John Wiley & Sons Flexible Supercapacitor Nanoarchitectonics Cover The 21 chapters in this book presents a comprehensive overview of flexible supercapacitors using eng.. Product #: 978-1-119-71145-2 Regular price: $214.02 $214.02 In Stock

Flexible Supercapacitor Nanoarchitectonics

Inamuddin / Ahamed, Mohd Imran / Boddula, Rajender / Altalhi, Tariq A. (Editor)

Cover

1. Edition August 2021
672 Pages, Hardcover
Wiley & Sons Ltd

ISBN: 978-1-119-71145-2
John Wiley & Sons

Buy now

Price: 229,00 €

Price incl. VAT, excl. Shipping

Further versions

epubmobipdf

The 21 chapters in this book presents a comprehensive overview of flexible supercapacitors using engineering nanoarchitectures mediated by functional nanomaterials and polymers as electrodes, electrolytes, and separators, etc. for advanced energy applications. The various aspects of flexible supercapacitors, including capacitor electrochemistry, evaluating parameters, operating conditions, characterization techniques, different types of electrodes, electrolytes, and flexible substrates are covered. This is probably the first book of its type which systematically describes the recent developments and progress in flexible supercapacitor technology, and will be very helpful for generating new and innovative ideas in the field of energy storage material for wearable/flexible industry applications.

Preface xvii

1 Electrodes for Flexible Integrated Supercapacitors 1
Sajid ur Rehman and Hong Bi

1.1 Introduction and Overview of Supercapacitors 2

1.2 Electrode Materials for Flexible Supercapacitors 4

1.2.1 Carbon Materials 4

1.2.1.1 Activated Carbon 4

1.2.1.2 Carbon Nanotubes 5

1.2.1.3 Graphene 6

1.2.1.4 Carbon Aerogels 8

1.2.1.5 Graphene Hydrogel 8

1.2.2 Conducting Polymers 10

1.2.3 Metal Compounds 13

1.2.3.1 Ruthenium Oxide (RuO2) Electrode Material 14

1.2.3.2 Nickel Oxide (NiO) Electrode Material 15

1.2.3.3 Copper Oxide (CuO) Electrode Material 16

1.2.3.4 Composite Electrode Materials 17

1.3 Device Architecture of Flexible Supercapacitor 18

1.4 Integration of Flexible Supercapacitors 19

1.5 Conclusion 21

References 22

2 Flexible Supercapacitors Based on Fiber-Shape Electrodes 27
Faiza Bibi, Muhammad Inam Khan, Abdur Rahim, Nawshad Muhammad and Lucas S.S. Santos

2.1 Introduction 27

2.2 Supercapacitors 29

2.2.1 Electrochemical Supercapacitor 29

2.2.2 Flexible Supercapacitors 30

2.3 Shape Dependent Flexible Electrodes 31

2.3.1 Porous 3D Flexible Electrodes 32

2.3.2 Flexible Paper Electrodes 32

2.3.3 Flexible Fiber Electrodes 33

2.4 Fiber Shape Electrodes (FE/FSC) 34

2.4.1 Wrapping Fiber Shape Electrode/Supercapacitors 34

2.4.2 Coaxial Fiber Shape Electrode/Supercapacitor 35

2.4.3 Parallel Fiber Shape Electrode/Supercapacitor 36

2.4.4 Twisted Fiber Shape Electrode/Supercapacitor 37

2.4.5 Rolled Fiber Shape Electrode/Supercapacitors 38

2.5 Conclusion 39

References 40

3 Graphene-Based Electrodes for Flexible Supercapacitors 43
Jyoti Raghav, Sapna Raghav and Pallavi Jain

3.1 Introduction 43

3.2 Type of SCs 44

3.2.1 EDLC 44

3.2.2 PCs 45

3.2.3 Flexible Graphene-Based Nano Composites 45

3.3 Fabrication Techniques for the Electrode Materials 46

3.3.1 Electrodeposition 46

3.3.2 Direct Coating (DC) 46

3.3.3 Chemical Vapor Deposition (CVD) 48

3.3.4 Hydrothermal 48

3.4 Substrate Materials for the Flexible SCs 48

3.5 Graphene Nanocomposite-Based Electrode Materials 49

3.5.1 Additives/Graphene Electrodes 49

3.5.2 Binder/Graphene Electrodes 49

3.5.3 Pure Graphene Electrode 50

3.5.4 Conductive Polymers/Graphene Composites Electrode 50

3.5.5 Metal or Metal Oxides (MOs) Composite Electrodes 51

3.6 NSs for the Flexible SC 52

3.7 Conclusion 53

Acknowledgment 54

References 54

4 Polymer-Based Flexible Substrates for Flexible Supercapacitors 59
Zul Adlan Mohd Hir, Shaari Daud, Hartini Ahmad Rafaie, Nurul Infaza Talalah Ramli and Mohamad Azuwa Mohamed

4.1 Introduction 60

4.2 Polymers-Based Flexible Materials for Flexible Supercapacitors 61

4.3 Synthesis and Fabrication Approach of the Polymer-Based Electrode 62

4.3.1 Preparation of Polymer-Based Electrode Materials 62

4.3.1.1 Polyaniline (PANI) 63

4.3.1.2 Polypyrrole (PPy) 65

4.3.1.3 Poly (3,4-ethylenedioxythiophene) (PEDOT) 66

4.3.2 Electrode Fabrication 69

4.4 Physicochemical Characterization of Flexible Supercapacitors 70

4.4.1 Scanning Electron Microscopy 70

4.4.2 Transmission Electron Microscopy 71

4.4.3 X-Ray Diffraction 73

4.4.4 Surface Area Analysis by BET (Brunauer, Emmett and Teller) 75

4.4.5 X-Ray Photoelectron Spectroscopy (XPS) 78

4.5 Recent Findings on the Performance of Flexible Supercapacitors 79

4.5.1 Electrochemical Double-Layer Capacitor (EDLC) 80

4.5.2 Pseudocapacitor 81

4.5.3 Hybrid Supercapacitor 83

4.6 Conclusion 86

References 87

5 Carbon Substrates for Flexible Supercapacitors and Energy Storage Applications 95
Seyyed Mojtaba Mousavi, Seyyed Alireza Hashemi, Najmeh Parvin, Chin Wei Lai, Sonia Bahrani, Wei-Hung Chiang and Sargol Mazraedoost

5.1 Introduction 96

5.2 Overview of the Energy Storage System 98

5.3 Capacitors Modeling 109

5.3.1 Equivalent Circuit Models 120

5.3.2 Intelligent Models 121

5.3.3 Self-Discharge 122

5.3.4 Fractional-Order Models 122

5.3.5 Thermal Modeling 123

5.4 Industrial Applications of Capacitors 124

5.4.1 Power Electronics 124

5.4.2 Uninterruptible Power Supplies 125

5.4.3 Hybrid Energy Storage 126

5.5 Conclusions 127

References 127

6 Organic Electrolytes for Flexible Supercapacitors 143
Younus Raza Beg, Gokul Ram Nishad and Priyanka Singh

6.1 Introduction 143

6.2 Organic Electrolytes 145

6.3 Solid and Quasi-Solid-State Electrolytes 150

6.3.1 PVA-Based Gel Electrolytes 154

6.3.2 PEG-Based Gel Electrolytes 156

6.3.3 PVDF-Based Gel Electrolytes 157

6.4 Ionic Liquids-Based Electrolytes 159

6.5 Redox Active Electrolytes 165

6.6 Conclusion 167

References 170

7 Carbon-Based Electrodes for Flexible Supercapacitors Beyond Graphene 177
Sunil Kumar and Rashmi Madhuri

7.1 Introduction 178

7.2 Materials Used to Prepare Flexible Supercapacitors 179

7.2.1 Carbon Materials 180

7.2.1.1 Activated Carbon (AC) 180

7.2.1.2 Carbon Nanotubes (CNTs) 180

7.2.1.3 Graphene 181

7.2.1.4 Carbon Aerogel 181

7.2.2 Conducting Polymer 181

7.2.3 Metal Oxide 182

7.3 The Carbon-Based Electrode Used for Flexible Supercapacitors 182

7.3.1 Carbon Nanotube (CNT)-Based Materials 182

7.3.1.1 CNT-Conducting Polymer Composite as Supercapacitors 182

7.3.1.2 CNT-Metal Oxide Composite as Supercapacitors 185

7.3.2 Activated Carbon-Based Materials 191

7.3.2.1 Activated Carbon-Conducting Polymer Composite as a Supercapacitor 191

7.3.2.2 Activated Carbon-Metal Oxide Composite as a Supercapacitor 195

7.4. Conclusion 201

References 201

8 Biomass-Derived Electrodes for Flexible Supercapacitors 211
Selvasundarasekar Sam Sankar and Subrata Kundu

8.1 Introduction 211

8.1.1 Electrode Materials for Flexible Supercapacitors 213

8.2 Biomass-Derived Carbon Materials 214

8.2.1 Activation 214

8.2.1.1 Physical Activation 215

8.2.1.2 Chemical Activation 215

8.2.1.3 Other Activation 218

8.2.2 Carbonization 218

8.2.2.1 Hydrothermal Method 218

8.2.2.2 Pyrolysis Method 219

8.3 Incorporation of Biomass-Based Electrodes in Flexible Supercapacitors 220

8.4 Challenges for Using Biomass-Derived Materials 222

8.5 Conclusion 224

References 225

9 Conducting Polymer Electrolytes for Flexible Supercapacitors 233
Aqib Muzaffar, M. Basheer Ahamed and Kalim Deshmukh

9.1 Introduction 234

9.2 Components of a Supercapacitor 236

9.2.1 Electrodes 236

9.2.2 Electrolytes 237

9.2.3 Separator 238

9.2.4 Current Collectors 239

9.2.5 Sealants 239

9.3 Configuration of a Supercapacitor 240

9.4 Conducting Polymer Electrolytes 241

9.4.1 Gel Conducting Polymer Electrolytes 243

9.4.2 Ionic Liquid-Based Conducting Polymer 246

9.4.3 OH. Ion Conducting Polymers 247

9.5 Conclusion 252

References 252

10 Inorganic Electrodes for Flexible Supercapacitor 263
Muhammad Inam Khan, Faiza Bibi, Muhammad Mudassir Hassan, Nawshad Muhammad, Muhammad Tariq and Abdur Rahim

10.1 Introduction 264

10.2 Flexible Inorganic Electrode Based on Carbon Nanomaterial 265

10.2.1 Carbonaceous Material 265

10.2.1.1 Graphene 266

10.2.1.2 Graphene Oxide-Based Electrodes 268

10.2.1.3 Carbon Nanotubes 269

10.2.1.4 Carbon Films/Textiles 271

10.3 Conclusion 272

References 273

11 New-Generation Materials for Flexible Supercapacitors 277
P.E. Lokhande, U.S. Chavan, Suraj Bhosale, Amol Kalam and Sonal Deokar

11.1 Introduction 277

11.2 Taxonomy of Supercapacitor 278

11.3 Fundamentals of Supercapacitor 280

11.4 Flexible Supercapacitor 282

11.4.1 Graphene-Based Flexible Supercapacitor 282

11.4.2 Metal Oxide/Hydroxide-Based Flexible Supercapacitor 284

11.4.3 Conducting Polymer-Based Flexible Supercapacitor 290

11.5 Outlook and Perspectives 298

Acknowledgement 303

References 303

12 Asymmetric Flexible Supercapacitors: An Overview of Principle, Materials and Mechanism 315
Sabina Yeasmin and Debajyoti Mahanta

12.1 Introduction: Why Store Energy? 316

12.2 Supercapacitor: A Green Approach Towards Energy Storage 316

12.3 Flexible Supercapacitors 319

12.3.1 Solid Electrolytes 320

12.3.2 Flexible Electrodes 322

12.3.3 Cell Designs for Flexible Supercapacitor 324

12.4 Asymmetric Supercapacitor 325

12.4.1 Principle, Material and Mechanism 325

12.4.2 Performance Evaluation in Asymmetric Supercapacitor 330

12.5 Recent Advances in Flexible Asymmetric Supercapacitors 333

12.6 Conclusion 335

References 335

13 Aqueous Electrolytes for Flexible Supercapacitors 349
Dipanwita Majumdar

13.1 Introduction 350

13.1.1 Influence of Electrolytes on Performance of Supercapacitors 352

13.1.2 What is an Ideal Electrolyte? 354

13.1.3 Classes of Electrolytes for Supercapacitors 355

13.2 Electrolyte Performance-Controlling Parameters for Designing Flexible Supercapacitors 357

13.2.1 Large Electrochemical Stability 357

13.2.2 High Ionic Conductivity 357

13.2.3 Nature of Electrolyte 358

13.2.4 Dielectric Constant and Viscosity of Solvent 358

13.2.5 Low Melting and High Boiling Points 359

13.2.6 High Chemical Stability 360

13.2.7 High Flash Point 360

13.2.8 Low Cost and Availability 360

13.2.9 Influence of Pressure 360

13.2.10 Influence of Binder 361

13.3 Why Aqueous Electrolytes? 362

13.4 Acid Electrolytes 363

13.4.1 EDLC and Pseudocapacitor Electrode Materials Employing H2SO4 Aqueous Electrolyte 375

13.4.2 H2SO4 Electrolyte-Based Nanocomposite Electrode Material Supercapacitors 377

13.4.3 H2SO4 Electrolyte-Based Hybrid Supercapacitors 377

13.5 Alkaline Electrolytes 378

13.5.1 Alkaline Electrolyte-Based EDLC and Pseudocapacitors 379

13.5.2 Alkaline Electrolyte-Based Nanocomposite Supercapacitors 381

13.5.3 Alkaline Electrolyte-Based Hybrid Supercapacitors 383

13.6 Neutral Electrolyte 383

13.6.1 Neutral Salt Aqueous Electrolyte-Based EDLC and Pseudocapacitors 384

13.6.2 Neutral Salt Aqueous Electrolyte-Based Nanocomposite Supercapacitors 387

13.6.3 Neutral Electrolyte-Based Hybrid Supercapacitors 388

13.7 Comparative Electrochemical Performances in Different Aqueous Electrolytes 388

13.8 Water-in-Salt Electrolytes for Flexible Supercapacitors 394

13.9 Conclusion and Future Prospects 395

Acknowledgements 396

References 396

14 Electrodes for Flexible Micro-Supercapacitors 413
Subrata Ghosh, Jiacheng Wang, Gustavo Tontini and Suelen Barg

14.1 Introduction 413

14.2 Electrode Configurations 414

14.2.1 Sandwich muSCs 414

14.2.2 Fiber or Wire muSC 415

14.2.2.1 Parallel 416

14.2.2.2 Twisted or Two-Ply 417

14.2.2.3 Coaxial 417

14.2.2.4 Rolled 417

14.2.2.5 All-in-One 418

14.2.3 Interdigitated muSCs 418

14.3 Manufacturing Techniques 421

14.3.1 Photolithography 421

14.3.2 Electrodeposition 422

14.3.3 Laser Direct-Writing 422

14.3.3.1 Laser Carving 423

14.3.3.2 Laser Scribing 423

14.3.3.3 Laser Transfer Method 424

14.3.4 Printing 425

14.3.4.1 Screen Printing 426

14.3.4.2 Inkjet Printing 427

14.3.4.3 3D Printing 428

14.4 State-of-the-Art Electrode Materials 431

14.4.1 Nanocarbons 431

14.4.2 MXenes 433

14.4.3 Transition-Metal Chalcogenides 435

14.4.4 Metal-Based Materials 435

14.4.5 Conducting Polymers 438

14.4.6 Composites or Hybrid Structures 440

14.4.7 Symmetric vs Asymmetric 441

14.5 Conclusion and Outlook 445

Acknowledgement 446

References 447

15 Electrodes for Flexible Self-Healable Supercapacitors 461
Ayesha Taj, Rabisa Zia, Sumaira Younis, Hunza Hayat, Waheed S. Khan and Sadia Z. Bajwa

15.1 Introduction 462

15.1.1 Supercapacitors 463

15.1.2 Electric Double Layer Capacitors (EDLCs) 464

15.1.3 Hybrid Capacitors 467

15.2 Self-Healable Nanomaterials 468

15.2.1 Metallic Nanomaterials 468

15.2.2 Non-Metallic/Carbon-Based Nanomaterials 470

15.2.3 Conducting Polymer-Based Nanomaterials 471

15.3 Nanomaterials-Based Interfaces for Supercapacitors 472

15.3.1 Metal Nanomaterials-Based Interfaces for Supercapacitors 473

15.3.2 Graphene-Based Interfaces for Self-Healable Supercapacitors 474

15.3.3 CNT/GO/PANI Composites Supercapacitors 478

15.4 Conclusion 479

References 480

16 Electrodes for Flexible-Stretchable Supercapacitors 485
Ravi Arukula, Pawan K. Kahol and Ram K. Gupta

16.1 Introduction 486

16.1.1 Supercapacitors and Energy Storage Mechanisms 487

16.1.2 Flexible/Stretchable Supercapacitors 489

16.2 Electrodes for Flexible/Stretchable Supercapacitors 490

16.2.1 Metal Oxide-Based Flexible/Stretchable Supercapacitors 491

16.2.1.1 Vanadium-Based Flexible Electrodes 493

16.2.1.2 Manganese-Based Flexible/Stretchable Electrodes 494

16.2.1.3 Ruthenium-Based Flexible Electrodes 496

16.2.1.4 Other Metal Oxides-Based Flexible Electrodes 498

16.2.2 2D Materials-Based Flexible/Stretchable Supercapacitors 499

16.2.3 Carbon-Based Flexible/Stretchable Supercapacitors 504

16.2.4 Conductive Polymer-Based Flexible/Stretchable Supercapacitors 505

16.2.5 Hybrid Composites-Based Flexible/Stretchable Supercapacitors 507

16.3 Conclusion and Future Remarks 511

References 512

17 Fabrication Approaches of Energy Storage Materials for Flexible Supercapacitors 533
Mohan Kumar Anand Raj, Rajasekar Rathanasamy, Prabhakaran Paramasivam and Santhosh Sivaraj

Abbreviations 533

17.1 Intoduction 534

17.2 Classification of Flexible Supercapacitors 536

17.2.1 Materials 536

17.2.1.1 Carbon 536

17.2.1.2 Metal Oxides 537

17.2.1.3 Conducting Polymers 537

17.2.1.4 Composites 537

17.2.2 Fabrication Methods 538

17.2.2.1 Electro-Chemical Deposition Method 538

17.2.2.2 Chemical Bath Deposition (CBD) Process 539

17.2.2.3 Inkjet Printing 540

17.2.2.4 Spray Deposition Method 541

17.2.2.5 Sol-Gel Technique 542

17.2.2.6 Direct Writing Method 543

17.3 Conclusion 544

References 545

18 Nature-Inspired Electrodes for Flexible Supercapacitors 549
Aqib Muzaffar, M. Basheer Ahamed and Kalim Deshmukh

18.1 Introduction 549

18.2 Energy Storing Mechanism of Supercapacitors 552

18.2.1 Electrostatic Double Layer Capacitor (EDLC) 554

18.2.2 Pseudocapacitor 555

18.2.3 Hybrid Supercapacitor 556

18.3 Flexible Supercapacitors 557

18.4 Essential Parameters of Supercapacitors 560

18.4.1 Energy Density Parameter 560

18.4.2 Power Density Parameter 561

18.5 Natural Flexible Supercapacitors 561

18.6 Conclusion 565

References 565

19 Ionic Liquid Electrolytes for Flexible Supercapacitors 575
Udaya Bhat K. and Devadas Bhat Panemangalore

Abbreviations 575

19.1 Introduction 577

19.2 Mobile Energy Storage Systems and Supercapacitors 578

19.3 Flexible Supercapacitors: Need and Challenges 580

19.4 Developments in the Design of a Supercapacitor 581

19.5 Electrolytes for Flexible Supercapacitors 583

19.5.1 Aqueous Electrolytes 583

19.5.2 Solid Electrolytes 584

19.5.3 Liquid Electrolytes 584

19.5.4 Ionic Liquid (IL) Electrolytes 585

19.6 Gel Polymer Electrolytes (GPEs) 586

19.7 Development in ILEs 588

19.8 Design Flexibility With IL Electrolytes 594

19.9 Electrolyte-Electrode Hybrid Design 596

19.10 Ionic Liquid Electrolytes and Problem of Leakage 597

19.11 Mechanical Stability of ILs 597

19.12 Conclusions 598

References 598

20 Conducting Polymer-Based Flexible Supercapacitor Devices 611
nand I. Torvi, Satishkumar R. Naik, Sachin N. Hegde, Mohemmedumar Mulla, Ravindra R. Kamble, Geoffrey R. Mitchell and Mahadevappa Y. Kariduraganavar

20.1 Introduction 612

20.2 Principles of Supercapacitor 612

20.3 Classification of Supercapacitors 613

20.3.1 Electrochemical Double-Layer Capacitors 613

20.3.2 Pseudocapacitors 613

20.3.2.1 Conducting Polymers 614

20.4 Conducting Polymer-Based Flexible Supercapacitors 615

20.4.1 Polyaniline-Based Flexible Supercapacitors 616

20.4.2 Polypyrrole-Based Flexible Supercapacitors 618

20.4.3 Polythiophene and its Derivatives-Based Flexible Supercapacitors 621

20.5 Electrolytes for Flexible Supercapacitors 624

20.6 Conclusions and Future Perspectives 626

Acknowledgements 626

References 626

Index 635
Inamuddin PhD is an assistant professor at King Abdulaziz University, Jeddah, Saudi Arabia and is also an assistant professor in the Department of Applied Chemistry, Aligarh Muslim University, Aligarh, India. He has extensive research experience in multidisciplinary fields of analytical chemistry, materials chemistry, electrochemistry, renewable energy and environmental science. He has published about 150 research articles in various international scientific journals, 18 book chapters, and edited 60 books with multiple well-known publishers.

Mohd Imran Ahamed PhD is in the Department of Chemistry, Aligarh Muslim University, Aligarh, India. He has published several research and review articles in SCI journals. His research focuses on ion-exchange chromatography, wastewater treatment and analysis, actuators and electrospinning.

Rajender Boddula PhD is currently working for the Chinese Academy of Sciences President's International Fellowship Initiative (CAS-PIFI) at the National Center for Nanoscience and Technology (NCNST, Beijing). His academic honors include multiple fellowships and scholarships, and he has published many scientific articles in international peer-reviewed journals, edited books with numerous publishers and has authored 20 book chapters.

Tariq Altalhi PhD is Head of the Department of Chemistry and Vice Dean of Science College at Taif University, Saudi Arabia. He received his PhD from the University of Adelaide, Australia in 2014. His research interests include developing advanced chemistry-based solutions for solid and liquid municipal waste management, converting plastic bags to carbon nanotubes, and fly ash to efficient adsorbent material.

Inamuddin, King Abdulaziz University, Jeddah, Saudi Arabia; Aligarh Muslim University, Aligarh, India; M. I. Ahamed, Aligarh Muslim University, Aligarh, India; R. Boddula, National Center for Nanoscience and Technology (NCNST, Beijing)