John Wiley & Sons CubeSat Antenna Design Cover Presents an overview of CubeSat antennas designed at the Jet Propulsion Laboratory (JPL) CubeSats--.. Product #: 978-1-119-69258-4 Regular price: $129.91 $129.91 Auf Lager

CubeSat Antenna Design

Chahat, Nacer (Herausgeber)

Wiley - IEEE

Cover

1. Auflage Februar 2021
352 Seiten, Hardcover
Wiley & Sons Ltd

ISBN: 978-1-119-69258-4
John Wiley & Sons

Jetzt kaufen

Preis: 139,00 €

Preis inkl. MwSt, zzgl. Versand

Weitere Versionen

epubmobipdf

Presents an overview of CubeSat antennas designed at the Jet Propulsion Laboratory (JPL)

CubeSats--nanosatellites built to standard dimensions of 10cm x 10 cm x cm--are making space-based Earth science observation and interplanetary space science affordable, accessible, and rapidly deployable for institutions such as universities and smaller space agencies around the world. CubeSat Antenna Design is an up-to-date overview of CubeSat antennas designed at NASA's Jet Propulsion Laboratory (JPL), covering the systems engineering knowledge required to design these antennas from a radio frequency and mechanical perspective.

This authoritative volume features contributions by leading experts in the field, providing insights on mission-critical design requirements for state-of-the-art CubeSat antennas and discussing their development, capabilities, and applications. The text begins with a brief introduction to CubeSats, followed by a detailed survey of low-gain, medium-gain, and high-gain antennas. Subsequent chapters cover topics including the telecommunication subsystem of Mars Cube One (MarCO), the enabling technology of Radar in a CubeSat (RainCube), the development of a one-meter mesh reflector for telecommunication at X- and Ka-band for deep space missions, and the design of multiple metasurface antennas. Written to help antenna engineers to enable new CubeSate NASA missions, this volume:
* Describes the selection of high-gain CubeSat antennas to address specific mission requirements and constraints for instruments or telecommunication
* Helps readers learn how to develop antennas for future CubeSat missions
* Provides key information on the effect of space environment on antennas to inform design steps
* Covers patch and patch array antennas, deployable reflectarray antennas, deployable mesh reflector, inflatable antennas, and metasurface antennas

CubeSat Antenna Design is an important resource for antenna/microwave engineers, aerospace systems engineers, and advanced graduate and postdoctoral students wanting to learn how to design and fabricate their own antennas to address clear mission requirements.

Preface xi

Editor Biography xiii

Notes on Contributors xv

1 Introduction 1

1.1 Description of CubeSats 1

1.1.1 Introduction 1

1.1.2 Form Factors 3

1.1.3 Brief Introduction to CubeSat Subsystems 3

1.1.3.1 Attitude Control 3

1.1.3.2 Propulsion 6

1.1.3.3 Power 8

1.1.3.4 Telecommunication 9

1.1.4 CubeSat Antennas 11

1.1.4.1 Low Gain Antennas 11

1.1.4.2 Medium Gain Antennas 14

1.1.4.3 High Gain Antennas 15

1.1.5 Effect of Space Environment on Antennas 26

1.1.5.1 Radiation 26

1.1.5.2 Material Outgassing 27

1.1.5.3 Temperature Change 28

1.1.5.4 Multipaction Breakdown 29

1.2 Conclusion 30

2 Mars Cube One 35

2.1 Mission Description 35

2.2 Iris Radio 38

2.3 X-Band Subsystem 43

2.3.1 Frequency Allocation 43

2.3.2 Near Earth Communications Using Low Gain Antennas 43

2.3.2.1 Antenna Requirements 43

2.3.2.2 Antenna Solution and Performance 44

2.3.3 Mars-to-Earth Communications 46

2.3.3.1 Telecommunication Description: Uplink and Downlink from Mars 46

2.3.3.2 Mars Low Gain Antennas 48

2.3.3.3 High Gain Antenna 49

2.4 Entry, Descent, and Landing UHF Link 67

2.4.1 State-of-the-Art of UHF Deployable CubeSat Antennas 68

2.4.1.1 Four Monopole Antenna 68

2.4.1.2 Helical Antenna 68

2.4.1.3 Patch Antenna 70

2.4.2 Circularly Polarized Loop Antenna Concept 70

2.4.2.1 Loop Antenna Radiation and Polarization 70

2.4.2.2 Infinite Baluns Design and Shielded Loop 72

2.4.2.3 Feeding Structure 73

2.4.3 Mechanical Configuration and Deployment Scheme 74

2.4.4 Simulations and Measurements 78

2.4.5 In-Flight Performance 82

2.5 Conclusions 84

3 Radar in a CubeSat: RainCube 91

3.1 Mission Description 91

3.2 Deployable High-Gain Antenna 94

3.2.1 State of the Art 94

3.2.1.1 Inflatable Antennas 95

3.2.1.2 Deployable Reflectarray Antennas 95

3.2.1.3 Deployable Mesh Reflector Antennas 96

3.2.2 Parabolic Reflector Antenna Design 101

3.2.2.1 Paraboloidal Reflector 101

3.2.2.2 Dual-Reflector Antennas 102

3.2.3 RainCube High-Gain Antenna 104

3.2.3.1 Antenna Choice: Cassegrain Reflector 104

3.2.3.2 Antenna Description 104

3.2.3.3 Perfect Paraboloid Antenna 105

3.2.3.4 Unfurlable Paraboloid with Ribs and Mesh Structures 110

3.2.3.5 Antenna Measurement Results 119

3.2.4 Mechanical Deployment 122

3.2.5 Design and Testing for the Space Environment 127

3.2.6 In-Flight Performance 131

3.3 Telecommunication Challenge 131

3.4 Conclusion 134

4 One Meter Reflectarray Antenna: OMERA 139

4.1 Introduction 139

4.2 Reflectarray Antennas 141

4.2.1 Introductions to Reflectarray 141

4.2.2 Advantages of Reflectarray 141

4.2.3 Drawbacks of Reflectarray 142

4.2.4 State of the Art 142

4.3 OMERA 143

4.3.1 Antenna Description 143

4.3.2 Deployable Feed 146

4.3.3 Reflectarray Design 147

4.3.4 Deployment Accuracy 153

4.3.5 Effect of Struts 156

4.3.6 Predicted Gain and Efficiency 157

4.3.7 Prototype and Measurements 158

4.4 Conclusion 161

5 X/Ka-Band One Meter Mesh Reflector for 12U-Class CubeSat 163

5.1 Introduction 163

5.2 Mechanical Design 167

5.2.1 Trade Studies 167

5.2.1.1 Design Goals 167

5.2.1.2 Rigid 167

5.2.1.3 Elastic Composite 167

5.2.1.4 Mesh 168

5.2.2 Structural Design of the Reflector 168

5.2.2.1 Ribs 170

5.2.2.2 Hub 171

5.2.2.3 Battens 171

5.2.2.4 Nets 171

5.2.2.5 Perimeter Truss 174

5.2.3 Deployment 174

5.2.3.1 Boom Design and Deployment 174

5.2.3.2 Reflector Deployment 176

5.2.3.3 Deployment Issues 177

5.3 X/Ka RF Design 177

5.3.1 Antenna Configuration and Simulation Model 177

5.3.2 X-Band Feed and Mesh Reflector 179

5.3.3 Ka-Band Mesh Reflector 187

5.3.4 X/Ka-band Mesh Reflector 193

5.4 Conclusion 194

6 Inflatable Antenna for CubeSat 197

6.1 Introduction 197

6.2 Inflatable High Gain Antenna 199

6.2.1 State of the Art 199

6.2.1.1 History of Inflatable Antennas Research and Experiments 199

6.2.1.2 History of the Inflatable Antenna for CubeSat Concept 201

6.2.2 Inflatable Antenna Design at X-Band 207

6.2.2.1 Inflatable Antenna at X-Band: Initial Design and Lessons Learned 207

6.2.2.2 Inflatable Antenna at X-Band Final Design: Reflector and Feed Placement 208

6.2.2.3 Antenna Measurements 212

6.2.3 Structural Design 215

6.2.4 Inflation and On-Orbit Rigidization 220

6.3 Spacecraft Design Challenges 226

6.4 Conclusion 229

7 High Aperture Efficiency All-Metal Patch Array 233

7.1 Introduction 233

7.2 State of the Art 235

7.3 Dual-Band Circularly Polarized 8 × 8 Patch Array 240

7.3.1 Requirements 240

7.3.2 Unit Cell Optimization 240

7.3.3 8 × 8 Patch Array 244

7.3.4 Comparison With State-of-the-Art 247

7.3.5 Other Array Configurations 249

7.4 Conclusion 251

8 Metasurface Antennas: Flat Antennas for Small Satellites 255

8.1 Introduction 255

8.2 Modulated Metasurface Antennas 256

8.2.1 State of the Art: Pros and Cons 256

8.2.2 Design of Modulated Metasurface Antennas 260

8.2.3 300 GHz Silicon Micro-Machined MTS Antenna 269

8.2.3.1 Objective 269

8.2.3.2 Design Methodology: Modulation 270

8.2.3.3 MTS Element 270

8.2.3.4 Antenna Design, Fabrication, and Test 271

8.2.3.5 Improvement Using Anisotropic Surface 274

8.2.3.6 Conclusion 275

8.2.4 Ka-band Metal-Only Telecommunication Antenna 276

8.2.4.1 Objective 276

8.2.4.2 Synthesis of the Modulated Metasurface Antenna 277

8.2.4.3 Metallic Metasurface Elements 278

8.2.4.4 Antenna Design 279

8.2.4.5 Fabrication 280

8.2.4.6 Measurements 281

8.2.4.7 Toward a 20 cm Diameter Antenna 284

8.3 Beam Synthesis Using Holographic Metasurface Antennas 286

8.3.1 Introduction 286

8.3.2 Examples Holographic Metasurface Antennas 290

8.3.3 W-Band Pillbox Beam Steering Metasurface Antenna 294

8.3.4 Toward an Active Beam Steering Antenna 302

8.4 Conclusion 304

Acknowledgments 308

References 308

Index 315
NACER CHAHAT, PHD, is a Senior Antenna/Microwave Engineer with the National Aeronautics and Space Administration (NASA) Jet Propulsion Laboratory (JPL), California Institute of Technology, Pasadena, CA. He developed critical antenna technologies that have enabled new types of NASA missions, delivered antennas for Mars Cube One, the first deep space CubeSat, and delivered the deployable mesh reflector that has enabled Raincube, the first active radar in a CubeSat.

N. Chahat, California Institute of Technology, Pasadena, CA