1 INTRODUCTION 3-3

3.2 BASIC SIGNAL OPERATIONS 3-4

3.2.1 TIME SHIFTING (SIGNAL DELAY AND ADVANCE) 3-4

3.2.2 TIME REVERSAL 3-8

3.2.3 TIME SCALING 3-11

3.3 RANDOM SIGNALS 3-13

3.3.1 RANDOM PROCESSES 3-13

3.3.2 RANDOM SIGNAL PARAMETERS 3-14

3.3.3 STATIONARITY AND ERGODICITY 3-19

3.4 STANDARD DISTRIBUTION FUNCTIONS 3-21

3.4.1 GAUSSIAN OR NORMAL DISTRIBUTION 3-21

3.4.2 RAYLEIGH DISTRIBUTION 3-27

3.4.3 LOGNORMAL DISTRIBUTION 3-35

3.4.4 RICIAN DISTRIBUTION 3-43

3.4.5 EXPONENTIAL AND POISSON DISTRIBUTIONS 3-49

3.5 SIGNAL CHARACTERISATION 3-57

3.5.1 MEAN 3-57

3.5.2 POWER 3-59

3.5.3 ENERGY 3-64

3.5.4 ROOT MEAN SQUARE VALUE 3-65

3.5.5 AUTOCORRELATION 3-71

3.5.6 COVARIANCE AND CORRELATION COEFFICIENT 3-78

3.6 LINEAR TIME INVARIANT SYSTEM ANALYSIS 3-86

3.6.1 LTI SYSTEM RESPONSE 3-88

3.6.2 EVALUATION OF CONVOLUTION INTEGRAL 3-94

3.6.3 EVALUATION OF CONVOLUTION SUM 3-100

3.6.4 AUTOCORRELATION AND CONVOLUTION 3-109

3.7 SUMMARY 3-110

3.8 REFERENCES 3-112

3.9 QUESTIONS 3-112

4 FREQUENCY DOMAIN ANALYSIS OF SIGNALS AND SYSTEMS 4-2

4.1 INTRODUCTION 4-3

4.2 FOURIER SERIES 4-6

4.2.1 SINUSOIDAL FORM OF FOURIER SERIES 4-8

4.2.2 COMPLEX EXPONENTIAL FORM OF FOURIER SERIES 4-32

4.2.3 AMPLITUDE AND PHASE SPECTRA 4-37

4.2.3.1 Double-sided Spectrum 4-41

4.2.3.2 Single-sided Spectrum 4-43

4.2.4 FOURIER SERIES APPLICATION TO SELECTED WAVEFORMS 4-53

4.2.4.1 Flat-Top Sampled Signal 4-54

4.2.4.2 Binary ASK Signal and Sinusoidal Pulse Train 4-62

4.2.4.3 Trapezoidal Pulse Train 4-70

4.3 FOURIER TRANSFORM 4-75

4.3.1 PROPERTIES OF THE FOURIER TRANSFORM 4-81

4.3.2 TABLE OF FOURIER TRANSFORMS 4-92

4.3.3 FOURIER TRANSFORM OF PERIODIC SIGNALS 4-99

4.4 DISCRETE FOURIER TRANSFORM 4-101

4.4.1 PROPERTIES OF THE DISCRETE FOURIER TRANSFORM 4-111

4.4.2 FAST FOURIER TRANSFORM 4-113

4.4.3 PRACTICAL ISSUES IN DFT IMPLEMENTATION 4-123

4.4.3.1 Aliasing 4-124

4.4.3.2 Frequency Resolution 4-124

4.4.3.3 Spectral Leakage 4-125

4.4.3.4 Spectral Smearing 4-126

4.4.3.5 Spectral Density and its Variance 4-129

4.5 LAPLACE AND Z TRANSFORMS 4-134

4.5.1 LAPLACE TRANSFORM 4-134

4.5.2 Z-TRANSFORM 4-136

4.6 INVERSE RELATIONSHIP BETWEEN TIME AND FREQUENCY DOMAINS 4-142

4.7 FREQUENCY DOMAIN CHARACTERISATION OF LTI SYSTEMS 4-144

4.7.1 TRANSFER FUNCTION 4-144

4.7.2 OUTPUT SPECTRAL DENSITY OF LTI SYSTEMS 4-151

4.7.3 SIGNAL AND SYSTEM BANDWIDTHS 4-152

4.7.3.1 Subjective Bandwidth 4-154

4.7.3.2 Null Bandwidth 4-155

4.7.3.3 3-dB Bandwidth 4-155

4.7.3.4 Fractional Power Containment Bandwidth 4-157

4.7.3.5 Noise Equivalent Bandwidth 4-159

4.7.4 DISTORTIONLESS TRANSMISSION 4-163

4.7.5 ATTENUATION AND DELAY DISTORTIONS 4-167

4.7.6 NONLINEAR DISTORTIONS 4-168

4.8 SUMMARY 4-172

4.9 REFERENCES 4-175

4.10 QUESTIONS 4-176

5 TRANSMISSION MEDIA 5-3

5.1 INTRODUCTION 5-4

5.2 METALLIC LINE SYSTEMS 5-5

5.2.1 WIRE PAIRS 5-6

5.2.2 COAXIAL CABLE 5-10

5.2.3 ATTENUATION IN METALLIC LINES 5-13

5.3 TRANSMISSION LINE THEORY 5-15

5.3.1 INCIDENT AND REFLECTED WAVES 5-20

5.3.2 SECONDARY LINE CONSTANTS 5-21

5.3.3 CHARACTERISTIC IMPEDANCE 5-25

5.3.4 REFLECTION AND TRANSMISSION COEFFICIENTS 5-29

5.3.5 STANDING WAVES 5-33

5.3.6 LINE IMPEDANCE AND ADMITTANCE 5-37

5.3.7 LINE TERMINATION AND IMPEDANCE MATCHING 5-47

5.3.8 SCATTERING PARAMETERS 5-57

5.3.9 SMITH CHART 5-61

5.4 OPTICAL FIBRE 5-64

5.4.1 OPTICAL FIBRE TYPES 5-69

5.4.2 COUPLING OF LIGHT INTO FIBRE 5-71

5.4.3 ATTENUATION IN OPTICAL FIBRE 5-75

5.4.3.1 Intrinsic Fibre Loss 5-76

5.4.3.2 Extrinsic Fibre Loss 5-80

5.4.4 DISPERSION IN OPTICAL FIBRE 5-82

5.5 RADIO 5-88

5.5.1 MAXWELL'S EQUATIONS 5-91

5.5.2 RADIO WAVE PROPAGATION MODES 5-94

5.5.3 RADIO WAVE PROPAGATION EFFECTS 5-100

5.5.3.1 Ionospheric Effects 5-100

5.5.3.2 Tropospheric Attenuation 5-102

5.5.3.3 Tropospheric scintillation 5-107

5.5.3.4 Depolarisation 5-108

5.5.3.5 Tropospheric Refraction 5-109

5.5.4 REFLECTION AND REFRACTION 5-113

5.5.5 ROUGH SURFACE SCATTERING 5-125

5.5.6 DIFFRACTION 5-129

5.5.6.1 Diffraction Configuration and Terms 5-129

5.5.6.2 Fresnel Zones 5-132

5.5.6.3 Knife Edge Diffraction Loss 5-133

5.5.7 PATH LOSS 5-139

5.5.7.1 Free Space Path Loss 5-140

5.5.7.2 Plane Earth Propagation Path Loss 5-144

5.5.7.3 Terrestrial Cellular Radio Path Loss 5-148

5.5.8 RADIO FREQUENCY ALLOCATION 5-151

5.6 SUMMARY 5-153

5.7 REFERENCES 5-155

5.8 QUESTIONS 5-156

6 NOISE IN COMMUNICATION SYSTEMS 6-2

6.1 INTRODUCTION 6-3

6.2 PHYSICAL SOURCES OF RANDOM NOISE 6-5

6.3 ADDITIVE WHITE GAUSSIAN NOISE 6-15

6.3.1 GAUSSIAN PDF OF NOISE 6-15

6.3.2 WHITE NOISE 6-17

6.3.3 CANONICAL AND ENVELOPE REPRESENTATIONS OF NOISE 6-25

6.4 SYSTEM NOISE CALCULATIONS 6-30

6.4.1 AVAILABLE NOISE POWER 6-30

6.4.2 EQUIVALENT NOISE TEMPERATURE 6-32

6.4.3 NOISE FIGURE OF A SINGLE SYSTEM 6-33

6.4.4 NOISE FIGURE OF CASCADED SYSTEMS 6-37

6.4.5 OVERALL SYSTEM NOISE TEMPERATURE 6-43

6.4.6 SIGNAL-TO-NOISE RATIO 6-45

6.5 NOISE EFFECTS IN COMMUNICATION SYSTEMS 6-49

6.5.1 SNR IN ANALOGUE COMMUNICATION SYSTEMS 6-49

6.5.2 BER IN DIGITAL COMMUNICATION SYSTEMS 6-54

6.6 SUMMARY 6-62

6.7 REFERENCES 6-62

6.8 QUESTIONS 6-63

7 AMPLITUDE MODULATION 7-2

7.1 INTRODUCTION 7-3

7.2 AM SIGNALS TIME DOMAIN DESCRIPTION 7-4

7.2.1 AM WAVEFORM 7-5

7.2.2 SKETCHING AM WAVEFORMS 7-6

7.2.3 MODULATION FACTOR 7-7

7.3 SPECTRUM AND POWER OF AMPLITUDE MODULATED SIGNALS 7-12

7.3.1 SINUSOIDAL MODULATING SIGNAL 7-12

7.3.2 ARBITRARY MESSAGE SIGNAL 7-16

7.3.3 POWER 7-18

7.4 AM MODULATORS 7-23

7.4.1 GENERATION OF AM SIGNAL 7-23

7.4.1.1 Linearly-Varied-Gain Modulator 7-23

7.4.1.2 Switching and Square-law Modulators 7-25

7.4.2 AM TRANSMITTERS 7-29

7.4.2.1 Low-level transmitter 7-29

7.4.2.2 High-level transmitter 7-29

7.5 AM DEMODULATORS 7-30

7.5.1 DIODE DEMODULATOR 7-31

7.5.2 COHERENT DEMODULATOR 7-36

7.5.3 AM RECEIVERS 7-38

7.5.3.1 Tuned Radio Frequency (RF) Receiver 7-39

7.5.3.2 Superheterodyne Receiver 7-40

7.6 MERITS, DEMERITS, AND APPLICATION OF AM 7-44

7.7 VARIANTS OF AM 7-45

7.7.1 DSB 7-45

7.7.1.1 Waveform & Spectrum of DSB 7-45

7.7.1.2 DSB Modulator 7-46

7.7.1.3 DSB Demodulator 7-50

7.7.1.4 DSB Applications 7-52

7.7.2 SSB 7-55

7.7.2.1 Merits and Demerits of SSB 7-55

7.7.2.2 SSB Modulators 7-58

7.7.2.3 SSB Demodulator 7-62

7.7.2.4 Applications of SSB 7-63

7.7.3 ISB 7-64

7.7.3.1 ISB Modulator 7-65

7.7.3.2 ISB Demodulator 7-65

7.7.3.3 ISB Merits, Demerit, and Application 7-66

7.7.4 VSB 7-67

7.7.4.1 VSB Modulator 7-68

7.7.4.2 VSB Demodulator 7-69

7.8 SUMMARY 7-70

7.9 QUESTIONS 7-73

8 FREQUENCY AND PHASE MODULATION 8-3

8.1 INTRODUCTION 8-4

8.2 BASIC CONCEPTS OF FM & PM 8-5

8.2.1 FREQUENCY MODULATION CONCEPTS 8-7

8.2.2 PHASE MODULATION CONCEPTS 8-12

8.2.3 RELATIONSHIP BETWEEN FM & PM 8-16

8.2.3.1 Frequency Variations in PM 8-17

8.2.3.2 Phase Variations in FM 8-20

8.3 FM AND PM WAVEFORMS 8-25

8.3.1 SKETCHING SIMPLE WAVEFORMS 8-26

8.3.2 GENERAL WAVEFORM 8-27

8.4 SPECTRUM AND POWER OF FM AND PM 8-33

8.4.1 NARROWBAND FM AND PM 8-34

8.4.1.1 Frequency Components 8-34

8.4.1.2 Comparing AM, NBFM, and NBPM 8-37

8.4.1.3 Amplitude Variations in NBFM and NBPM 8-41

8.4.2 WIDEBAND FM AND PM 8-43

8.4.2.1 Spectrum 8-45

8.4.2.2 Power 8-54

8.4.2.3 Bandwidth 8-55

8.4.2.4 FM or PM? 8-60

8.5 FM AND PM MODULATORS 8-61

8.5.1 NARROWBAND MODULATORS 8-61

8.5.2 INDIRECT WIDEBAND MODULATORS 8-64

8.5.3 DIRECT WIDEBAND MODULATORS 8-68

8.5.3.1 LCO Modulator 8-70

8.5.3.2 VCO Modulator 8-73

8.6 FM AND PM DEMODULATORS 8-75

8.6.1 DIRECT DEMODULATOR 8-75

8.6.1.1 Filter-based Demodulator 8-75

8.6.1.2 Digital Demodulator 8-76

8.6.2 INDIRECT DEMODULATOR 8-77

8.6.2.1 PLL Demodulation Process 8-78

8.6.2.2 PLL States 8-80

8.6.2.3 PLL Features 8-81

8.6.3 PHASE DEMODULATOR 8-81

8.6.4 FREQUENCY DISCRIMINATORS 8-82

8.6.4.1 Differentiators 8-82

8.6.4.1.1 Delay-line Differentiator 8-83

8.6.4.1.2 RC Differentiator 8-84

8.6.4.2 Tuned Circuits 8-85

8.7 FM TRANSMITTER & RECEIVER 8-85

8.7.1 TRANSMITTER 8-85

8.7.2 SNR AND BANDWIDTH TRADE-OFF 8-87

8.7.3 PRE-EMPHASIS AND DE-EMPHASIS 8-88

8.7.4 RECEIVER 8-90

8.8 NOISE EFFECT IN FM 8-90

8.9 OVERVIEW OF FM & PM FEATURES 8-99

8.9.1 MERITS 8-100

8.9.2 DEMERITS 8-101

8.9.3 APPLICATIONS 8-101

8.10 SUMMARY 8-103

8.11 QUESTIONS 8-103

9 SAMPLING 9-1

9.1 INTRODUCTION 9-1

9.2 SAMPLING THEOREM 9-2

9.3 PROOF OF SAMPLING THEOREM 9-3

9.3.1 LOWPASS SIGNALS 9-5

9.3.2 BANDPASS SIGNALS 9-6

9.3.3 SAMPLING AT NYQUIST RATE 9-11

9.4 ALIASING 9-12

9.5 ANTI-ALIAS FILTER 9-17

9.6 NON-INSTANTANEOUS SAMPLING 9-21

9.6.1 NATURAL SAMPLING 9-21

9.6.2 FLAT-TOP SAMPLING 9-23

9.6.3 APERTURE EFFECT 9-27

9.7 SUMMARY 9-29

9.8 REFERENCES 9-30

9.9 QUESTIONS 9-30

10 DIGITAL BASEBAND CODING 10-2

10.1 INTRODUCTION 10-3

10.2 CONCEPT AND CLASSES OF QUANTISATION 10-4

10.3 UNIFORM QUANTISATION 10-13

10.3.1 QUANTISATION NOISE 10-14

10.3.2 DYNAMIC RANGE OF A QUANTISER 10-16

10.3.3 SIGNAL TO QUANTISATION NOISE RATIO (SQNR) 10-17

10.3.4 DESIGN CONSIDERATIONS 10-20

10.3.5 DEMERITS OF UNIFORM QUANTISATION 10-22

10.4 NON-UNIFORM QUANTISATION 10-24

10.4.1 COMPRESSOR CHARACTERISTIC 10-25

10.4.2 A-LAW COMPANDING 10-28

10.4.3 MU-LAW COMPANDING 10-30

10.4.4 COMPANDING GAIN AND PENALTY 10-33

10.4.5 PRACTICAL NON-LINEAR PCM 10-38

10.4.6 SQNR OF PRACTICAL NON-LINEAR PCM 10-45

10.5 DIFFERENTIAL PCM (DPCM) 10-50

10.5.1 ADAPTIVE DIFFERENTIAL PULSE CODE MODULATION (ADPCM) 10-54

10.5.2 DELTA MODULATION 10-55

10.5.2.1 Quantisation Error 10-55

10.5.2.2 Prediction Filter 10-57

10.5.2.3 Design Parameters 10-57

10.5.2.4 Merits and Demerits of DM 10-58

10.5.2.5 Adaptive Delta Modulation (ADM) 10-60

10.5.2.6 Delta Sigma Modulation 10-61

10.6 LOW BIT RATE SPEECH CODING 10-61

10.6.1 WAVEFORM CODERS 10-65

10.6.2 VOCODERS 10-66

10.6.2.1 IMBE 10-67

10.6.2.2 LPC 10-67

10.6.2.3 MELP 10-68

10.6.3 HYBRID CODERS 10-68

10.6.3.1 APC 10-69

10.6.3.2 MPE-LPC 10-69

10.6.3.3 CELP 10-70

10.7 LINE CODES 10-70

10.7.1 NRZ CODES 10-70

10.7.2 RZ CODES 10-72

10.7.3 BIPHASE CODES 10-73

10.7.4 RLL CODES 10-74

10.7.5 BLOCK CODES 10-76

10.8 SUMMARY 10-81

10.9 REFERENCES 10-84

10.10 QUESTIONS 10-84

11 DIGITAL MODULATED TRANSMISSION 11-3

IN THIS CHAPTER 11-3

11.1 INTRODUCTION 11-4

11.2 ORTHOGONALITY OF ENERGY SIGNALS 11-8

11.3 SIGNAL SPACE 11-12

11.3.1 INTERPRETATION OF SIGNAL SPACE DIAGRAMS 11-13

11.3.2 COMPLEX NOTATION FOR 2D SIGNAL SPACE 11-18

11.3.3 SIGNAL SPACE WORKED EXAMPLES 11-20

11.4 DIGITAL TRANSMISSION MODEL 11-27

11.5 NOISE EFFECTS 11-29

11.6 SYMBOL AND BIT ERROR RATIOS 11-32

11.6.1 SPECIAL CASES 11-35

11.6.2 ARBITRARY BINARY TRANSMISSION 11-39

11.7 BINARY MODULATION 11-45

11.7.1 ASK 11-45

11.7.2 PSK 11-47

11.7.3 FSK 11-49

11.7.3.1 Generation 11-49

11.7.3.2 Spectrum 11-50

11.7.3.3 Frequency Spacing and MSK 11-51

11.7.4 MINIMUM TRANSMISSION BANDWIDTH 11-53

11.8 COHERENT BINARY DETECTION 11-54

11.8.1 ASK DETECTOR 11-55

11.8.2 PSK DETECTOR 11-56

11.8.3 FSK DETECTOR 11-56

11.9 NONCOHERENT BINARY DETECTION 11-58

11.9.1 NONCOHERENT ASK DETECTOR 11-60

11.9.2 NONCOHERENT FSK DETECTOR 11-61

11.9.3 DPSK 11-63

11.10 M-ARY TRANSMISSION 11-65

11.10.1 BANDWIDTH EFFICIENCY 11-65

11.10.2 M-ARY ASK 11-68

11.10.2.1 M-ary ASK Modulator 11-68

11.10.2.2 M-ary ASK Detector 11-71

11.10.2.3 BER of M-ary ASK 11-72

11.10.3 M-ARY PSK 11-76

11.10.3.1 QPSK Modulator and Detector 11-77

11.10.3.2 M-ary PSK Modulator and Detector 11-79

11.10.3.3 BER of M-ary PSK 11-83

11.10.4 M-ARY FSK 11-87

11.10.4.1 M-ary FSK Modulator and Detector 11-87

11.10.4.2 BER of M-ary FSK 11-88

11.10.4.3 Noise-Bandwidth Trade-off in M-ary FSK 11-89

11.10.5 M-ARY APSK 11-90

11.10.5.1 16-APSK 11-91

11.10.5.2 BER of Square M-ary APSK 11-94

11.11 DESIGN PARAMETERS 11-95

11.12 SUMMARY 11-102

11.13 REFERENCES 11-104

11.14 QUESTIONS 11-105

12 PULSE SHAPING AND DETECTION 12-2

12.1 INTRODUCTION 12-3

12.2 ANTI-ISI FILTERING 12-6

12.2.1 NYQUIST FILTERING 12-8

12.2.2 RAISED COSINE FILTERING 12-10

12.2.3 SQUARE ROOT RAISED COSINE FILTERING 12-13

12.2.4 DUOBINARY SIGNALLING 12-16

12.2.4.1 Cosine Filter 12-17

12.2.4.2 Signal Power Trade-off 12-21

12.2.4.3 Sine Filter 12-22

12.2.4.4 Polybinary Signalling 12-23

12.3 INFORMATION CAPACITY LAW 12-25

12.4 THE DIGITAL RECEIVER 12-37

12.4.1 ADAPTIVE EQUALISATION 12-37

12.4.2 MATCHED FILTER 12-38

12.4.2.1 Specification of a Matched Filter 12-39

12.4.2.2 Matched Filter by Correlation 12-42

12.4.2.3 Matched Filter Worked Examples 12-44

12.4.3 CLOCK EXTRACTION 12-53

12.4.4 EYE DIAGRAMS 12-54

12.5 SUMMARY 12-55

12.6 REFERENCES 12-57

12.7 QUESTIONS 12-57

13 MULTIPLEXING STRATEGIES 13-2

13.1 INTRODUCTION 13-3

13.2 FREQUENCY DIVISION MULTIPLEXING 13-8

13.2.1 GENERAL CONCEPTS 13-8

13.2.2 DEMERITS OF FLAT-LEVEL FDM 13-11

13.2.3 FUTURE OF FDM TECHNOLOGY 13-14

13.2.4 FDM HIERARCHIES 13-15

13.2.4.1 UK System 13-17

13.2.4.2 European System 13-19

13.2.4.3 Bell System 13-20

13.2.4.4 Non-Voice Signals 13-21

13.2.5 WAVELENGTH DIVISION MULTIPLEXING 13-23

13.3 TIME DIVISION MULTIPLEXING 13-26

13.3.1 GENERAL CONCEPTS 13-26

13.3.2 PLESIOCHRONOUS DIGITAL HIERARCHY 13-30

13.3.2.1 E1 System 13-31

13.3.2.2 T1 and J1 Systems 13-36

13.3.2.3 PDH Problems 13-41

13.3.3 SYNCHRONOUS DIGITAL HIERARCHY 13-42

13.3.3.1 SDH Rates 13-42

13.3.3.2 SDH Frame Structure 13-43

13.3.3.3 SONET 13-49

13.3.4 ATM 13-50

13.3.4.1 ATM Layered Architecture 13-53

13.3.4.2 ATM Network Components 13-56

13.3.4.3 ATM Cell Header 13-57

13.3.4.4 ATM Features Summary 13-59

13.3.4.5 ATM versus IP 13-60

13.4 CODE DIVISION MULTIPLEXING 13-61

13.4.1 TYPES OF SPREAD SPECTRUM MODULATION 13-62

13.4.2 CDM TRANSMITTER 13-65

13.4.3 CDM RECEIVER 13-67

13.4.4 CRUCIAL FEATURES OF CDM 13-72

13.4.4.1 Synchronisation 13-72

13.4.4.2 Cross-correlation of PN Codes 13-74

13.4.4.3 Power Control 13-75

13.4.4.4 Processing Gain 13-76

13.5 MULTIPLE ACCESS 13-79

13.5.1 FDMA 13-79

13.5.2 TDMA 13-81

13.5.3 CDMA 13-84

13.5.4 HYBRID SCHEMES 13-85

13.6 SUMMARY 13-86

13.7 QUESTIONS 13-87
IFIOK OTUNG, holds a PhD in Satellite Communications from the University of Surrey, UK and First-Class Honours and Master's degrees in Electrical and Electronic Engineering from the University of Ife, Nigeria. He is a Chartered Engineer and award-winning academic who has made significant contributions to engineering education and research around the world over many years, especially in the UK, Europe, US, Canada, India, China, Japan and Africa. His professional memberships include the IET (Institution of Engineering and Technology) and AIAA (American Institute of Aeronautics and Astronautics). For more information on Professor Otung's professional affiliations and work, see https://professorifiokotung.com/.