Medical Biostatistics for Complex Diseases
Quantitative and Network Biology

1. Auflage April 2010
XXVIII, 384 Seiten, Hardcover
88 Abbildungen (42 Farbabbildungen)
36 Tabellen
Praktikerbuch
Kurzbeschreibung
This practical approach gives a comprehensive overview of cutting-edge methods for the analysis of high-throughput data generated through screening for complex diseases like cancer and cardiovascular diseases.
Eine Sammlung von Methoden und Hilfsmitteln zur Analyse von Daten, die in Hochdurchsatz-Studien der wichtigsten Krankheiten der westlichen Industrieländer (u.a. Krebs, Herz- und Gefäßkrankheiten) gewonnen wurden. In allen Fällen spielen mehrere Faktoren und große Datensätze die beherrschende Rolle bei der Wahl der Algorithmus. Die meisten Beiträge der Monographie stammen von Mathematikern. Interessant ist das Buch vorrangig für Forscher und Kliniker, die mit der Auswertung des Datenmaterials befasst sind, denen aber ein tiefer gehender Hintergrund in Mathematik und Statistik fehlt.
GENERAL BIOLOGICAL AND STATISTICAL BASICS
The biology of MYC in health and disease: a high altitude view (Turner, Bird and Refaeli)
Cancer Stem Cells - Finding and Hitting the Roots of Cancer (Buss and Ho)
Multiple Testing Methods (Farcomeni)
STATISTICAL AND COMPUTATIONAL ANALYSIS METHODS
Making Mountains Out of Molehills: Moving from Single Gene to Pathway Based Models of Colon Cancer Progression (Edelman, Garman, Potti, Mukherjee)
Gene-Set Expression Analysis: Challenges and Tools (Oron)
Hotelling's T-2 multivariate profiling for detecting differential expression in microarrays (Lu, Liu, Deng)
Interpreting differential coexpression of gene sets (Ju Han Kim, Sung Bum Cho, Jihun Kim)
Multivariate analysis of microarray data: Application of MANOVA (Hwang and Park)
Testing Significance of a Class of Genes (Chen and Tsai)
Differential dependency network analysis to identify topological changes in biological networks (Zhang, Li, Clarke, Hilakivi-Clarke and Wang)
An Introduction to Time-Varying Connectivity Estimation for Gene Regulatory Networks (Fujita, Sato, Almeida Demasi, Miyano, Cleide Sogayar, and Ferreira)
A systems biology approach to construct a cancer-perturbed protein-protein interaction network for apoptosis by means of microarray and database mining (Chu and Chen)
NN, title not confirmed (Fishel, Ruppin)
Kernel Classification Methods for Cancer Microarray Data (Kato and Fujibuchi)
Predicting Cancer Survival Using Expression Patterns (Reddy, Kronek, Brannon, Seiler, Ganesan, Rathmell, Bhanot)
Integration of microarray data sets (Kim and Rha)
Model Averaging For Biological Networks With Prior Information (Mukherjeea, Speed and Hill)
Matthias Dehmer studied mathematics at the University of Siegen, Germany and received his PhD in computer science from the Darmstadt University of Technology. Following this, he was a research fellow at the Vienna Bio Center, Austria, and at the Vienna University of Technology. He is currently an associate professor at UMIT - The Health and Life Sciences University in Hall in Tirol, Austria. His research interests are in bioinformatics, systems biology, complex networks, statistics and information theory. In particular, Matthias Dehmer is working on machine learning-based methods to design new data analysis methods for solving problems in computational and systems biology.