Atomically Precise Nanochemistry
1. Auflage April 2023
528 Seiten, Hardcover
Wiley & Sons Ltd
Atomically Precise Nanochemistry
Explore recent progress and developments in atomically precise nanochemistry
Chemists have long been motivated to create atomically precise nanoclusters, not only for addressing some fundamental issues that were not possible to tackle with imprecise nanoparticles, but also to provide new opportunities for applications such as catalysis, optics, and biomedicine. In Atomically Precise Nanochemistry, a team of distinguished researchers delivers a state-of-the-art reference for researchers and industry professionals working in the fields of nanoscience and cluster science, in disciplines ranging from chemistry to physics, biology, materials science, and engineering.
A variety of different nanoclusters are covered, including metal nanoclusters, semiconductor nanoclusters, metal-oxo systems, large-sized organometallic nano-architectures, carbon clusters, and supramolecular architectures. The book contains not only experimental contributions, but also theoretical insights into the atomic and electronic structures, as well as the catalytic mechanisms. The authors explore synthesis, structure, geometry, bonding, and applications of each type of nanocluster.
Perfect for researchers working in nanoscience, nanotechnology, and materials chemistry, Atomically Precise Nanochemistry will also benefit industry professionals in these sectors seeking a practical and up-to-date resource.
Preface xvii
1 Introduction to Atomically Precise Nanochemistry 1
Rongchao Jin
1.1 Why Atomically Precise Nanochemistry? 1
1.1.1 Motivations from Nanoscience Research 1
1.1.2 Motivations from Inorganic Chemistry Research 5
1.1.3 Motivations from Gas Phase Cluster Research 6
1.1.4 Motivations from Other Areas 6
1.2 Types of Nanoclusters Covered in This Book 7
1.2.1 Atomically Precise Metal Nanoclusters (Au, Ag, Cu, Ni, Rh) 8
1.2.2 Endohedral Fullerenes and Graphene Nanoribbons 10
1.2.3 Zintl Clusters 10
1.2.4 Metal- Oxo Nanoclusters 11
1.3 Some Fundamental Aspects 12
1.3.1 Synthesis and Crystallization 12
1.3.2 Structural and Bonding Patterns 16
1.3.3 Transition from Nonmetallic to Metallic State: Emergence of Plasmon 25
1.3.4 Transition from Metal Complexes to the Cluster State: Emergence of Core 29
1.3.5 Doping and Alloying 32
1.3.6 Redox and Magnetism 33
1.3.7 Energy Gap Engineering 39
1.3.8 Assembly of Atomically Precise Nanoclusters 40
1.4 Some Applications 42
1.4.1 Chemical and Biological Sensing 43
1.4.2 Biomedical Imaging, Drug Delivery, and Therapy 44
1.4.3 Antibacteria 45
1.4.4 Solar Energy Conversion 45
1.4.5 Catalysis 45
1.5 Concluding Remarks 49
Acknowledgment 49
References 49
2 Total Synthesis of Thiolate- Protected Noble Metal Nanoclusters 57
Qiaofeng Yao, Yitao Cao, Tiankai Chen, and Jianping Xie
2.1 Introduction 57
2.2 Size Engineering of Metal Nanoclusters 58
2.2.1 Size Engineering by Reduction- Growth Strategy 58
2.2.2 Size Engineering by Size Conversion Strategy 62
2.3 Composition Engineering of Metal Nanoclusters 64
2.3.1 Metal Composition Engineering 64
2.3.2 Ligand Composition Engineering 70
2.4 Structure Engineering of Metal Nanoclusters 73
2.4.1 Pseudo- Isomerization 75
2.4.2 Isomerization 75
2.5 Top- Down Etching Reaction of Metal Nanoclusters 78
2.6 Conclusion and Outlooks 80
Contributions 83
References 83
3 Thiolated Gold Nanoclusters with Well- Defined Compositions and Structures 87
Wanmiao Gu and Zhikun Wu
3.1 Introduction 87
3.2 Synthesis, Purification, and Characterization of Gold Nanoclusters 88
3.2.1 Synthesis 88
3.2.1.1 Synthesis Strategy 89
3.2.1.2 Gold Salt (Complex) Reduction Method 89
3.2.1.3 Ligand Induction Method 91
3.2.1.4 Anti- Galvanic Reaction Method 91
3.2.2 Isolation and Purification 92
3.2.3 Characterization 94
3.3 Structures of Gold Nanoclusters 95
3.3.1 Kernel Structures of Au n (SR) m 96
3.3.2 Kernels Based on Tetrahedral Au 4 Units 96
3.3.2.1 Kernels in fcc Structure 99
3.3.2.2 Kernels Arranged in hcp and bcc Fashions 99
3.3.2.3 Kernels in Mirror Symmetry and Dual- Packing (fcc and non- fcc) 101
3.3.2.4 Kernels Based on Icosahedral Au 13 Unit 102
3.3.2.5 Kernels with Multiple Shells 105
3.3.3 Protecting Surface Motifs of Au n (SR) m Clusters 111
3.3.3.1 Staple- Like Au X (sr) X+1 (x = 1, 2, 3, 4, 8) Motifs 111
3.3.3.2 Ring- Like Au X (sr) X (x = 4, 5, 6, 8) Motifs 111
3.3.3.3 Giant Au 20 S 3 (SR) 18 and Au 23 S 4 (SR) 18 Staple Motifs 112
3.3.3.4 Homo- Kernel Hetero- Staples 112
3.4 Properties and Applications 115
3.4.1 Properties 115
3.4.1.1 Optical Absorption 116
3.4.1.2 Photoluminescence 119
3.4.1.3 Chirality 123
3.4.1.4 Magnetism 124
3.4.2 Applications 125
3.4.2.1 Sensing 125
3.4.2.2 Biological Labeling and Biomedicine 127
3.4.2.3 Catalysis 127
3.5 Conclusion and Future Perspectives 130
Acknowledgments 131
References 131
4 Structural Design of Thiolate- Protected Gold Nanoclusters 141
Pengye Liu, Wenhua Han, and Wen Wu Xu
4.1 Introduction 141
4.2 Structural Design Based on "Divide and Protect" Rule 142
4.2.1 A Brief Introduction of the Idea 142
4.2.2 Atomic Structure of Au 68 (SH) 32 142
4.2.3 Atomic Structure of Au 68 (SH) 34 142
4.3 Structural Design via Redistributing the "Staple" Motifs on the Known Au Core Structures 144
4.3.1 A Brief Introduction of the Idea 144
4.3.2. Atomic Structure of Au 22 (SH) 17 145
4.3.3 Atomic Structures of Au 27 (SH) . 20 , Au 32 (SR) . 21 , Au 34 (SR) . 23 , and Au 36 (SR) 25 . 146
4.4 Structural Design via Structural Evolution 149
4.4.1 A Brief Introduction of the Idea 149
4.4.2 Atomic Structures of Au 60 (SR) 36 , Au 68 (SR) 40 , and Au 76 (SR) 44 150
4.4.3 Atomic Structure of Au 58 (SR) 30 152
4.5 Structural Design via Grand Unified Model 153
4.5.1 A Brief Introduction of the Idea 153
4.5.2 Atomic Structures of Hollow Au 36 (SR) 12 and Au 42 (SR) 14 154
4.5.3 Atomic Structures of Au 28 (SR) 20 155
4.6 Conclusion and Perspectives 155
Acknowledgment 156
References 156
5 Electrocatalysis on Atomically Precise Metal Nanoclusters 161
Hoeun Seong, Woojun Choi, Yongsung Jo, and Dongil Lee
5.1 Introduction 161
5.1.1 Materials Design Strategy for Electrocatalysis 161
5.1.2 Atomically Precise Metal Nanoclusters as Electrocatalysts 163
5.2 Electrochemistry of Atomically Precise Metal Nanoclusters 164
5.2.1 Size- Dependent Voltammetry 164
5.2.2 Metal- Doped Gold Nanoclusters 166
5.2.3 Metal- Doped Silver Nanoclusters 169
5.3 Electrocatalytic Water Splitting on Atomically Precise Metal Nanoclusters 170
5.3.1 Hydrogen Evolution Reaction: Core Engineering 170
5.3.2 Hydrogen Evolution Reaction: Shell Engineering 172
5.3.3 Hydrogen Evolution Reaction on Ag Nanoclusters 173
5.3.4 Oxygen Evolution Reaction 176
5.4 Electrocatalytic Conversion of CO 2 on Atomically Precise Metal Nanoclusters 178
5.4.1 Mechanistic Investigation of CO 2 RR on Au Nanoclusters 179
5.4.2 Identification of CO 2 RR Active Sites 181
5.4.3 CO 2 RR on Cu Nanoclusters 183
5.4.4 Syngas Production on Formulated Metal Nanoclusters 185
5.5 Conclusions and Outlook 187
Acknowledgments 188
References 188
6 Atomically Precise Metal Nanoclusters as Electrocatalysts: From Experiment to Computational Insights 195
Fang Sun, Qing Tang, and De- en Jiang
6.1 Introduction 195
6.2 Factors Affecting the Activity and Selectivity of NCs Electrocatalysis 196
6.2.1 Size Effect 196
6.2.2 Shape Effect 198
6.2.3 Ligands Effect 199
6.2.3.1 Different -R Groups in Thiolate Ligands 199
6.2.3.2 Different Types of Ligands 199
6.2.3.3 Ligand- on and - off Effect 200
6.2.4 Charge State Effect 201
6.2.5 Doping and Alloying Effect 202
6.3 Important Electrocatalytic Applications 205
6.3.1 Electrocatalytic Water Splitting 205
6.3.1.1 Water Electrolysis Process 205
6.3.1.2 Cathodic Water Reduction-HER 206
6.3.1.3 Anodic Water Oxidation-OER 208
6.3.2 Oxygen Reduction Reaction (ORR) 210
6.3.3 Electrochemical CO 2 Reduction Reaction (CO 2 RR) 213
6.4 Conclusion and Perspectives 219
Acknowledgments 220
References 220
7 Ag Nanoclusters: Synthesis, Structure, and Properties 227
Manman Zhou and Manzhou Zhu
7.1 Introduction 227
7.2 Synthetic Methods 228
7.2.1 One- Pot Synthesis 228
7.2.2 Ligand Exchange 228
7.2.3 Chemical Etching 229
7.2.4 Seeded Growth Method 229
7.3 Structure of Ag NCs 229
7.3.1 Based on Icosahedral Units' Assembly 231
7.3.2 Based on Ag 14 Units' Assembly 235
7.3.3 Other Special Ag NCs 241
7.4 Properties of Ag NCs 245
7.4.1 Chirality of Ag NCs 245
7.4.2 Photoluminescence of Ag NCs 247
7.4.3 Catalytic Properties of Ag NCs 250
7.5 Conclusion and Perspectives 250
Acknowledgment 251
References 251
8 Atomically Precise Copper Nanoclusters: Syntheses, Structures, and Properties 257
Chunwei Dong, Saidkhodzha Nematulloev, Peng Yuan, and Osman M. Bakr
8.1 Introduction 257
8.2 Syntheses of Copper NCs 258
8.2.1 Direct Synthesis 258
8.2.2 Indirect Synthesis: Nanocluster- to- Nanocluster Transformation 260
8.3 Structures of Copper NCs 261
8.3.1 Superatom- like Copper NCs without Hydrides 261
8.3.2 Superatom- like Copper NCs with Hydrides 263
8.3.3 Copper(I) Hydride NCs 265
8.3.3.1 Determination of Hydrides 265
8.3.3.2 Copper(I) Hydride NCs Determined by Single- Crystal Neutron Diffraction 265
8.3.3.3 Copper(I) Hydride NCs Determined by Single- Crystal X- ray Diffraction 268
8.4 Properties 270
8.4.1 Photoluminescence of Copper NCs 270
8.4.1.1 Aggregation- Induced Emission 271
8.4.1.2 Circularly Polarized Luminescence (CPL) 273
8.4.2 Catalytic Properties of Copper NCs 273
8.4.2.1 Reduction of CO 2 273
8.4.2.2 "Click" Reaction 276
8.4.2.3 Hydrogenation 276
8.4.2.4 Carbonylation Reactions 276
8.4.3 Other Properties 276
8.4.3.1 Hydrogen Storage 276
8.4.3.2 Electronic Devices 277
8.5 Summary Comparison with Gold and Silver NCs 277
8.6 Conclusion and Perspectives 278
References 279
9 Atomically Precise Nanoclusters of Iron, Cobalt, and Nickel: Why Are They So Rare? 285
Trevor W. Hayton
9.1 Introduction 285
9.2 General Considerations 287
9.3 Synthesis of Ni APNCs 288
9.4 Synthesis of Co APNCs 294
9.5 Attempted Synthesis of Fe APNCs 297
9.6 Conclusions and Outlook 299
Acknowledgments 300
References 300
10 Atomically Precise Heterometallic Rhodium Nanoclusters Stabilized by Carbonyl Ligands 309
Guido Bussoli, Cristiana Cesari, Cristina Femoni, Maria C. Iapalucci, Silvia Ruggieri, and Stefano Zacchini
10.1 Introduction 309
10.1.1 Metal Carbonyl Clusters: A Brief Historical Overview 309
10.1.2 State of the Art on Rhodium Carbonyl Clusters 310
10.2 Synthesis of Heterometallic Rhodium Carbonyl Nanoclusters 311
10.2.1 Synthesis of the [Rh12 E(CO)27 ] n. Family of Nanoclusters 311
10.2.2 Growth of Rhodium Heterometallic Nanoclusters 314
10.2.2.1 Rh-Ge Nanoclusters 314
10.2.2.2 Rh-Sn Nanoclusters 316
10.2.2.3 Rh-Sb Nanoclusters 316
10.2.2.4 Rh-Bi Nanoclusters 319
10.3 Electron- Reservoir Behavior of Heterometallic Rhodium Nanoclusters 319
10.4 Conclusions and Perspectives 322
Acknowledgments 324
References 324
11 Endohedral Fullerenes: Atomically Precise Doping Inside Nano Carbon Cages 331
Yang- Rong Yao, Jiawei Qiu, Lihao Zheng, Hongjie Jiang, Yunpeng Xia, and Ning Chen
11.1 Introduction 331
11.2 Synthesis of Endohedral Metallofullerenes 332
11.3 Fullerene Structures Tuned by Endohedral Doping 334
11.3.1 Geometry of Empty and Endohedral Fullerene Cage Structures 334
11.3.2 Conventional Endohedral Metallofullerenes 336
11.3.2.1 Mono- Metallofullerens 336
11.3.2.2 Di- Metallofullerenes 337
11.3.3 Clusterfullerenes 339
11.3.3.1 Nitride Clusterfullerenes 339
11.3.3.2 Carbide Clusterfullerenes 339
11.3.3.3 Oxide and Sulfide Clusterfullerenes 341
11.3.3.4 Carbonitride and Cyanide Clusterfullerenes 341
11.4 Properties Tuned by Endohedral Doping 342
11.4.1 Spectroscopic Properties 342
11.4.1.1 NMR Spectroscopy 343
11.4.1.2 Absorption Spectroscopy 344
11.4.1.3 Vibrational Spectroscopy 347
11.4.2 Electrochemical Properties 349
11.4.2.1 Conventional Endohedral Metallofullerenes 349
11.4.2.2 Clusterfullerenes 351
11.4.3 Magnetic Properties 353
11.4.3.1 Dimetallofullerenes 353
11.4.3.2 Clusterfullerenes 354
11.5 Chemical Reactivity Tune by Endohedral Doping 358
11.5.1 Impact of Endohedral Doping on the Reactivity of Fullerene Cages 358
11.5.2 Chemical Reactivity of Endohedral Fullerenes Altered by Atomically Endohedral Doping 360
11.6 Conclusions and Perspectives 362
References 362
12 On- Surface Synthesis of Polyacenes and Narrow Band- Gap Graphene Nanoribbons 373
Hironobu Hayashi and Hiroko Yamada
12.1 Introduction 373
12.1.1 Nanocarbon Materials 374
12.1.2 Graphene Nanoribbons 374
12.2 Bottom- Up Synthesis of Graphene Nanoribbons 375
12.3 On- Surface Synthesis of Narrow Bandgap Armchair- Type Graphene Nanoribbons 378
12.4 On- Surface Synthesis of Polyacenes as Partial Structure of Zigzag- Type Graphene Nanoribbons 382
12.5 Conclusion and Perspectives 390
Acknowledgments 390
References 390
13 A Branch of Zintl Chemistry: Metal Clusters of Group 15 Elements 395
Yu-He Xu, Nikolay V. Tkachenko, Alvaro Muñoz-Castro, Alexander I. Boldyrev, and Zhong- Ming Sun
13.1 Introduction 395
13.1.1 Homoatomic Group 15 Clusters 395
13.1.2 Bonding Concepts 396
13.1.3 Aromaticity in Zintl Chemistry 397
13.2 Complex Coordination Modes in Arsenic Clusters 399
13.3 Antimony Clusters with Aromaticity and Anti- Aromaticity 401
13.4 Recent Advances in Bismuth- Containing Compounds 408
13.5 Ternary Clusters Containing Group 15 Elements 411
13.6 Conclusion and Perspectives 414
References 415
14 Exploration of Controllable Synthesis and Structural Diversity of Titanium-Oxo Clusters 423
Mei- Yan Gao, Lei Zhang, and Jian Zhang
14.1 Introduction 423
14.2 Coordination Delayed Hydrolysis Strategy 425
14.2.1 Solvothermal Synthesis 426
14.2.2 Aqueous Sol- Gel Synthesis 426
14.2.3 Ionothermal Synthesis 427
14.2.4 Solid- State- Like Synthesis 427
14.3 Ti-O Core Diversity 427
14.3.1 Dense Structures 431
14.3.2 Wheel- Shaped Structures 431
14.3.3 Sphere- Shaped Structures 431
14.3.4 Multicluster Structures 432
14.4 Ligand Diversity 432
14.4.1 Carboxylate Ligands 433
14.4.2 Phosphonate Ligands 433
14.4.3 Polyphenolic Ligands 435
14.4.4 Sulfate Ligands 436
14.4.5 Nitrogen Heterocyclic Ligands 437
14.5 Metal- Doping Diversity 438
14.5.1 Transition Metal Doping 439
14.5.2 Rare Earth Metal Doping 440
14.6 Structural Influence on Properties and Applications 441
14.7 Conclusion and Perspectives 445
Acknowledgment 446
References 446
15 Atom- Precise Cluster- Assembled Materials: Requirement and Progresses 453
Sourav Biswas, Panpan Sun, Xia Xin, Sukhendu Mandal, and Di Sun
15.1 Introduction 453
15.2 Prospect of Cluster- Assembling Process and Their Classification 454
15.2.1 Nanocluster Assembly in Crystal Lattice through Surface Ligand Interaction 455
15.2.2 Nanocluster Assembly through Metal-Metal Bonds 456
15.2.3 Nanocluster Assembly through Linkers 461
15.2.3.1 One- Dimensional Nanocluster Assembly 463
15.2.3.2 Two- Dimensional Nanocluster Assembly 465
15.2.3.3 Three- Dimensional Nanocluster Assembly 469
15.2.4 Nanocluster Assembly through Aggregation 470
15.3 Conclusions and Outlook 474
Notes 474
Acknowledgments 475
References 475
16 Coinage Metal Cluster- Assembled Materials 479
Zhao- Yang Wang and Shuang- Quan Zang
16.1 Introduction 479
16.2 Structures of Metal Cluster- Assembled Materials 480
16.2.1 Silver Cluster- Assembled Materials (SCAMs) 480
16.2.1.1 Simple Ion Linker 480
16.2.1.2 POMs Linker 482
16.2.1.3 Organic Linker 482
16.2.2 Gold Cluster- Assembled Materials (GCAMs) 491
16.2.3 Copper Cluster- Assembled Materials (CCAMs) 492
16.3 Applications 493
16.3.1 Ratiometric Luminescent Temperature Sensing 494
16.3.2 Luminescent Sensing and Identifying O2 and VOCs 495
16.3.3 Catalytic Properties 495
16.3.4 Anti- Superbacteria 498
16.4 Conclusion 499
Acknowledgments 499
References 499
Index 503
De-en Jiang is a leading theorist on atomically precise nanochemistry working in the Chemical and Biomolecular Engineering Department at Vanderbilt University in the United States.