Still Image and Video Compression with MATLAB
Wiley - IEEE (Band Nr. 1)

1. Auflage Dezember 2010
448 Seiten, Hardcover
Wiley & Sons Ltd
Kurzbeschreibung
This comprehensive text enables readers to grasp the basic principles of image and video compression and simulate actual compression systems via the globally popular MATLAB platform. It serves as a single source for popular compression standards, such as the MPEG series. Derivations of relevant compression algorithms are developed in an easy-to-follow fashion, and numerous examples are provided. The book includes complementary software written in MATLAB SIMULINK to give senior and first-year graduate students, professionals, and practicing engineers hands-on experience in using and applying various video compression methods.
This book describes the principles of image and video compression techniques and introduces current and popular compression standards, such as the MPEG series. Derivations of relevant compression algorithms are developed in an easy-to-follow fashion. Numerous examples are provided in each chapter to illustrate the concepts. The book includes complementary software written in MATLAB SIMULINK to give readers hands-on experience in using and applying various video compression methods. Readers can enhance the software by including their own algorithms.
1 Introduction.
1.1 What is Source Coding?
1.2 Why is Compression Necessary?
1.3 Image and Video Compression Techniques.
1.4 Video Compression Standards.
1.5 Organization of the Book.
1.6 Summary.
References.
2 Image Acquisition.
2.1 Introduction.
2.2 Sampling a Continuous Image.
2.3 Image Quantization.
2.4 Color Image Representation.
2.5 Summary.
References.
Problems.
3 Image Transforms.
3.1 Introduction.
3.2 Unitary Transforms.
3.3 Karhunen-Loeve Transform.
3.4 Properties of Unitary Transforms.
3.5 Summary.
References.
Problems.
4 Discrete Wavelet Transform.
4.1 Introduction.
4.2 Continuous Wavelet Transform.
4.3 Wavelet Series.
4.4 Discrete Wavelet Transform.
4.5 Efficient Implementation of 1D DWT.
4.6 Scaling and Wavelet Filters.
4.7 Two-Dimensional DWT.
4.8 Energy Compaction Property.
4.9 Integer or Reversible Wavelet.
4.10 Summary.
References.
Problems.
5 Lossless Coding.
5.1 Introduction.
5.2 Information Theory.
5.3 Huffman Coding.
5.4 Arithmetic Coding.
5.5 Golomb-Rice Coding.
5.6 Run-Length Coding.
5.7 Summary.
References.
Problems.
6 Predictive Coding.
6.1 Introduction.
6.2 Design of a DPCM.
6.3 Adaptive DPCM.
6.4 Summary.
References.
Problems.
7 Image Compression in the Transform Domain.
7.1 Introduction.
7.2 Basic Idea Behind Transform Coding.
7.3 Coding Gain of a Transform Coder.
7.4 JPEG Compression.
7.5 Compression of Color Images.
7.6 Blocking Artifact.
7.7 Variable Block Size DCT Coding.
7.8 Summary.
References.
Problems.
8 Image Compression in the Wavelet Domain.
8.1 Introduction.
8.2 Design of a DWT Coder.
8.3 Zero-Tree Coding.
8.4 JPEG2000.
8.5 Digital Cinema.
8.6 Summary.
References.
Problems.
9 Basics of Video Compression.
9.1 Introduction.
9.2 Video Coding.
9.3 Stereo Image Compression.
9.4 Summary.
References.
Problems.
10 Video Compression Standards.
10.1 Introduction.
10.2 MPEG-1 and MPEG-2 Standards.
10.3 MPEG-4.
10.4 H.264.
10.5 Summary.
References.
Problems.
Index.