Biomedical Imaging
Principles and Applications

1. Auflage Juni 2012
448 Seiten, Hardcover
Praktikerbuch
Kurzbeschreibung
This book presents and describes imaging technologies that can be used to study chemical processes and structural interactions in dynamic systems, principally in biomedical systems. The imaging technologies, largely biomedical imaging technologies such as MRT, Fluorescence mapping, raman mapping, nanoESCA, and CARS microscopy, have been selected according to their application range and to the chemical information content of their data. These technologies allow for the analysis and evaluation of delicate biological samples, which must not be disturbed during the profess. Ultimately, this may mean fewer animal lab tests and clinical trials.
This book presents and describes imaging technologies that can be used to study chemical processes and structural interactions in dynamic systems, principally in biomedical systems. The imaging technologies, largely biomedical imaging technologies such as MRT, Fluorescence mapping, raman mapping, nanoESCA, and CARS microscopy, have been selected according to their application range and to the chemical information content of their data. These technologies allow for the analysis and evaluation of delicate biological samples, which must not be disturbed during the profess. Ultimately, this may mean fewer animal lab tests and clinical trials.
Contributors xvii
1 Evaluation of Spectroscopic Images 1
Patrick W.T. Krooshof, Geert J. Postma, Willem J. Melssen, and Lutgarde M.C. Buydens
1.1 Introduction, 1
1.2 Data Analysis, 2
1.2.1 Similarity Measures, 3
1.2.2 Unsupervised Pattern Recognition, 4
1.2.3 Supervised Pattern Recognition, 9
1.3 Applications, 11
1.3.1 Brain Tumor Diagnosis, 11
1.3.2 MRS Data Processing, 12
1.3.3 MRI Data Processing, 14
1.3.4 Combining MRI and MRS Data, 16
1.3.5 Probability of Class Memberships, 17
1.3.6 Class Membership of Individual Voxels, 18
1.3.7 Classification of Individual Voxels, 20
1.3.8 Clustering into Segments, 22
1.3.9 Classification of Segments, 23
1.3.10 Future Directions, 24
References, 25
2 Evaluation of Tomographic Data 30
Jörg van den Hoff
2.1 Introduction, 30
2.2 Image Reconstruction, 33
2.3 Image Data Representation: Pixel Size and Image Resolution, 34
2.4 Consequences of Limited Spatial Resolution, 39
2.5 Tomographic Data Evaluation: Tasks, 46
2.5.1 Software Tools, 46
2.5.2 Data Access, 47
2.5.3 Image Processing, 47
2.5.4 Visualization, 52
2.5.5 Dynamic Tomographic Data, 56
2.6 Summary, 61
References, 61
3 X-Ray Imaging 63
Volker Hietschold
3.1 Basics, 63
3.1.1 History, 63
3.1.2 Basic Physics, 64
3.2 Instrumentation, 66
3.2.1 Components, 66
3.3 Clinical Applications, 76
3.3.1 Diagnostic Devices, 76
3.3.2 High Voltage and Image Quality, 85
3.3.3 Tomography/Tomosynthesis, 87
3.3.4 Dual Energy Imaging, 87
3.3.5 Computer Applications, 88
3.3.6 Interventional Radiology, 92
3.4 Radiation Exposure to Patients and Employees, 92
References, 95
4 Computed Tomography 97
Stefan Ulzheimer and Thomas Flohr
4.1 Basics, 97
4.1.1 History, 97
4.1.2 Basic Physics and Image Reconstruction, 100
4.2 Instrumentation, 102
4.2.1 Gantry, 102
4.2.2 X-ray Tube and Generator, 103
4.2.3 MDCT Detector Design and Slice Collimation, 103
4.2.4 Data Rates and Data Transmission, 107
4.2.5 Dual Source CT, 107
4.3 Measurement Techniques, 109
4.3.1 MDCT Sequential (Axial) Scanning, 109
4.3.2 MDCT Spiral (Helical) Scanning, 109
4.3.3 ECG-Triggered and ECG-Gated Cardiovascular CT, 115
4.4 Applications, 119
4.4.1 Clinical Applications of Computed Tomography, 119
4.4.2 Radiation Dose in Typical Clinical Applications and Methods for Dose Reduction, 122
4.5 Outlook, 125
References, 127
5 Magnetic Resonance Technology 131
Boguslaw Tomanek and Jonathan C. Sharp
5.1 Introduction, 131
5.2 Magnetic Nuclei Spin in a Magnetic Field, 133
5.2.1 A Pulsed rf Field Resonates with Magnetized Nuclei, 135
5.2.2 The MR Signal, 137
5.2.3 Spin Interactions Have Characteristic Relaxation Times, 138
5.3 Image Creation, 139
5.3.1 Slice Selection, 139
5.3.2 The Signal Comes Back--The Spin Echo, 142
5.3.3 Gradient Echo, 143
5.4 Image Reconstruction, 145
5.4.1 Sequence Parameters, 146
5.5 Image Resolution, 148
5.6 Noise in the Image--SNR, 149
5.7 Image Weighting and Pulse Sequence Parameters TE and TR, 150
5.7.1 T2-Weighted Imaging, 150
5.7.2 T * 2 -Weighted Imaging, 151
5.7.3 Proton-Density-Weighted Imaging, 152
5.7.4 T1-Weighted Imaging, 152
5.8 A Menagerie of Pulse Sequences, 152
5.8.1 EPI, 154
5.8.2 FSE, 154
5.8.3 Inversion-Recovery, 155
5.8.4 DWI, 156
5.8.5 MRA, 158
5.8.6 Perfusion, 159
5.9 Enhanced Diagnostic Capabilities of MRI--Contrast Agents, 159
5.10 Molecular MRI, 159
5.11 Reading the Mind--Functional MRI, 160
5.12 Magnetic Resonance Spectroscopy, 161
5.12.1 Single Voxel Spectroscopy, 163
5.12.2 Spectroscopic Imaging, 163
5.13 MR Hardware, 164
5.13.1 Magnets, 164
5.13.2 Shimming, 167
5.13.3 Rf Shielding, 168
5.13.4 Gradient System, 168
5.13.5 MR Electronics--The Console, 169
5.13.6 Rf Coils, 170
5.14 MRI Safety, 171
5.14.1 Magnet Safety, 171
5.14.2 Gradient Safety, 173
5.15 Imaging Artefacts in MRI, 173
5.15.1 High Field Effects, 174
5.16 Advanced MR Technology and Its Possible Future, 175
References, 175
6 Toward A 3D View of Cellular Architecture: Correlative Light Microscopy and Electron Tomography 180
Jack A. Valentijn, Linda F. van Driel, Karen A. Jansen, Karine M. Valentijn, and Abraham J. Koster
6.1 Introduction, 180
6.2 Historical Perspective, 181
6.3 Stains for CLEM, 182
6.4 Probes for CLEM, 183
6.4.1 Probes to Detect Exogenous Proteins, 183
6.4.2 Probes to Detect Endogenous Proteins, 188
6.4.3 Probes to Detect Nonproteinaceous Molecules, 192
6.5 CLEM Applications, 193
6.5.1 Diagnostic Electron Microscopy, 193
6.5.2 Ultrastructural Neuroanatomy, 194
6.5.3 Live-Cell Imaging, 196
6.5.4 Electron Tomography, 197
6.5.5 Cryoelectron Microscopy, 198
6.5.6 Immuno Electron Microscopy, 201
6.6 Future Perspective, 202
References, 205
7 Tracer Imaging 215
Rainer Hinz
7.1 Introduction, 215
7.2 Instrumentation, 216
7.2.1 Radioisotope Production, 216
7.2.2 Radiochemistry and Radiopharmacy, 219
7.2.3 Imaging Devices, 220
7.2.4 Peripheral Detectors and Bioanalysis, 225
7.3 Measurement Techniques, 228
7.3.1 Tomographic Image Reconstruction, 228
7.3.2 Quantification Methods, 229
7.4 Applications, 234
7.4.1 Neuroscience, 234
7.4.2 Cardiology, 240
7.4.3 Oncology, 240
7.4.4 Molecular Imaging for Research in Drug Development, 243
7.4.5 Small Animal Imaging, 244
References, 244
8 Fluorescence Imaging 248
Nikolaos C. Deliolanis, Christian P. Schultz, and Vasilis Ntziachristos
8.1 Introduction, 248
8.2 Contrast Mechanisms, 249
8.2.1 Endogenous Contrast, 249
8.2.2 Exogenous Contrast, 251
8.3 Direct Methods: Fluorescent Probes, 251
8.4 Indirect Methods: Fluorescent Proteins, 252
8.5 Microscopy, 253
8.5.1 Optical Microscopy, 253
8.5.2 Fluorescence Microscopy, 254
8.6 Macroscopic Imaging/Tomography, 260
8.7 Planar Imaging, 260
8.8 Tomography, 262
8.8.1 Diffuse Optical Tomography, 266
8.8.2 Fluorescence Tomography, 266
8.9 Conclusion, 267
References, 268
9 Infrared and Raman Spectroscopic Imaging 275
Gerald Steiner
9.1 Introduction, 275
9.2 Instrumentation, 278
9.2.1 Infrared Imaging, 278
9.2.2 Near-Infrared Imaging, 281
9.3 Raman Imaging, 282
9.4 Sampling Techniques, 283
9.5 Data Analysis and Image Evaluation, 285
9.5.1 Data Preprocessing, 287
9.5.2 Feature Selection, 287
9.5.3 Spectral Classification, 288
9.5.4 Image Processing Including Pattern Recognition, 292
9.6 Applications, 292
9.6.1 Single Cells, 292
9.6.2 Tissue Sections, 292
9.6.3 Diagnosis of Hemodynamics, 300
References, 301
10 Coherent Anti-Stokes Raman Scattering Microscopy 304
Annika Enejder, Christoph Heinrich, Christian Brackmann, Stefan Bernet, and Monika Ritsch-Marte
10.1 Basics, 304
10.1.1 Introduction, 304
10.2 Theory, 306
10.3 CARS Microscopy in Practice, 309
10.4 Instrumentation, 310
10.5 Laser Sources, 311
10.6 Data Acquisition, 314
10.7 Measurement Techniques, 316
10.7.1 Excitation Geometry, 316
10.7.2 Detection Geometry, 318
10.7.3 Time-Resolved Detection, 319
10.7.4 Phase-Sensitive Detection, 319
10.7.5 Amplitude-Modulated Detection, 320
10.8 Applications, 320
10.8.1 Imaging of Biological Membranes, 321
10.8.2 Studies of Functional Nutrients, 321
10.8.3 Lipid Dynamics and Metabolism in Living Cells and Organisms, 322
10.8.4 Cell Hydrodynamics, 324
10.8.5 Tumor Cells, 325
10.8.6 Tissue Imaging, 325
10.8.7 Imaging of Proteins and DNA, 326
10.9 Conclusions, 326
References, 327
11 Biomedical Sonography 331
Georg Schmitz
11.1 Basic Principles, 331
11.1.1 Introduction, 331
11.1.2 Ultrasonic Wave Propagation in Biological Tissues, 332
11.1.3 Diffraction and Radiation of Sound, 333
11.1.4 Acoustic Scattering, 337
11.1.5 Acoustic Losses, 338
11.1.6 Doppler Effect, 339
11.1.7 Nonlinear Wave Propagation, 339
11.1.8 Biological Effects of Ultrasound, 340
11.2 Instrumentation of Real-Time Ultrasound Imaging, 341
11.2.1 Pulse-Echo Imaging Principle, 341
11.2.2 Ultrasonic Transducers, 342
11.2.3 Beamforming, 344
11.3 Measurement Techniques of Real-Time Ultrasound Imaging, 347
11.3.1 Doppler Measurement Techniques, 347
11.3.2 Ultrasound Contrast Agents and Nonlinear Imaging, 353
11.4 Application Examples of Biomedical Sonography, 359
11.4.1 B-Mode, M-Mode, and 3D Imaging, 359
11.4.2 Flow and Perfusion Imaging, 362
References, 365
12 Acoustic Microscopy for Biomedical Applications 368
Jürgen Bereiter-Hahn
12.1 Sound Waves and Basics of Acoustic Microscopy, 368
12.1.1 Propagation of Sound Waves, 369
12.1.2 Main Applications of Acoustic Microscopy, 371
12.1.3 Parameters to Be Determined and General Introduction into Microscopy with Ultrasound, 371
12.2 Types of Acoustic Microscopy, 372
12.2.1 Scanning Laser Acoustic Microscope (LSAM), 373
12.2.2 Pulse-Echo Mode: Reflection-Based Acoustic Microscopy, 373
12.3 Biomedical Applications of Acoustic Microscopy, 391
12.3.1 Influence of Fixation on Acoustic Parameters of Cells and Tissues, 391
12.3.2 Acoustic Microscopy of Cells in Culture, 392
12.3.3 Technical Requirements, 393
12.3.4 What Is Revealed by SAM: Interpretation of SAM Images, 394
12.3.5 Conclusions, 401
12.4 Examples of Tissue Investigations using SAM, 403
12.4.1 Hard Tissues, 404
12.4.2 Cardiovascular Tissues, 405
12.4.3 Other Soft Tissues, 406
References, 406
Index 415
of Biomedical Optics, 1 December 2012)
"The text is expertly integrated with high-quality figures and includes an index. This book is suitable for researchers and engineers in a variety of disciplines. I highly recommend it as a comprehensive introduction to nanofabrication techniques." (Optics & Photonics News, 1 October 2012)