Wiley-VCH, Berlin Grundlagen kontinuierlicher Symmetrien Cover Das neue Buch von Franck Laloë stellt einen symmetriebasierten Ansatz vor, um die Quantenmechanik au.. Product #: 978-3-527-41415-4 Regular price: $60.75 $60.75 Auf Lager

Grundlagen kontinuierlicher Symmetrien

Von der Raumzeit zur Quantenmechanik

Laloe, Franck

Übersetzt von Henkel, Carsten

Cover

1. Auflage September 2023
XII, 538 Seiten, Hardcover
Lehrbuch

ISBN: 978-3-527-41415-4
Wiley-VCH, Berlin

Kurzbeschreibung

Das neue Buch von Franck Laloë stellt einen symmetriebasierten Ansatz vor, um die Quantenmechanik auf einer fundamentalen Ebene zu verstehen, und liefert die dazugehörigen Rechentechniken, um fortgeschrittene Kurse über Kernphysik, Quantenoptik und Festkörperphysik zu meistern.

Jetzt kaufen

Preis: 65,00 €

Preis inkl. MwSt, zzgl. Versand

Weitere Versionen

epubmobipdf
I Symmetrietransformationen

A Grundlegende Symmetrien
1 Definition
2 Beispiele
3 Aktive und passive Perspektive
B Symmetrien in der klassischen Mechanik
1 Newtonsche Mechanik
2 Lagrange-Mechanik
3 Hamilton-Mechanik
C Symmetrien in der Quantenmechanik
1 Kanonische Quantisierung
2 Symmetrieoperationen
3 Allgemeine Folgerungen

A_I Statistische Mechanik im Phasenraum
1 Euler-Darstellung
2 Lagrange-Darstellung

B_I Satz von Noether in der Feldtheorie
1 Euler-Lagrange-Formalismus für Felder
2 Symmetrietransformation und erhaltener Strom
3 Verallgemeinerte Formulierung in der Raumzeit
4 Lokale Energieerhaltung

II Grundbegriffe der Gruppentheorie

A Eigenschaften von Gruppen
1 Definition
2 Beispiele
3 Strukturen in Gruppen
4 Direktes Produkt
B Darstellungen einer Gruppe
1 Definition und Eigenschaften
2 Äquivalente Darstellungen
3 Charaktere
4 Summe und Produkt von Darstellungen
5 Reduzible und irreduzible Darstellungen

A_II Zerlegungen von Gruppen
1 Nebenklassen
2 Faktor- oder Quotientengruppe

III Einführung in Lie-Gruppen

A Allgemeine Eigenschaften
1 Kontinuierliche (topologische) Gruppen
2 Lie-Gruppen und Lie-Algebren
3 Kompakte Gruppen und ihre Darstellungen
B Beispiele
1 Drehungen in einer Ebene: SO(2)
2 Galilei-Transformationen im eindimensionalen Raum
3 Die Gruppe SU(2)
4 Drehungen in drei Dimensionen ? Die Gruppe SO(3)
C Galilei- und Poincaré-Gruppe
1 Galilei-Transformationen
2 Poincaré-Gruppe

A_III Adjungierte Darstellung und Casimir-Operator
1 Adjungierte Darstellung einer Lie-Algebra
2 Ein Skalarprodukt auf L: die Killing-Form
3 Vollständig antisymmetrisierte Strukturkonstanten
4 Konstruktion des Casimir-Operators

IV Darstellungen von Gruppen in der Quantenmechanik

A Physikalische Eigenschaften einer Transformation
B Der Satz von Wigner
C Transformation von Observablen
1 Konstruktion
2 Physikalische Bedeutung
D Unitäre Darstellungen auf einem Zustandsraum
1 Wirkung einer Transformationsgruppe
2 Infinitesimale Transformationen und Vertauschungsrelationen
E Phasenfaktoren und projektive Darstellungen
1 Lokale Eigenschaften
2 Darstellungen endlicher Dimension

A_IV Projektive Darstellungen von Lie-Gruppen ? Satz von Bargmann
1 Einfach zusammenhängende Gruppe
2 p-fach zusammenhängende Gruppe

B_IV Der Satz von Uhlhorn-Wigner
1 Reeller Vektorraum
2 Komplexer Vektorraum

V Erzeugende Operatoren der Galilei- und Poincaré-Gruppe

A Darstellungen im Zustandsraum
B Galilei-Gruppe
1 Allgemeine Eigenschaften
2 Elimination der ß_ab
3 Erhaltungsgrößen: Masse, innere Energie, Spin
C Lorentz-Poincaré-Gruppe
1 Eliminieren der diagonalen Operatoren
2 Invariante Observablen: Masse, Energie, Spin
3 Masselose Teilchen
4 Endliche Transformationen

A_V Die eigentliche Lorentz-Gruppe
1 Beziehung zur Gruppe SL(2,C)
2 Kleine Gruppe eines Vierervektors

B_V Die Spinoperatoren S und W
1 Spinoperator S
2 Der Pauli-Lubanski-Vektor
3 Spinquadrat in einem Unterraum mit beliebigem Viererimpuls

C_V Die Bewegungs- oder Euklidische Gruppe
1 Wiederholung der klassischen Eigenschaften
2 Operatoren auf dem Zustandsraum

D_V Raumspiegelung (Parität)
1 Wirkung im Ortsraum
2 Operator auf dem Zustandsraum
3 Erhaltung und Verletzung der Parität

VI Zustandsräume und Wellengleichungen

A Galilei-Gruppe und Schrödinger-Gleichung
1 Das kräftefreie Teilchen ohne Spin
2 Teilchen im elektromagnetischen Feld
B Relativistische Wellengleichungen
1 Klein-Gordon-Gleichung
2 Dirac-Gleichung
3 Weyl-Gleichung

A_VI Relativistische Invarianz der Dirac-Gleichung und nichtrelativistischer Grenzfall
1 Lorentz-Transformation der Dirac-Spinoren
2 Nichtrelativistischer Grenzfall

B_VI Endliche Lorentz-Transformationen und Dirac-Zustandsraum
1 Geometrische Bewegungen
2 Lorentz-Transformationen
3 Zustandsraum und Observablen für die Dirac-Gleichung

C_VI Lagrange-Funktionen und Erhaltungsgrößen
1 Notation und komplexe Felder
2 Schrödinger-Gleichung
3 Klein-Gordon-Gleichung
4 Dirac-Gleichung
5 Das Standardmodell der Elementarteilchen

VII Drehimpulse, Drehgruppe, Spinoren

A Elementare Theorie des Drehimpulses
1 Wiederholung: Leiteroperatoren und Quantenzahlen
2 Die Standardbasis
3 Konstruktion der Drehmatrizen
B Transformation von Vektoren und Spinoren
1 Spin j = 1 und reelle Drehungen
2 Spinoren und ihre Wellenfunktionen
C Irreduzible unitäre Darstellungen
1 Zerlegung in irreduzible Bausteine
2 Die Standarddarstellungen sind irreduzibel
3 Zweiwertige und projektive Darstellungen
D Addition von Drehimpulsen
1 Aufgabenstellung
2 Zerlegung einer Produktdarstellung

A_VII Die SU(2) überlagert die Drehgruppe homomorph
1 Wirkung der SU(2) auf reelle Vektoren
2 Die Transformation ist eine Drehung
3 Homomorphismus zwischen SO(3) und SU(2)
4 Bezug zum Kapitel VII

B_VII Kopplung von drei Drehimpulsen
1 Unterräume mit Gesamtdrehimpuls Null
2 3j-Symbole
3 6j-Symbole

VIII Transformation von Observablen unter Drehungen

A Vektorielle Operatoren
1 Vertauschungsrelationen
2 Physikalische Bedeutung
3 Transformation eines Vektoroperators
4 Komponenten in der Standard-Basis
B Tensoroperatoren
1 Motivation
2 Transformation unter Drehungen
3 Sphärische Komponenten
4 Irreduzible Tensoroperatoren
5 Eigenschaften
C Der Satz von Wigner-Eckart
1 Lemma
2 Formulierung des Satzes und Beweis
D Anwendungen
1 Skalare Operatoren
2 Vektorielle Operatoren
3 Rang-2-Tensoroperatoren

A_VIII Elementare Eigenschaften von Tensoren
1 Vektoren
2 Tensoren
3 Produkt und Kontraktion
4 Symmetrische und antisymmetrische Tensoren
5 Zerlegung in irreduzible Tensoren

B_VIII Irreduzible Zerlegung von Tensoren zweiter Ordnung
1 Tensorprodukt von zwei Vektoroperatoren
2 Irreduzible Komponenten in der Cartesischen Basis

C_VIII Multipolmomente
1 Elektrische Multipole
2 Magnetische Multipole
3 Multipolmomente von Systemen mit Drehimpuls J

D_VIII Zerlegung einer Dichtematrix in irreduzible Tensoren
1 Liouville-Raum
2 Transformation unter Drehungen
3 Eine Basis irreduzibler Operatoren
4 Drehsymmetrie und Zeitentwicklung

IX Interne Symmetrien

A Systeme von Teilchen mit interner Symmetrie
1 Grundbegriffe
2 Unterscheidbare Teilchen
3 Identische (ununterscheidbare) Teilchen
4 Interne Zustände und Quantenzahlen
B Die Isospin-Symmetrie
1 Lie-Algebra
2 Spin und Isospin
3 Isospin-Multipletts
4 Beispiele
C Flavour-Symmetrie und die Gruppe SU(3)
1 Erzeugende Operatoren
2 Darstellungen der SU(3)
3 Konstruktion der irreduziblen Darstellungen
4 Anwendungen in der Elementarteilchenphysik

A_IX Symmetrisieren von gleichwertigen Teilchen
1 Fermionen
2 Bosonen
3 Vollständig (anti)symmetrisierte Zustände
4 Äquivalenz zwischen zwei Vielteilchensystemen

X Gebrochene Symmetrie

A Ferromagnetismus
1 Thermisches Gleichgewicht
2 Spontane Symmetriebrechung
B Weitere Beispiele
1 Kristallisation
2 Bose-Einstein-Kondensation
3 Higgs-Mechanismus in der Quantenfeldtheorie

Anhang Zeitumkehr

A In der klassischen Mechanik
B Antilineare Operatoren
1 Allgemeine Eigenschaften
2 Antiunitäre Operatoren
C Quantenmechanischer Zeitumkehroperator
1 Notwendigkeit eines antilinearen Operators
2 Zeitumkehr als Symmetrietransformation
D Explizite Konstruktion von Operatoren für Zeitumkehr
1 Spinloses Teilchen
2 Spin-1/2-Teilchen
3 Teilchen mit beliebigem Spin
4 Systeme von Teilchen
E Anwendungen
1 Mikroreversible Systeme
2 Satz von Kramers
3 Gerade und ungerade Observablen unter Zeitumkehr
4 Satz von van Vleck
Franck Laloë ist Wissenschaftler am Kastler-Brossel-Labor der Ecole Normale Supérieure in Paris. Er war zunächst an der Universität Paris VI tätig, bevor er an das CNRS, das französische Nationale Forschungszentrum, berufen wurde. Seine Forschungsschwerpunkte sind optisches Pumpen, statistische Mechanik von Quantengasen, musikalische Akustik und die Grundlagen der Quantenmechanik.