John Wiley & Sons Antenna-in-Package Technology and Applications Cover A comprehensive guide to antenna design, manufacturing processes, antenna integration, and packaging.. Product #: 978-1-119-55663-3 Regular price: $123.36 $123.36 In Stock

Antenna-in-Package Technology and Applications

Liu, Duixian / Zhang, Yueping

Wiley - IEEE

Cover

1. Edition April 2020
416 Pages, Hardcover
Wiley & Sons Ltd

ISBN: 978-1-119-55663-3
John Wiley & Sons

Buy now

Price: 132,00 €

Price incl. VAT, excl. Shipping

Further versions

epubmobipdf

A comprehensive guide to antenna design, manufacturing processes, antenna integration, and packaging

Antenna-in-Package Technology and Applications contains an introduction to the history of AiP technology. It explores antennas and packages, thermal analysis and design, as well as measurement setups and methods for AiP technology. The authors--well-known experts on the topic--explain why microstrip patch antennas are the most popular and describe the myriad constraints of packaging, such as electrical performance, thermo-mechanical reliability, compactness, manufacturability, and cost. The book includes information on how the choice of interconnects is governed by JEDEC for automatic assembly and describes low-temperature co-fired ceramic, high-density interconnects, fan-out wafer level packaging-based AiP, and 3D-printing-based AiP.
The book includes a detailed discussion of the surface laminar circuit-based AiP designs for large-scale mm-wave phased arrays for 94-GHz imagers and 28-GHz 5G New Radios. Additionally, the book includes information on 3D AiP for sensor nodes, near-field wireless power transfer, and IoT applications. This important book:

* Includes a brief history of antenna-in-package technology
* Describes package structures widely used in AiP, such as ball grid array (BGA) and quad flat no-leads (QFN)
* Explores the concepts, materials and processes, designs, and verifications with special consideration for excellent electrical, mechanical, and thermal performance

Written for students in electrical engineering, professors, researchers, and RF engineers, Antenna-in-Package Technology and Applications offers a guide to material selection for antennas and packages, antenna design with manufacturing processes and packaging constraints, antenna integration, and packaging.

List of Contributors xiii

Preface xv

Abbreviations xix

1 Introduction 1
Yueping Zhang

1.1 Background 1

1.2 The Idea 3

1.3 Exploring the Idea 4

1.3.1 Bluetooth Radio and Other RF Applications 4

1.3.2 60-GHz Radio and Other Millimeter-wave Applications 7

1.4 Developing the Idea into a Mainstream Technology 8

1.5 Concluding Remarks 11

Acknowledgements 12

References 12

2 Antennas 17
Yueping Zhang

2.1 Introduction 17

2.2 Basic Antennas 17

2.2.1 Dipole 17

2.2.2 Monopole 18

2.2.3 Loop 18

2.2.4 Slot 19

2.3 Unusual Antennas 19

2.3.1 Laminated Resonator Antenna 19

2.3.2 Dish-like Reflector Antenna 19

2.3.3 Slab Waveguide Antenna 20

2.3.4 Differentially Fed Aperture Antenna 20

2.3.5 Step-profiled Corrugated Horn Antenna 21

2.4 Microstrip Patch Antennas 21

2.4.1 Basic Patch Antennas 21

2.4.2 Stacked Patch Antennas 25

2.4.3 Patch Antenna Arrays 27

2.5 Microstrip Grid Array Antennas 30

2.5.1 Basic Configuration 31

2.5.2 Principle of Operation 31

2.5.3 Design Formulas with an Example 32

2.6 Yagi-Uda Antennas 37

2.6.1 Horizontal Yagi-Uda Antenna 38

2.6.2 Vertical Yagi-Uda Antenna 38

2.6.3 Yagi-Uda Antenna Array 39

2.7 Magneto-Electric Dipole Antennas 41

2.7.1 Single-polarized Microstrip Magneto-electric Dipole Antenna 42

2.7.2 Dual-polarized Microstrip Magneto-electric Dipole Antenna 42

2.7.3 Simulated and Measured Results 45

2.8 Performance Improvement Techniques 45

2.8.1 Single-layer Spiral AMC 49

2.8.2 Design Guidelines 49

2.8.3 A Design Example 50

2.9 Summary 50

Acknowledgements 50

References 51

3 Packaging Technologies 57
Ning Ye

3.1 Introduction 57

3.2 Major Packaging Milestones 57

3.3 Packaging Taxonomy 58

3.3.1 Routing Layer in Packages 58

3.3.1.1 Lead Frame 58

3.3.1.2 Laminate 59

3.3.1.3 Redistribution Layer 61

3.3.2 Die to Routing Layer Interconnect 62

3.3.2.1 Wire Bonds 62

3.3.2.2 Flip Chips 63

3.4 Packaging Process for Several Major Packages 64

3.4.1 Wire Bond Plastic Ball Grid Array 64

3.4.1.1 Die Preparation 66

3.4.1.2 Die Attach 66

3.4.1.3 Wire Bonding 67

3.4.1.4 Molding 69

3.4.1.5 Ball Mounting 71

3.4.1.6 Package Singulation 71

3.4.2 Wire Bond Quad Flat No-Lead Packages 71

3.4.3 Flip-chip Plastic Ball Grid Arrays 73

3.4.3.1 Flip-chip Bumping 73

3.4.3.2 Flip-chip Attach 75

3.4.3.3 Underfill 76

3.4.4 Wafer Level Packaging 77

3.4.5 Fan Out Wafer Level Packaging 78

3.5 Summary and Emerging Trends 79

References 84

4 Electrical, Mechanical, and Thermal Co-Design 89
Xiaoxiong Gu and Pritish Parida

4.1 Introduction 89

4.2 Electrical, Warpage, and Thermomechanical Analysis for AiP Co-design 92

4.2.1 28-GHz Phased Array Antenna Module Overview 92

4.2.2 Thermomechanical Test Vehicle Overview 94

4.2.3 Antenna Prototyping and Interconnect Characterization 96

4.2.4 Warpage Analysis and Test 96

4.2.5 Thermal Simulation and Characterization 98

4.3 Thermal Management Considerations for Next-generation Heterogeneous Integrated Systems 102

4.3.1 AiP Cooling Options Under Different Power Dissipation Conditions 102

4.3.2 Thermal Management for Heterogeneous Integrated High-power Systems 108

Acknowledgment 110

References 110

5 Antenna-in-Package Measurements 115
A.C.F. Reniers, U. Johannsen, and A.B. Smolders

5.1 General Introduction and Antenna Parameters 115

5.1.1 Antenna Measurement Concepts 115

5.1.2 Field Regions 116

5.1.3 Radiation Characteristics 118

5.1.4 Polarization Properties of Antennas 120

5.2 Impedance Measurements 123

5.2.1 Circuit Representation of Antennas 123

5.3 Anechoic Measurement Facility for Characterizing AiPs 128

5.3.1 Design of the mmWave Anechoic Chamber 128

5.3.2 Defining Antenna Measurement Uncertainty 129

5.3.3 Uncertainty in the mmWave Antenna Test Facility 132

5.3.4 Case Study AiP: Characterization of a mmWave Circularly Polarized Rod Antenna 132

5.4 Over-the-air System-level Testing 139

5.5 Summary and Conclusions 142

References 142

6 Antenna-in-package Designs in Multilayered Low-temperature Co-fired Ceramic Platforms 147
Atif Shamim and Haoran Zhang

6.1 Introduction 147

6.2 LTCC Technology 148

6.2.1 Introduction 149

6.2.2 LTCC Fabrication Process 150

6.2.3 LTCC Material Suppliers and Manufacturing Foundries 151

6.3 LTCC-based AiP 153

6.3.1 SIW AiP 153

6.3.2 mmWave AiP 156

6.3.2.1 5G AiP 157

6.3.2.2 WPAN (60-GHz) AiP 158

6.3.2.3 Automotive Radar (79-GHz) AiP 159

6.3.2.4 Imaging and Radar (94-GHz) AiP 160

6.3.2.5 Sub-THz (Above-100-GHz) AiP 161

6.3.3 Active Antenna in LTCC 162

6.3.4 Gain Enhancement Techniques in LTCC 164

6.3.5 Ferrite LTCC-based Antenna 167

6.4 Challenges and Upcoming Trends in LTCC AiP 171

References 172

7 Antenna Integration in Packaging Technology operating from 60 GHz up to 300 GHz (HDI-based AiP) 179
Frédéric Gianesello, Diane Titz, and Cyril Luxey

7.1 Organic Packaging Technology for AiP 179

7.1.1 Organic Package Overview 179

7.1.2 Buildup Architecture 180

7.1.3 Industrial Material 182

7.1.4 HDI Design Rules 183

7.1.5 Assembly Constraints and Body Size 185

7.2 Integration of AiP in Organic Packaging Technology Below 100 GHz 187

7.2.1 Integration Strategy of the Antenna 187

7.2.2 60-GHz AiP Modules 189

7.2.3 94-GHz AiP Module 197

7.3 Integration of AiP in Organic Packaging Technology in the 120-140-GHz Band 203

7.3.1 120-140-GHz AiP Module 203

7.3.2 Link Demonstration Using a BiCMOS Chip with the 120-GHz BGA Module 208

7.4 Integration of AiP in Organic Packaging Technology Beyond 200 GHz 210

7.5 Conclusion and Perspectives 214

References 215

8 Antenna Integration in eWLB Package 219
Maciej Wojnowski and Klaus Pressel

8.1 Introduction 219

8.2 The Embedded Wafer Level BGA Package 220

8.2.1 Process Flow for the eWLB 222

8.2.2 Vertical Interconnections in the eWLB 223

8.2.3 Embedded Z-Line Technology 225

8.3 Toolbox Elements for AiP in eWLB 227

8.3.1 Transmission Lines 227

8.3.2 Passive Components and Distributed RF Circuits 231

8.3.3 RF Transition to PCB 238

8.3.4 Vertical RF Transitions 239

8.4 Antenna Integration in eWLB 243

8.4.1 Single Antenna 244

8.4.2 Antenna Array 245

8.4.3 3D Antenna and Antenna Arrays 246

8.5 Application Examples 249

8.5.1 Two-channel 60-GHz Transceiver Module 249

8.5.2 Four-channel 77-GHz Transceiver Module 253

8.5.3 Six-channel 60-GHz Transceiver Module 258

8.6 Conclusion 263

Acknowledgement 263

References 264

9 Additive Manufacturing AiP Designs and Applications 267
Tong-Hong Lin, Ryan A. Bahr, and Manos M. Tentzeris

9.1 Introduction 267

9.2 Additive Manufacturing Technologies 269

9.2.1 Inkjet Printing 269

9.2.2 FDM 3D Printing 269

9.2.3 SLA 3D Printing 270

9.3 Material Characterization 272

9.3.1 Resonator-based Material Characterization 273

9.3.2 Transmissive-based Material Characterization 274

9.4 Recent Advances in AM for Packaging 275

9.4.1 Interconnects 276

9.4.2 AiP 277

9.5 Fabrication Process 278

9.5.1 3D Printing Process 278

9.5.2 Inkjet Printing Process 280

9.5.3 AiP Fabrication Process 281

9.6 AiP and SoP using AM Technologies 282

9.6.1 AiP Design 282

9.6.2 SoP Design 284

9.7 Summary and Prospect 287

References 289

10 SLC-based AiP for Phased Array Applications 293
Duixian Liu and Xiaoxiong Gu

10.1 Introduction 293

10.2 SLC Technology 296

10.3 AiP for 5G Base Station Applications 297

10.3.1 Package and Antenna Structure 298

10.3.2 AiP Design Considerations 299

10.3.2.1 Surface Wave Effects 299

10.3.2.2 Vertical Transitions 300

10.3.3 Aperture-coupled Patch Antenna Design 302

10.3.4 28-GHz Aperture-coupled Cavity-backed Patch Array Design 307

10.3.5 Passive Antenna Element Characterization 309

10.3.6 Active Module Characterization of 64-element Beams 310

10.3.7 28-GHz AiP Phased-array Conclusion 314

10.4 94-GHz Scalable AiP Phased-array Applications 315

10.4.1 Scalable Phased-array Concept 317

10.4.2 94-GHz Antenna Prototype Designs 320

10.4.3 94-GHz Antenna Prototype Evaluation 322

10.4.4 94-GHz AiP Array Design 322

10.4.5 Package Modeling and Simulation 326

10.4.6 Package Assembly and Test 328

10.4.7 Antenna Pattern and Radiated Power Measurement 330

Acknowledgment 333

References 334

11 3D AiP for Power Transfer, Sensor Nodes, and IoT Applications 341
Amin Enayati, Karim Mohammadpour-Aghdam, and Farbod Molaee-Ghaleh

11.1 Introduction 341

11.2 Small Antenna Design and Miniaturization Techniques 342

11.2.1 Physical Bounds on the Radiation Q-factor for Antenna Structures 342

11.2.1.1 Lower Bounds on Antenna Enclosed in a Sphere: Chu, McLean, and Thal Limits 342

11.2.1.2 Lower Bounds on Antenna Enclosed in an Arbitrary Structure: Gustafsson-Yaghjian Limit 343

11.2.2 Figure of Merit for Antenna Miniaturization 345

11.2.2.1 Relation between Q-factor and Antenna Input Impedance 345

11.2.2.2 Antenna Efficiency Effect on the Radiation Q 346

11.2.2.3 Cross-polarization Effect on Antenna Radiation Q 346

11.2.2.4 Figure of Merit Definition 346

11.2.3 Antenna Miniaturization Techniques 346

11.2.3.1 Miniaturization through Geometrical Shaping of the Antenna 347

11.2.3.2 Miniaturization through Material Loading 349

11.3 Multi-mode Capability: A Way to Achieve Wideband Antennas 354

11.4 Miniaturized Antenna Solutions for Power Transfer and Energy Harvesting Applications 355

11.4.1 Integrated Antenna Design Challenges for WPT and Scavenging Systems 356

11.4.1.1 Conjugate Impedance Matching 356

11.4.1.2 Antenna Structure Selection 357

11.4.2 Small Antenna Structure that can be Optimized for Arbitrary Input Impedance 357

11.4.2.1 Basic Antenna Structure 357

11.4.2.2 Antenna Size Reduction by Folding 358

11.4.2.3 Final Antenna Structure and Parameter Analysis 358

11.4.3 Example of an AiP Solution for On-chip Scavenging/UWB Applications 360

11.5 AiP Solutions in Low-cost PCB Technology 364

11.5.1 Introduction to Wireless Sensor Networks and IoT 364

11.5.1.1 Examples of Antennas for IoT Devices 365

11.5.2 3D System-in-Package Solutions for Microwave Wireless Devices 365

11.5.3 E-CUBE: A 3D SiP Solution 368

11.5.3.1 Multilayer Flex-rigid PCB for Antenna Element Design 369

11.5.3.2 Modular Design of the Antenna Array and Power Distribution Network 371

11.5.3.3 Construction and Measurement Results 374

References 377

Index 385
DUIXIAN LIU, PHD, is a researcher and master inventorat IBM at Thomas J. Watson Research Center. He is a co-editor of the Wiley title Advanced Millimeter-wave Technologies: Antennas, Packaging and Circuits and Springer title Handbook of Antenna Technologies. He served as an Associate Editor of the IEEE Transactions on Antennas and Propagation for nine years and a Guest Editor for the IEEE Transactions on Antennas and Propagation onfour Special Issues related to mm-wave antenna designs. He received the prestigious IEEE AP-S Sergei A. Schelkunoff Prize Paper Award in 2012. He is a Fellow of IEEE.

YUEPING ZHANG, PhD, is a Professor of Electronic Engineering at Nanyang Technological University and a Distinguished Lecturer of the IEEE Antennas and Propagation Society (IEEE AP-S). He served as an Associate Editor of the IEEE Transactions on Antennas and Propagation. He received the prestigious IEEE AP-S Sergei A. Schelkunoff Prize Paper Award in 2012. He is a Fellow of IEEE.

D. Liu, IBM