John Wiley & Sons Aircraft Systems Classifications Cover Aircraft Systems Classifications Enables aerospace professionals to quickly and accurately referenc.. Product #: 978-1-119-77184-5 Regular price: $126.17 $126.17 Auf Lager

Aircraft Systems Classifications

A Handbook of Characteristics and Design Guidelines

Seabridge, Allan / Radaei, Mohammad

Aerospace Series (PEP)

Cover

1. Auflage Mai 2022
384 Seiten, Hardcover
Wiley & Sons Ltd

ISBN: 978-1-119-77184-5
John Wiley & Sons

Jetzt kaufen

Preis: 135,00 €

Preis inkl. MwSt, zzgl. Versand

Weitere Versionen

epubmobipdf

Aircraft Systems Classifications

Enables aerospace professionals to quickly and accurately reference key information about all types of aircraft systems

Aircraft Systems Classifications: A Handbook of Characteristics and Design Guidelines provides comprehensive information on aircraft systems delivered in a concise, direct, and standardized way, allowing readers to easily find the information they need. The book presents a full set of characteristics and requirements for all types of aircraft systems, including avionic, mission, and supporting ground systems, in a single volume. Readers can delve further into specific topics by referencing the detailed glossary and bibliography.

To aid in reader comprehension, each aircraft system is broken down according to various criteria, such as:
* Purpose, description, and safety
* Integration with other systems
* Key interfaces and design drivers
* Modeling and simulation
* Best practices and future trends

Written for aerospace professionals, researchers, and advanced students with some existing knowledge of the aircraft industry, this book allows readers to quickly reference information on every aspect of aircraft systems.

About the Authors xxix

Acknowledgements xxxi

Sources of Information xxxiii

Glossary and Abbreviations xxxv

1 Introduction 1

References 4

2 The Airframe and Systems Overview 5

2.1 Introduction 5

2.2 The Airframe 6

2.2.1 Impact on the structure 8

2.2.2 Impact on Atmosphere 8

2.2.3 Atmosphere Impact on Structure 9

2.2.4 The Crash Case 10

2.3 The Aircraft Systems 10

2.3.1 System Diagram 10

2.3.2 Key Characteristics of Systems 12

2.4 Classification of Aircraft Roles 14

2.4.1 Commercial 14

2.4.2 General Aviation 15

2.4.3 Regional 15

2.4.4 Long Haul 15

2.4.5 Military 16

2.4.6 Air Superiority 16

2.4.7 Ground Attack 17

2.4.8 Strategic Bombing 18

2.4.9 Maritime Patrol 18

2.4.10 Battlefield Surveillance 19

2.4.11 Airborne EarlyWarning (AEW) 20

2.4.12 ElectronicWarfare 21

2.4.13 Photographic Reconnaissance 21

2.4.14 Air-to-Air Refuelling 22

2.4.15 Troop and Materiel Transport 22

2.4.16 Training Aircraft 23

2.4.17 Unmanned Air Vehicles 23

2.4.18 Special Roles 24

2.4.19 Law Enforcement and Civilian Agencies 25

2.5 Classification of Systems 25

2.6 Stakeholders 26

2.7 Example Architectures 27

2.8 Data Bus 29

2.9 Summary and Conclusions 34

References 34

Exercises 35

3 Vehicle Systems 37

3.1 Propulsion System 38

3.1.1 Purpose of System 39

3.1.2 Description 39

3.1.3 Safety/Integrity Aspects 39

3.1.4 Key Integration Aspects 40

3.1.5 Key Interfaces 41

3.1.6 Key Design Drivers 42

3.1.7 Modelling 42

3.1.8 References 43

3.1.9 Sizing Considerations 43

3.1.10 Future Considerations 43

3.2 Fuel System 44

3.2.1 Purpose of System 45

3.2.2 Description 45

3.2.3 Safety/Integrity Aspects 46

3.2.4 Key Integration Aspects 46

3.2.5 Key Interfaces 47

3.2.6 Key Design Drivers 48

3.2.7 Modelling 48

3.2.8 References 48

3.2.9 Sizing Considerations 48

3.2.10 Future Considerations 48

3.3 Electrical Power Generation and Distribution 50

3.3.1 Purpose of System 50

3.3.2 Description 50

3.3.3 Safety/Integrity Aspects 50

3.3.4 Key Integration Aspects 51

3.3.5 Key Interfaces 51

3.3.6 Key Design Drivers 51

3.3.7 Modelling 51

3.3.8 References 52

3.3.9 Sizing Considerations 52

3.3.10 Future Considerations 52

3.4 Hydraulic Power Generation and Distribution 53

3.4.1 Purpose of the System 54

3.4.2 Description 54

3.4.3 Safety/Integrity Aspects 54

3.4.4 Key Integration Aspects 54

3.4.5 Key Interfaces 54

3.4.6 Key Design Drivers 55

3.4.7 Modelling 55

3.4.8 References 55

3.4.9 Sizing Considerations 55

3.4.10 Future Considerations 56

3.5 Bleed Air System 56

3.5.1 Purpose of the System 57

3.5.2 Description 57

3.5.3 Safety/Integrity Aspects 57

3.5.4 Key Integration Aspects 57

3.5.5 Key Interfaces 57

3.5.6 Key Design Drivers 58

3.5.7 Modelling 58

3.5.8 References 58

3.5.9 Sizing Considerations 58

3.5.10 Future Considerations 58

3.6 Secondary Power Systems 59

3.6.1 Purpose of System 60

3.6.2 Description 60

3.6.3 Safety/Integrity Aspects 60

3.6.4 Key Integration Aspects 60

3.6.5 Key Interfaces 60

3.6.6 Key Design Drivers 60

3.6.7 Modelling 61

3.6.8 References 61

3.6.9 Sizing Considerations 61

3.6.10 Future Considerations 61

3.7 Emergency Power Systems 61

3.7.1 Purpose of System 63

3.7.2 Description 63

3.7.3 Safety/Integrity Aspects 63

3.7.4 Key Integration Aspects 63

3.7.5 Key Interfaces 64

3.7.6 Key Design Drivers 64

3.7.7 Modelling 64

3.7.8 References 64

3.7.9 Sizing Considerations 64

3.7.10 Future Considerations 65

3.8 Flight Control System 65

3.8.1 Purpose of System 65

3.8.2 Description 66

3.8.3 Safety/Integrity Aspects 66

3.8.4 Key Integration Aspects 66

3.8.5 Key Interfaces 66

3.8.6 Key Design Drivers 67

3.8.7 Modelling 67

3.8.8 References 67

3.8.9 Sizing Considerations 67

3.8.10 Future Considerations 68

3.9 Landing Gear 68

3.9.1 Purpose of System 69

3.9.2 Description 69

3.9.3 Safety/Integrity Aspects 69

3.9.4 Key Integration Aspects 70

3.9.5 Key Interfaces 70

3.9.6 Key Design Drivers 70

3.9.7 Modelling 70

3.9.8 References 70

3.9.9 Sizing Considerations 71

3.9.10 Future Considerations 71

3.10 Brakes and Anti-skid 71

3.10.1 Purpose of System 72

3.10.2 Description 72

3.10.3 Safety/Integrity Aspects 72

3.10.4 Key Integration Aspects 72

3.10.5 Key Interfaces 72

3.10.6 Key Design Drivers 73

3.10.7 Modelling 73

3.10.8 References 73

3.10.9 Sizing Considerations 73

3.10.10 Future Considerations 73

3.11 Steering System 73

3.11.1 Purpose of System 74

3.11.2 Description 74

3.11.3 Safety/Integrity Aspects 75

3.11.4 Key Integration Aspects 75

3.11.5 Key Interfaces 75

3.11.6 Key Design Drivers 75

3.11.7 Modelling 75

3.11.8 References 75

3.11.9 Sizing Considerations 76

3.11.10 Future Considerations 76

3.12 Environmental Control System 76

3.12.1 Purpose of System 77

3.12.2 Description 77

3.12.3 Safety/Integrity Aspects 77

3.12.4 Key Integration Aspects 77

3.12.5 Key Interfaces 77

3.12.6 Key Design Drivers 78

3.12.7 Modelling 78

3.12.8 References 78

3.12.9 Sizing Considerations 78

3.12.10 Future Considerations 78

3.13 Fire Protection System 79

3.13.1 Purpose of System 80

3.13.2 Description 80

3.13.3 Safety/Integrity Aspects 80

3.13.4 Key Integration Aspects 81

3.13.5 Key Interfaces 81

3.13.6 Key Design Drivers 81

3.13.7 Modelling 81

3.13.8 References 82

3.13.9 Sizing Considerations 82

3.13.10 Future Considerations 82

3.14 Ice Detection 83

3.14.1 Purpose of System 83

3.14.2 Description 83

3.14.3 Safety/Integrity Aspects 83

3.14.4 Key Integration Aspects 83

3.14.5 Key Interfaces 83

3.14.6 Key Design Drivers 84

3.14.7 Modelling 84

3.14.8 References 84

3.14.9 Sizing Considerations 84

3.14.10 Future Considerations 85

3.15 Ice Protection 85

3.15.1 Purpose of System 85

3.15.2 Description 85

3.15.3 Safety/Integrity Aspects 85

3.15.4 Key Integration Aspects 85

3.15.5 Key Interfaces 86

3.15.6 Key Design Drivers 86

3.15.7 Modelling 86

3.15.8 References 86

3.15.9 Sizing Considerations 86

3.15.10 Future Considerations 86

3.16 External Lighting 86

3.16.1 Purpose of System 87

3.16.2 Description 87

3.16.3 Safety/Integrity Aspects 87

3.16.4 Key Integration Aspects 88

3.16.5 Key Interfaces 88

3.16.6 Key Design Drivers 88

3.16.7 Modelling 88

3.16.8 References 88

3.16.9 Sizing Considerations 88

3.16.10 Future Considerations 88

3.17 Probe Heating 89

3.17.1 Purpose of System 89

3.17.2 Description 89

3.17.3 Safety/Integrity Aspects 90

3.17.4 Key Integration Aspects 90

3.17.5 Key Interfaces 90

3.17.6 Key Design Drivers 90

3.17.7 Modelling 90

3.17.8 References 91

3.17.9 Sizing Considerations 91

3.17.10 Future Considerations 91

3.18 Vehicle Management System (VMS) 92

3.18.1 Purpose of System 92

3.18.2 Description 92

3.18.3 Safety/Integrity Aspects 92

3.18.4 Key Integration Aspects 92

3.18.5 Key Interfaces 92

3.18.6 Key Design Drivers 93

3.18.7 Modelling 93

3.18.8 References 93

3.18.9 Sizing Considerations 93

3.18.10 Future Considerations 93

3.19 Crew Escape 93

3.19.1 Purpose of System 94

3.19.2 Description 94

3.19.3 Safety/Integrity Aspects 95

3.19.4 Key Integration Aspects 95

3.19.5 Key Interfaces 95

3.19.6 Key Design Drivers 96

3.19.7 Modelling 96

3.19.8 References 96

3.19.9 Sizing Considerations 96

3.19.10 Future Considerations 96

3.20 Canopy Jettison 97

3.20.1 Purpose of System 97

3.20.2 Description 97

3.20.3 Safety/Integrity Aspects 98

3.20.4 Key Integration Aspects 98

3.20.5 Key Interfaces 98

3.20.6 Key Design Drivers 98

3.20.7 Modelling 98

3.20.8 References 99

3.20.9 Sizing Considerations 99

3.20.10 Future Considerations 99

3.21 Oxygen 99

3.21.1 Purpose of System 99

3.21.2 Description 99

3.21.3 Safety/Integrity Aspects 101

3.21.4 Key Integration Aspect 101

3.21.5 Key Interfaces 101

3.21.6 Key Design Drivers 101

3.21.7 Modelling 101

3.21.8 References 102

3.21.9 Sizing Considerations 102

3.21.10 Future Considerations 102

3.22 Biological and Chemical Protection 102

3.22.1 Purpose of System 103

3.22.2 Description 103

3.22.3 Safety/Integrity Aspects 103

3.22.4 Key Integration Aspects 103

3.22.5 Key Interfaces 103

3.22.6 Key Design Drivers 103

3.22.7 Modelling 104

3.22.8 References 104

3.22.9 Sizing Considerations 104

3.22.10 Future Considerations 104

3.23 Arrestor Hook 105

3.23.1 Purpose of System 105

3.23.2 Description 106

3.23.3 Safety/Integrity Aspects 106

3.23.4 Key Integration Aspects 106

3.23.5 Key Interfaces 106

3.23.6 Key Design Drivers 106

3.23.7 Modelling 106

3.23.8 References 107

3.23.9 Sizing Considerations 107

3.23.10 Future Considerations 107

3.24 Brake Parachute 108

3.24.1 Purpose of System 108

3.24.2 Description 108

3.24.3 Safety/Integrity Aspects 108

3.24.4 Key Integration Aspects 108

3.24.5 Key Interfaces 109

3.24.6 Key Design Drivers 109

3.24.7 Modelling 109

3.24.8 References 109

3.24.9 Sizing Considerations 109

3.24.10 Future Considerations 109

3.24.11 Best Practice and Lessons Learned 110

3.25 Anti-spin Parachute 110

3.25.1 Purpose of System 111

3.25.2 Description 111

3.25.3 Safety/Integrity Aspects 111

3.25.4 Key Integration Aspects 111

3.25.5 Key Interfaces 111

3.25.6 Key Design Drivers 112

3.25.7 Modelling 112

3.25.8 References 112

3.25.9 Sizing Considerations 112

3.25.10 Future Considerations 112

3.26 Galley 112

3.26.1 Purpose of System 113

3.26.2 Description 113

3.26.3 Safety/Integrity Aspects 114

3.26.4 Key Integration Aspects 114

3.26.5 Key Interfaces 114

3.26.6 Key Design Drivers 114

3.26.7 Modelling 114

3.26.8 References 115

3.26.9 Sizing Considerations 115

3.26.10 Future Considerations 115

3.27 Passenger Evacuation 115

3.27.1 Purpose of System 116

3.27.2 Description 116

3.27.3 Safety/Integrity Aspects 116

3.27.4 Key Integration Aspects 116

3.27.5 Key Interfaces 116

3.27.6 Key Design Drivers 117

3.27.7 Modelling 117

3.27.8 References 117

3.27.9 Sizing Considerations 117

3.27.10 Future Considerations 117

3.28 In-Flight Entertainment 117

3.28.1 Purpose of System 117

3.28.2 Description 118

3.28.3 Safety/Integrity Aspects 118

3.28.4 Key Integration Aspects 118

3.28.5 Key Interfaces 119

3.28.6 Key Design Drivers 119

3.28.7 Modelling 119

3.28.8 References 119

3.28.9 Sizing Considerations 119

3.28.10 Future Considerations 119

3.29 Toilet andWaterWaste 119

3.29.1 Purpose of System 120

3.29.2 Description 120

3.29.3 Safety/Integrity Aspects 120

3.29.4 Key Integration Aspects 121

3.29.5 Key Interfaces 121

3.29.6 Key Design Drivers 121

3.29.7 Modelling 121

3.29.8 References 121

3.29.9 Sizing Considerations 121

3.29.10 Future Considerations 121

3.30 Cabin and Emergency Lighting 122

3.30.1 Purpose of System 122

3.30.2 Description 123

3.30.3 Safety/Integrity Aspects 123

3.30.4 Key Integration Aspects 123

3.30.5 Key Interfaces 123

3.30.6 Key Design Drivers 123

3.30.7 Modelling 123

3.30.8 References 123

3.30.9 Sizing Considerations 123

3.30.10 Future Considerations 124

References 124

Exercise 126

4 Avionic Systems 127

4.1 Displays and Controls 127

4.1.1 Purpose of System 129

4.1.2 Description 129

4.1.3 Safety/Integrity Aspects 130

4.1.4 Key Integration Aspects 130

4.1.5 Key Interfaces 130

4.1.6 Key Design Drivers 131

4.1.7 Modelling 131

4.1.8 References 131

4.1.9 Sizing Considerations 131

4.1.10 Future Considerations 131

4.2 Communications 131

4.2.1 Purpose of System 132

4.2.2 Description 132

4.2.3 Safety/Integrity Aspects 133

4.2.4 Key Integration Aspects 133

4.2.5 Key Interfaces 133

4.2.6 Key Design Drivers 133

4.2.7 Modelling 134

4.2.8 References 134

4.2.9 Sizing Considerations 134

4.2.10 Future Considerations 134

4.3 Navigation 134

4.4 Example Navigation System Architecture 135

4.4.1 Purpose of System 135

4.4.2 Description 137

4.4.3 Safety/Integrity Aspects 137

4.4.4 Key Integration Aspects 137

4.4.5 Key Interfaces 137

4.4.6 Key Design Drivers 137

4.4.7 Modelling 137

4.4.8 References 137

4.4.9 Sizing Considerations 138

4.4.10 Future Considerations 138

4.5 Flight Management System (FMS) 138

4.5.1 Purpose of System 138

4.5.2 Description 138

4.5.3 Safety/Integrity Aspects 139

4.5.4 Key Integration Aspects 139

4.5.5 Key Interfaces 139

4.5.6 Key Design Drivers 140

4.5.7 Modelling 140

4.5.8 References 140

4.5.9 Sizing Considerations 140

4.5.10 Future Considerations 140

4.6 Weather Radar 140

4.6.1 Purpose of System 141

4.6.2 Description 141

4.6.3 Safety/Integrity Aspects 142

4.6.4 Key Integration Aspects 142

4.6.5 Key Interfaces 142

4.6.6 Key Design Drivers 142

4.6.7 Modelling 142

4.6.8 References 143

4.6.9 Sizing Considerations 143

4.6.10 Future Considerations 143

4.7 Air Traffic Control (ATC) Transponder 143

4.7.1 Purpose of System 143

4.7.2 Description 144

4.7.3 Safety/Integrity Aspects 144

4.7.4 Key Integration Aspects 144

4.7.5 Key Interfaces 145

4.7.6 Key Design Drivers 145

4.7.7 Modelling 145

4.7.8 References 145

4.7.9 Sizing Considerations 145

4.7.10 Future Considerations 145

4.8 Traffic Collision and Avoidance System (TCAS) 146

4.8.1 Purpose of System 146

4.8.2 Description 146

4.8.3 Safety/Integrity Aspects 148

4.8.4 Key Integration Aspects 148

4.8.5 Key Interfaces 148

4.8.6 Key Design Drivers 148

4.8.7 Modelling 148

4.8.8 References 148

4.8.9 Sizing Considerations 148

4.8.10 Future Considerations 149

4.9 Terrain Avoidance andWarning System (TAWS) 149

4.9.1 Purpose of System 150

4.9.2 Description 150

4.9.3 Safety/Integrity Aspects 151

4.9.4 Key Integration Aspects 151

4.9.5 Key Interfaces 151

4.9.6 Key Design Drivers 151

4.9.7 Modelling 152

4.9.8 References 152

4.9.9 Sizing Considerations 152

4.9.10 Future Considerations 152

4.10 Distance Measuring Equipment (DME)/TACAN 152

4.10.1 Purpose of System 152

4.10.2 Description 152

4.10.3 Safety/Integrity Aspects 152

4.10.4 Key Integration Aspects 153

4.10.5 Key Interfaces 153

4.10.6 Key Design Drivers 154

4.10.7 Modelling 154

4.10.8 References 154

4.10.9 Sizing Consideration 154

4.10.10 Future Considerations 154

4.11 VHF Omni-Ranging (VOR) 154

4.11.1 Purpose of System 154

4.11.2 Description 154

4.11.3 Safety/Integrity Aspects 155

4.11.4 Key Integration Aspects 155

4.11.5 Key Interfaces 156

4.11.6 Key Design Drivers 156

4.11.7 Modelling 156

4.11.8 References 156

4.11.9 Sizing Considerations 156

4.11.10 Future Considerations 156

4.12 Automatic Flight Control System 156

4.12.1 Purpose of System 158

4.12.2 Description 158

4.12.3 Safety/Integrity Aspects 158

4.12.4 Key Integration Aspects 159

4.12.5 Key Interfaces 159

4.12.6 Key Design Drivers 159

4.12.7 Modelling 159

4.12.8 References 159

4.12.9 Sizing Considerations 160

4.12.10 Future Considerations 160

4.13 Radar Altimeter (Rad Alt) 160

4.13.1 Purpose of System 160

4.13.2 Description 161

4.13.3 Safety/Integrity Aspects 162

4.13.4 Key Integration Aspects 162

4.13.5 Key Interfaces 162

4.13.6 Key Design Drivers 162

4.13.7 Modelling 162

4.13.8 References 163

4.13.9 Sizing Considerations 163

4.13.10 Future Considerations 163

4.14 Automated Landing Aids 163

4.14.1 Purpose of System 164

4.14.2 Description 164

4.14.3 Safety/Integrity Aspects 167

4.14.4 Key Integration Aspects 167

4.14.5 Key Interfaces 167

4.14.6 Key Design Drivers 168

4.14.7 Modelling 168

4.14.8 References 168

4.14.9 Sizing Considerations 168

4.14.10 Future Considerations 168

4.15 Air Data System (ADS) 168

4.15.1 Purpose of System 168

4.15.2 Description 169

4.15.3 Safety/Integrity Aspects 170

4.15.4 Key Integration Aspects 171

4.15.5 Key Interfaces 171

4.15.6 Key Design Drivers 171

4.15.7 Modelling 171

4.15.8 References 171

4.15.9 Sizing Considerations 172

4.15.10 Future Considerations 172

4.16 Accident Data Recording System (ADRS) 172

4.16.1 Purpose of System 172

4.16.2 Description 172

4.16.3 Safety/Integrity Aspects 173

4.16.4 Key Integration Aspects 173

4.16.5 Key Interfaces 173

4.16.6 Key Design Drivers 174

4.16.7 Modelling 174

4.16.8 References 174

4.16.9 Sizing Considerations 174

4.16.10 Future Considerations 174

4.17 Electronic Flight Bag (EFB) 174

4.17.1 Purpose of System 176

4.17.2 Description 176

4.17.3 Safety/Integrity Aspects 177

4.17.4 Key Integration Aspects 177

4.17.5 Key Interfaces 177

4.17.6 Key Design Drivers 177

4.17.7 Modelling 177

4.17.8 References 178

4.17.9 Sizing Considerations 178

4.17.10 Future Considerations 178

4.18 Prognostics and Health Management System (PHM) 178

4.18.1 Purpose of System 178

4.18.2 Description 179

4.18.3 Safety/Integrity Aspects 179

4.18.4 Key Integration Aspects 179

4.18.5 Key Interfaces 180

4.18.6 Key Design Drivers 180

4.18.7 Modelling 180

4.18.8 References 180

4.18.9 Sizing Considerations 180

4.18.10 Future Considerations 180

4.19 Internal Lighting 181

4.19.1 Purpose of System 181

4.19.2 Description 181

4.19.3 Safety/Integrity Aspects 182

4.19.4 Key Integration Aspects 182

4.19.5 Key Interfaces 182

4.19.6 Key Design Drivers 182

4.19.7 Modelling 182

4.19.8 References 183

4.19.9 Sizing Considerations 183

4.19.10 Future Considerations 183

4.20 Integrated Modular Architecture (IMA) 183

4.20.1 Purpose of System 184

4.20.2 Description 184

4.20.3 Safety/Integrity Aspects 184

4.20.4 Key Integration Aspects 184

4.20.5 Key Interfaces 184

4.20.6 Key Design Drivers 185

4.20.7 Modelling 185

4.20.8 References 185

4.20.9 Sizing Considerations 185

4.20.10 Future Considerations 185

4.21 Antennas 185

4.21.1 Purpose of System 187

4.21.2 Description 187

4.21.3 Safety/Integrity Aspects 188

4.21.4 Key Integration Aspects 188

4.21.5 Key Interfaces 188

4.21.6 Key Design Drivers 188

4.21.7 Modelling 188

4.21.8 References 188

4.21.9 Sizing Considerations 188

4.21.10 Future Considerations 189

References 189

5 Mission Systems 191

5.1 Radar System 192

5.1.1 Purpose of System 194

5.1.2 Description 195

5.1.3 Safety/Integrity Aspects 195

5.1.4 Key Integration Aspects 195

5.1.5 Key Interfaces 195

5.1.6 Key Design Drivers 196

5.1.7 Modelling 196

5.1.8 References 196

5.1.9 Sizing Considerations 196

5.1.10 Future Considerations 197

5.2 Electro-optical System 197

5.2.1 Purpose of System 197

5.2.2 Description 198

5.2.3 Safety/Integrity Aspects 199

5.2.4 Key Integration Aspects 199

5.2.5 Key Interfaces 199

5.2.6 Key Design Drivers 199

5.2.7 Modelling 199

5.2.8 References 199

5.2.9 Sizing Considerations 199

5.2.10 Future Considerations 200

5.3 Electronic Support Measures (ESM) 200

5.3.1 Purpose of System 201

5.3.2 Description 201

5.3.3 Safety/Integrity Aspects 201

5.3.4 Key Integration Aspects 201

5.3.5 Key Interfaces 201

5.3.6 Key Design Drivers 202

5.3.7 Modelling 202

5.3.8 References 202

5.3.9 Sizing Considerations 202

5.3.10 Future Considerations 202

5.4 Magnetic Anomaly Detection (MAD) 202

5.4.1 Purpose of System 203

5.4.2 Description 203

5.4.3 Safety/Integrity Aspects 203

5.4.4 Key Integration Aspects 203

5.4.5 Key Interfaces 204

5.4.6 Key Design Drivers 204

5.4.7 Modelling 204

5.4.8 References 204

5.4.9 Sizing Consideration 204

5.4.10 Future Considerations 204

5.5 Acoustic System 205

5.5.1 Purpose of System 205

5.5.2 Description 206

5.5.3 Safety/Integrity Aspects 206

5.5.4 Key Integration Aspects 206

5.5.5 Key Interfaces 206

5.5.6 Key Design Drivers 207

5.5.7 Modelling 207

5.5.8 References 207

5.5.9 Sizing Considerations 207

5.5.10 Future Considerations 207

5.6 Mission Computing System 207

5.6.1 Purpose of System 207

5.6.2 Description 208

5.6.3 Safety/Integrity Aspects 208

5.6.4 Key Integration Aspects 208

5.6.5 Key Interfaces 208

5.6.6 Key Design Drivers 209

5.6.7 Modelling 209

5.6.8 References 209

5.6.9 Sizing Considerations 209

5.6.10 Future Considerations 209

5.7 Defensive Aids 209

5.7.1 Purpose of System 211

5.7.2 Description 211

5.7.3 Safety/Integrity Aspects 211

5.7.4 Key Integration Aspects 211

5.7.5 Key Interfaces 211

5.7.6 Key Design Drivers 212

5.7.7 Modelling 212

5.7.8 References 212

5.7.9 Sizing Considerations 212

5.7.10 Future Considerations 212

5.8 Station Keeping System 212

5.8.1 Purpose of System 213

5.8.2 Description 213

5.8.3 Safety/Integrity Aspects 213

5.8.4 Key Integration Aspects 213

5.8.5 Key Interfaces 214

5.8.6 Key Design Drivers 214

5.8.7 Modelling 214

5.8.8 References 214

5.8.9 Sizing Considerations 214

5.8.10 Future Considerations 214

5.9 ElectronicWarfare System 214

5.9.1 Purpose of System 216

5.9.2 Description 216

5.9.3 Safety/Integrity Aspects 216

5.9.4 Key Integration Aspects 216

5.9.5 Key Interfaces 216

5.9.6 Key Design Drivers 217

5.9.7 Modelling 217

5.9.8 References 217

5.9.9 Sizing Considerations 217

5.9.10 Future Considerations 217

5.10 Camera System 217

5.10.1 Purpose of System 218

5.10.2 Description 218

5.10.3 Safety/Integrity Aspects 219

5.10.4 Key Integration Aspects 219

5.10.5 Key Interfaces 219

5.10.6 Key Design Drivers 219

5.10.7 Modelling 219

5.10.8 References 219

5.10.9 Sizing Considerations 219

5.10.10 Future Considerations 220

5.11 Head Up Display (HUD) 220

5.11.1 Purpose of System 221

5.11.2 Description 221

5.11.3 Safety/Integrity Aspects 221

5.11.4 Key Integration Aspects 221

5.11.5 Key Interfaces 221

5.11.6 Key Design Drivers 222

5.11.7 Modelling 222

5.11.8 References 222

5.11.9 Sizing Considerations 222

5.11.10 Future Considerations 222

5.12 Helmet Mounted Systems 222

5.12.1 Purpose of System 223

5.12.2 Description 223

5.12.3 Safety/Integrity Aspects 223

5.12.4 Key Integration Aspects 223

5.12.5 Key Interfaces 224

5.12.6 Key Design Drivers 224

5.12.7 Modelling 224

5.12.8 Reference 224

5.12.9 Sizing Considerations 224

5.12.10 Future Considerations 224

5.13 Data Link 224

5.13.1 Purpose of System 225

5.13.2 Description 226

5.13.3 Safety/Integrity Aspects 226

5.13.4 Key Integration Aspects 226

5.13.5 Key Interfaces 226

5.13.6 Key Design Drivers 226

5.13.7 Modelling 226

5.13.8 References 226

5.13.9 Sizing Considerations 227

5.13.10 Future Considerations 227

5.14 Weapon System 227

5.14.1 Purpose of System 228

5.14.2 Description 228

5.14.3 Safety/Integrity Aspects 228

5.14.4 Key Integration Aspect 229

5.14.5 Key Interfaces 229

5.14.6 Key Design Drivers 229

5.14.7 Modelling 230

5.14.8 References 230

5.14.9 Sizing Considerations 230

5.14.10 Future Considerations 230

5.15 Mission System Displays and Controls 230

5.15.1 Purpose of System 232

5.15.2 Description 232

5.15.3 Safety/Integrity Aspects 233

5.15.4 Key Integration Aspect 233

5.15.5 Key Interfaces 233

5.15.6 Key Design Drivers 233

5.15.7 Modelling 233

5.15.8 References 234

5.15.9 Sizing Considerations 234

5.15.10 Future Considerations 234

5.16 Mission System Antennas 234

5.16.1 Purpose of System 236

5.16.2 Description 236

5.16.3 Safety/Integrity Aspects 236

5.16.4 Key Integration Aspects 236

5.16.5 Key Interfaces 236

5.16.6 Key Design Drivers 237

5.16.7 Modelling 237

5.16.8 References 237

5.16.9 Sizing Considerations 237

5.16.10 Future Considerations 237

References 237

Further Reading 239

Exercises 239

6 Supporting Ground Systems 241

6.1 Flight Test Data Analysis 243

6.1.1 Purpose of System 244

6.1.2 Description 245

6.1.3 Safety/Integrity Aspects 245

6.1.4 Key Integration Aspects 245

6.1.5 Key Interfaces 245

6.1.6 Key Design Drivers 245

6.1.7 Modelling 246

6.1.8 Sizing Considerations 246

6.2 Maintenance Management System 246

6.2.1 Purpose of System 246

6.2.2 Description 246

6.2.3 Safety/Integrity Aspects 247

6.2.4 Key Integration Aspects 247

6.2.5 Key Interfaces 247

6.2.6 Key Design Drivers 247

6.2.7 Modelling 248

6.2.8 Sizing Considerations 248

6.3 Accident Data Recording 248

6.3.1 Purpose of System 249

6.3.2 Description 249

6.3.3 Safety/Integrity Aspects 249

6.3.4 Key Integration Aspects 249

6.3.5 Key Interfaces 249

6.3.6 Key Design Drivers 249

6.3.7 Modelling 249

6.3.8 Sizing Considerations 250

6.4 Mission Data Management (Mission Support System) 250

6.4.1 Purpose of System 250

6.4.2 Description 250

6.4.3 Safety/Integrity Aspects 251

6.4.4 Key Integration Aspects 251

6.4.5 Key Interfaces 251

6.4.6 Key Design Drivers 251

6.4.7 Modelling 252

6.4.8 References 252

6.4.9 Sizing Considerations 252

6.5 UAV Control 252

6.5.1 Purpose of System 252

6.5.2 Description 252

6.5.3 Safety/Integrity Aspects 253

6.5.4 Key Integration Aspects 253

6.5.5 Key Interfaces 254

6.5.6 Key Design Drivers 254

6.5.7 Modelling 254

6.5.8 References 254

6.5.9 Sizing Considerations 254

References 254

Exercises 255

7 Modelling of Systems Architectures 257

7.1 Introduction 257

7.1.1 Principle of Avionics Integration 258

7.2 Literature Survey of Methods 259

7.2.1 Model-Based Development 259

7.2.2 Modelling and Analysis Techniques 260

7.2.3 Integrated Development Environment 262

7.2.4 Model Management 262

7.2.5 State-of-the-Art Avionics Architecture Modelling 263

7.2.6 Things Need to be Modelled 263

7.2.7 Architecture Analysis and Design Language (AADL) 264

7.2.8 AADL-Based Modelling of IMA 265

7.2.9 Mathematical-Based Modelling of IMA 265

7.2.10 General Assignment and Mapping Problem 266

7.2.11 An Overview of IMA Architecture Optimisation 268

7.2.12 Architecture Design and Optimisation in Other Industries 273

7.2.13 Comparison of Modelling Approaches 275

7.2.14 Comparison of Optimisation Methods 276

7.3 Avionics Integration Architecture Methodology 277

7.3.1 Aircraft Level Avionics Requirements 279

7.3.2 Avionics Functional Decomposition 280

7.3.3 Automatic Flight Control System (AFCS) Architecture 283

7.3.4 Avionics Systems Architecture 285

7.3.5 Avionics Equipment List and Technical Specifications 285

7.3.6 Avionics LRUs Operational Capability Assessment 285

7.3.7 Simple AdditiveWeighting (SAW) Method 287

7.3.8 Operational Capability Assessment 288

7.3.9 Avionics Equipment Database 289

7.3.10 Avionics Integration Optimisation Software Architecture 289

7.4 Avionics Integration Modelling of Optimisation 292

7.4.1 IMA Architecture Layers for Allocation Modelling 292

7.4.2 Integer Programming 293

7.4.3 Avionics LRUs Assignment Problem 294

7.4.4 Avionics Integration Constraints 294

7.5 Simulations and Results for a Sample Architecture 297

7.5.1 GAMS 297

7.5.2 MATLAB Function and PSO 298

7.6 Conclusion 300

References 300

8 Summary and Future Developments 305

8.1 Introduction 305

8.2 Systems of Systems 305

8.2.1 Example of the Flight Deck as a System of Systems 306

8.2.2 Customer Requirement 306

8.2.3 Standards and Regulations 306

8.2.4 Human Factors Aspects 306

8.2.5 Vehicle Systems Aspects 309

8.2.6 Avionic Systems Aspects 310

8.2.7 Mission Systems Aspects 311

8.2.8 General Aspects 311

8.2.9 Structural Aspects 312

8.2.10 Physical Aspects 313

8.2.11 Flight Simulation 314

8.3 Architectures 314

8.4 Other Considerations 315

8.4.1 Integration 315

8.4.2 Complexity 318

8.4.3 Chaos 319

8.4.4 Emergent Properties 322

8.4.5 Fitness For Purpose 322

8.5 Conclusion 323

8.6 What's Next? 323

Exercise 327

Index 329
Allan Seabridge
is a member of the BAE Systems Heritage Department at Warton and retired as Head of Flight Systems Engineering after a long career with BAE Systems. He has over 50 years' experience in aerospace systems engineering, business development, and research & development, working on major projects including Canberra, Jaguar, Tornado, EAP, Typhoon, and Nimrod. Since retiring he has developed an interest in engineering education leading to the design and delivery of systems and engineering courses at a number of UK universities at the undergraduate and postgraduate level.

Mohammad Radaei has a PhD from Cranfield University in aerospace engineering, specializing in avionics systems integration. He obtained a BSc in aeronautical engineering from Air University, and MSc in aerospace engineering from National University of Iran in Tehran. He also holds a commercial pilot's license. His research interests include aircraft systems design, avionics systems integration, systems architecting, aircraft and systems flight testing, applied mathematics, flight dynamics and control of manned and unmanned aircraft, as well as human machine interactions. He is currently lecturing in avionics systems at a number of universities.

A. Seabridge, BAE Systems, UK