John Wiley & Sons Dietary Polyphenols Cover Presents recent research on metabolism and the health effects of polyphenols Consumer interest in t.. Product #: 978-1-119-56372-3 Regular price: $214.29 $214.29 Auf Lager

Dietary Polyphenols

Metabolism and Health Effects

Tomás-Barberán, Francisco A . / González-Sarrías, Antonio / García-Villalba, Rocío (Herausgeber)

Institute of Food Technologists Series


1. Auflage November 2020
560 Seiten, Hardcover
Wiley & Sons Ltd

ISBN: 978-1-119-56372-3
John Wiley & Sons

Jetzt kaufen

Preis: 225,00 €

Preis inkl. MwSt, zzgl. Versand

Weitere Versionen


Presents recent research on metabolism and the health effects of polyphenols

Consumer interest in the health benefits of many phenolic compounds found in plant foods and derivatives has grown considerably in recent years, giving rise to an increased demand for functional foods. Although preclinical and observational studies have promoted the protective properties of polyphenols for a range of chronic diseases, evidence has shown that most dietary polyphenols have little bioavailability. Once ingested, most of them are metabolized by either the intestinal enzymes or by the gut microbiota and then undergo extensive phase-II metabolism reaching significant concentrations of conjugated metabolites. They remain in the systemic circulation and target systemic tissues where trigger biological effects. The polyphenol-derived metabolites produced in humans are dependent upon the composition of the gut microbiota and the subject genetics. Thus all the metabolites do not show the same biological activity in different individuals. To fully understand the health effects of polyphenols, further clinical investigations are required.

Dietary Polyphenols describes the latest findings on the polyphenol metabolism and reviews the current evidence on their health effects and that of their bioavailable metabolites. Emphasizing the importance of interindividual variability and the critical role of gut microbiota, this authoritative volume features contributions from recognized experts in the field, exploring specific families of extractable and non-extractable phenolic compounds that exhibit potential health effects. Topics include structural diversity of polyphenols and distribution in foods, bioavailability and bioaccessibility of phenolics, metabolism, and gastrointestinal absorption of various metabolites and their health effects. This comprehensive volume:
* Discusses the bioavailability, bioaccessibility, pharmacokinetics studies, and microbial metabolism of different groups of phenolic compounds
* Examines the interaction between polyphenols and gut microbiota
* Describes analytical methods for identifying and quantifying polyphenols in foods and biological samples
* Reviews recent epidemiological and clinical intervention studies showing protective effects of polyphenols

Dietary Polyphenols: Metabolism and Health Effects is an important resource for scientists working in the area of dietary polyphenols and health effects, microbiota, and their interaction with other nutritional compounds, and for health professionals, nutritionists, dieticians, and clinical researchers with interest in the role of polyphenols in the prevention and treatment of chronic diseases.

List of Contributors

Chapter 1. Structural diversity of polyphenols and distribution in foods.

1.1. Introduction

1.1.1. Classification and chemistry of polyphenols

1.1.2. Flavonoids

1.1.3. Non-flavonoids

1.2. Dietary intake and food sources of polyphenols

1.2.1. Flavonoids

1.2.2. Non-flavonoids

1.3. Databases to assess the dietary exposure to polyphenols

1.4. Bioavailability, metabolism, and bioactivity of dietary polyphenols

Chapter 2. Non-extractable polyphenols: A relevant group with health effects.

2.1. Introduction: the concept of non-extractable polyphenols (NEPP)

2.2. Contribution of NEPP to total polyphenol content and intake

2.2.1. Strategies for the extraction and analysis of NEPP

2.3. Metabolic fate of NEPP. A key process for their health effects

2.3.1 Current evidence of the metabolic transformation of NEPP

2.3.2 Specific features of the metabolic fate of NEPP

2.4. How NEPP may exhibit health effects

2.4.1 Antioxidant effects

2.4.2 Microbiota modulation

2.4.3 Biological activities of microbial metabolites

2.4.4 Synergy with dietary fibre

2.5. Studies on the health effects of NEPP

2.5.1 Place of action: local vs systemic effects

2.5.2 Effects on gastrointestinal health

2.5.3 Effects on cardiometaoblic health

2.6. Perspectives

Chapter 3. Analytical strategies for determining polyphenols in foods and biological samples

3.1 Introduction. Importance of the determination of polyphenols

3.2. Most widely used extraction systems and new trends

3.3. Determination of the phenolic compounds in foods

3.3.1 Classical methods for polyphenols determination

3.3.2 Evolution of the traditional methods to characterize the polyphenolic fraction of foods: chromatographic and electrophoretic separation and subsequent detection

3.3.3 Other analytical strategies

3.4. Some considerations regarding the determination of polyphenols in biological samples

3.5. Conclusions and future directions

Chapter 4. Hydroxycinnamates

4.1. Introduction

4.2. Metabolism of hydroxycinnamates (HCs) and metabolic pathways.

4.2.1. Absorption in the upper gastrointestinal tract.

4.2.2. Absorption in the lower gastrointestinal tract.

4.3. Bioaccessibility and bioavailability of hydroxycinnamates -Influence of food matrix, processing, dose and interindividual differences.

4.3.1. Bioavailability of hydroxycinnamates in fruits, vegetables and beverages.

4.3.2. Bioavailability in cereal-based products.

4.4. Biological activity of hydroxycinnamates and their derivatives.

Chapter 5. Flavonols and flavones

5.1. Introduction.

5.2. Uptake and metabolism of flavonols and flavones.

5.2.1. Flavonols or 3-hydroxyflavones (quercetin, kaempferol, myricetin).

5.2.2. Flavones (Luteolin, apigenin).

5.3. Microbiota formation of low molecular weight phenolic, common colonic metabolites.

5.3.1. Flavonols (quercetin, kaempferol, myricetin).

5.4. Health effects of flavonols and flavones metabolites.

5.4.1. Flavonols or 3-hydroxyflavones.

5.4.2. Flavones (Luteolin, apigenin).

5.4.3 Flavonols, flavones and their low molecular weight colonic metabolites in health.

5.5. Conclusions and future perspectives.

Chapter 6. Isoflavones

6.1. Uptake and metabolism of isoflavones.

6.1.1. Gut microbial metabolism.

6.1.2. Pharmacokinetic studies

6.2. Biological mechanisms of isoflavones.

6.2.1. Hormonal.

6.2.2. Antioxidant.

6.2.3. Anti-inflammatory.

6.3. Physiological and health effects of isoflavones.

6.3.1. Bone.

6.3.2. Cancer. Breast and endometrial cancers. Prostate Cancer. Gastrointestinal and colorectal cancers.

6.3.3. Reproductive hormones.

6.3.4. Cardiovascular disease (CVD), blood triglycerides and cholesterol, and inflammatory markers.

6.3.5. Diabetes, insulin resistance, and blood glucose and insulin.

6.3.6. Obesity.

6.3.7. Menopausal symptoms.

6.3.8. Neurological outcomes.

6.3.9. Physiological and health effects of isoflavone metabolites and phenotypes.

6.3.10. Summary of isoflavone intake and health.

Chapter 7. Dietary Anthocyanins

7.1. Absorption and metabolism of anthocyanins

7.1.1 Oral cavity absorption

7.1.2. Gastric absorption

7.1.3. Intestinal absorption

7.2. Pharmacokinetics of anthocyanins

7.3. Factors affecting anthocyanins bioavailability

7.4. Biological activity of anthocyanin metabolites

7.4.1. Phase II metabolites

7.5. Conclusion

Chapter 8. Flavan-3-ols: catechins and proanthocyanidins

8.1. Introduction: chemistry and main dietary sources

8.2. Bioavailability of flavan-3-ols

8.2.1. Absorption and metabolism: native and colonic phase II metabolites

8.2.2. Pharmacokinetics and urinary excretion of circulating metabolites. Inter-individual differences.

8.3. Health benefits of flavan-3-ols and their derived circulating metabolites

8.3.1. Cognitive

8.3.2. Inflammation and cardiometabolic disease

8.3.3. Urinary Tract Infections

8.4. Conclusions and future perspectives

Chaper 9. Ellagitannins and their gut microbiota-derived metabolites urolithins

9.1. Chemistry and sources of ellagitannins and ellagic acid.

9.2. Bioavailability of ellagitannins and ellagic acid.

9.3. The microbial metabolism of ellagitannins and ellagic acid: urolithins.

9.3.1 Urolithin production and bioavailability.

9.3.2. Tissue distribution of urolithins after consumption of ellagitannins.

9.3.3. Interaction of ETs and urolithins with the gut microbiota.

9.3.4. Interindividual variability. Metabotypes.

9.3.5. Analysis of urolithins.

9.4. Significance of ellagitannins, ellagic acid and urolithins on human health.

9.4.1. Antioxidant effects.

9.4.2. Anti-inflammatory properties.

9.4.3. Anticarcinogenic effects.

9.4.4. Neuroprotective effects.

9.4.5. Estrogenic modulation.

9.4.6. Urolithins, clinical trials and interindividual variability-health relationship.

9.5 Conclusions.

Chapter 10. Lignans

10.1 Introduction

10.2 Lignans in foods

10.3 Metabolism of lignans

10.3.1 Kinetics of absorption of plant lignans

10.3.2 Conversion of plant to enterolignans Impact of intestinal microbiota Impact of antibiotic use Kinetics of absorption of enterolignans

10.4 Blood levels of lignans after dietary intervention

10.5 Bioactivity of plant and enterolignans

10.6 Conclusions and perspectives

Chapter 11 Stilbenes: Beneficial effects of resveratrol metabolites in obesity, dyslipidaemia, insulin resistance and inflammation

11.1 Introduction: Occurrence and intake

11.2. Absorption, metabolism and excretion of resveratrol.

11.3. Biological effects of resveratrol metabolites.

11.3.1. In vitro studies.

11.3.2. In vivo studies.

11.4. Concluding remarks.

Chapter 12. Flavanones

12.1 Introduction.

12.2. Flavanones and their occurrence.

12.3 Absorption of flavanones metabolites in the proximal and distal gastrointestinal tract.

12.4. Formation of 3-(3'-hydroxy-4'-methoxyphenyl)hydracrylic acid.

12.5. Impact of physical activity on flavanone bioavailability.

12.6. Biovailability and matrix effects.

12.7. Bioavailability and probiotics.

12.8. Other effects on flavanones bioavailability.

12.9. Inter- and intra-volunteer variations in flavanones bioavailability.

12.10. Analysis of flavanones metabolites and catabolites.

12.11. Biomarkers and metabolomics.

12.12. Protective effects.

12.12.1. Cardiovascular disease.

12.12.2. Diabetic and metabolic syndrome.

12.12.3. Cancer.

12.12.4. Cognition and neuroprotection.

12.12.5. Bone.

12.12.6. Liver.

12.12.7. Immunomodulation and Anti-inflammatory activity.

12.12.8. Gastric function and the microbiome.

Chapter 13. Understanding polyphenols' health effects through the gut microbiota

13.1Microbial metabolism of dietary polyphenols

13.2 Bacteria responsible for dietary polyphenols transformations and health implications

13.3 Modulation of gut microbiota by dietary polyphenols

Francisco A. Tomás-Barberán, Antonio González-Sarrías, Rocío García-Villalba, Department of Food Science and Technology, CEBAS-CSIC, Murcia, Spain.