An Introduction to Metric Spaces and Fixed Point Theory
Wiley Series in Pure and Applied Mathematics

1. Auflage April 2001
320 Seiten, Hardcover
Lehrbuch
Kurzbeschreibung
Diese Einführung in das Gebiet der metrischen Räume richtet sich in erster Linie nicht an Spezialisten, sondern an Anwender der Methode aus den verschiedensten Bereichen der Naturwissenschaften. Besonders ausführlich und anschaulich werden die Grundlagen von metrischen Räumen und Banach-Räumen erklärt, Anhänge enthalten Informationen zu verschiedenen Schlüsselkonzepten der Mengentheorie (Zornsches Lemma, Tychonov-Theorem, transfinite Induktion usw.). Die hinteren Kapitel des Buches beschäftigen sich mit fortgeschritteneren Themen.
Presents up-to-date Banach space results.
* Features an extensive bibliography for outside reading.
* Provides detailed exercises that elucidate more introductory material.
METRIC SPACES.
Introduction.
Metric Spaces.
Metric Contraction Principles.
Hyperconvex Spaces.
"Normal" Structures in Metric Spaces.
BANACH SPACES.
Banach Spaces: Introduction.
Continuous Mappings in Banach Spaces.
Metric Fixed Point Theory.
Banach Space Ultrapowers.
Appendix: Set Theory.
Bibliography.
Index.
"Clear, friendly exposition." (American Mathematical Monthly, August/September 2002)
MOHAMED A. KHAMSI, PhD, is Professor in the Department of Mathematical Sciences at the University of Texas at El Paso and visiting Professor in the Department of Mathematics at Kuwait University. He is also co-author of Nonstandard Methods in Fixed Point Theory.
WILLIAM A. KIRK, PhD, is Professor in the Department of Mathematics at the University of Iowa, Iowa City, Iowa. He has authored over 100 journal articles and is co-author of Topics in Metric Fixed Point.