Wiley-VCH, Berlin Photonic Quantum Technologies Cover The book reviews cutting-edge research in photonic quantum technologies and bridges fundamentals of .. Product #: 978-3-527-41412-3 Regular price: $242.06 $242.06 Auf Lager

Photonic Quantum Technologies

Science and Applications. Two-volume set

Benyoucef, Mohamed (Herausgeber)

Cover

1. Auflage Juni 2023
816 Seiten, Hardcover
142 Abbildungen
13 Tabellen
Monographie

ISBN: 978-3-527-41412-3
Wiley-VCH, Berlin

Kurzbeschreibung

The book reviews cutting-edge research in photonic quantum technologies and bridges fundamentals of the field with the already available experimental implementations and practical applications of quantum systems.

Jetzt kaufen

Preis: 259,00 €

Preis inkl. MwSt, zzgl. Versand

Weitere Versionen

epubmobipdf

Brings together top-level research results to enable the development of practical quantum devices

In Photonic Quantum Technologies: Science and Applications, the editor Mohamed Benyoucef and a team of distinguished scientists from different disciplines deliver an authoritative, one-stop overview of up-to-date research on various quantum systems. This unique book reviews the state-of-the-art research in photonic quantum technologies and bridges the fundamentals of the field with applications to provide readers from academia and industry, in one-location resource, with cutting-edge knowledge they need to have to understand and develop practical quantum systems for application in e.g., secure quantum communication, quantum metrology, and quantum computing. The book also addresses fundamental and engineering challenges en route to workable quantum devices and ways to circumvent or overcome them.

Readers will also find:

* A thorough introduction to the fundamentals of quantum technologies, including discussions of the second quantum revolution (by Nobel Laureate Alain Aspect), solid-state quantum optics, and non-classical light and quantum entanglement
* Comprehensive explorations of emerging quantum technologies and their practical applications, including quantum repeaters, satellite-based quantum communication, quantum networks, silicon quantum photonics, integrated quantum systems, and future vision
* Practical discussions of quantum technologies with artificial atoms, color centers, 2D materials, molecules, atoms, ions, atom-atom entanglement, and optical clocks

Perfect for molecular and solid-state physicists, Photonic Quantum Technologies: Science and Applications will also benefit industrial and academic researchers in photonics and quantum optics, graduate students in the field; engineers, chemists, and computer and material scientists.

Introduction to Quantum Photonics

PART I: FUNDAMENTALS OF QUANTUM TECHNOLOGIES

The second quantum revolution: from basic concepts to quantum technologies
Solid state quantum emitters
Single photon sources for multi-photon applications
Quantum Key Distribution Protocols
From basic science to technological development: the case for two avenues
Quantum Networks in Space

PART II: ATOMS, IONS, AND MOLECULES: FROM EXPERIMENTAL TECHNIQUES TO RECENT PROGRESS

Fluorescence spectroscopy in planar dielectric and metallic systems
Single Trapped Neutral Atoms in Optical Lattices
Long Distance Entanglement of Atomic Qubits
Collective Light emission of ion crystals in correlated Dicke states
Single Molecule Magnets Spin Devices
Molecular-ion quantum technologies
Optical atomic clocks

PART III: SPIN QUBITS AND QUANTUM MEMORIES: FROM SPIN PROPERTIES TO PHYSICAL REALIZATIONS

Coherent Spin Dynamics of Colloidal Nanocrystals
Relaxation of Electron and Hole Spin Qubits in III-V Quantum Dots
Ensemble-Based Quantum Memory: Principle, Advance, and Application

PART IV: SOLID-STATE AND VAN DER WAALS MATERIAL PLATFORMS: FROM SINGLE QUANTUM EMITTERS TO HYBRID INTEGRATION

Telecom wavelengths InP-based quantum dots for quantum communication
Quantum Optics with Solid-State Colour Centres
Quantum photonics with 2D semiconductors
Nano-opto-electro-mechanical systems for integrated quantum photonics
Silicon Quantum Photonics Platform

PART V: EMERGING QUANTUM TECHNOLOGIES: CHALLENGES AND POTENTIAL APPLICATIONS

Photonic realization of qubit quantum computing
Fiber-Based Quantum Repeaters
Long-distance satellite-based quantum communication
Quantum Communication Networks for 6G
Mohamed Benyoucef is a Professor of Physics at the University of Kassel. He received his PhD degree from the University of Bristol (United Kingdom), and his habilitation from the University of Kassel (Germany). His research focuses on quantum dots, quantum optics and nanophononics, including the development of novel and advanced quantum nanoarchitectures; the integration of III-V semiconductor light sources into silicon, fabrication, and characterization of nano-/micro-cavities in combination with integrated quantum emitters; the study of molecule complexes and their integration into solid-state platforms as hybrid quantum systems for quantum technology applications.