John Wiley & Sons Introduction to Polymer Rheology Cover Providing new students and practitioners with an easy-to-understand introduction to the theory and p.. Product #: 978-0-470-38844-0 Regular price: $114.02 $114.02 Auf Lager

Introduction to Polymer Rheology

Shaw, Montgomery T.

Cover

1. Auflage Januar 2012
416 Seiten, Hardcover
Wiley & Sons Ltd

ISBN: 978-0-470-38844-0
John Wiley & Sons

Kurzbeschreibung

Providing new students and practitioners with an easy-to-understand introduction to the theory and practice an often complicated subject, Introduction to Polymer Rheology incorporates worked problems and problems with appended answers to provide opportunities for review and further learning of more advanced concepts. By limiting the use of mathematics within an approachable format, this introductory overview ensures practicing scientists and engineers understand the concepts underlying the flow behavior of polymer melts, solutions, and suspensions, and are able to interpret experimental data correctly and provide additional insight on a process.

Jetzt kaufen

Preis: 122,00 €

Preis inkl. MwSt, zzgl. Versand

Weitere Versionen

epubmobipdf

Providing new students and practitioners with an easy-to-understand introduction to the theory and practice an often complicated subject, Introduction to Polymer Rheology incorporates worked problems and problems with appended answers to provide opportunities for review and further learning of more advanced concepts. By limiting the use of mathematics within an approachable format, this introductory overview ensures practicing scientists and engineers understand the concepts underlying the flow behavior of polymer melts, solutions, and suspensions, and are able to interpret experimental data correctly and provide additional insight on a process.

1. INTRODUCTION

A. Polymers and the importance of rheology

B. Rheology in its simplest form

Problems

Suggested references, with commentary

2. STRESS

A. Stress and pressure

B. Organization of the stress components

C. Coping with subscripts

D. Typical stress tensors

Appendix 2-1: Compilation of equations of motion (ssc)

Appendix 2-2: Equations of motion--curvilinear quick list (ssc)

Problems

References

3. VELOCITY, VELOCITY GRADIENT AND RATE OF DEFORMATION

A. Why velocity is simpler than location--Speedometers vs. GPS

B. Velocity gradients

C. Rate of deformation

Appendix 3-1: Components of the rate-of-deformation tensor

Appendix 3-2: Components of the continuity equation

Appendix 3-3: Nomenclature and sign conventions used in popular rheology texts

Problems

References

4. RELATIONSHIP BETWEEN STRESS AND RATE OF DEFORMATION: THE NEWTONIAN FLUID

A Material idealizations in rheology

B. The Newtonian fluid

Problems

References

5. GENERALIZED NEWTONIAN FLUIDS -- A SMALL BUT IMPORTANT STEP TOWARD A DESCRIPTION OF REAL BEHAVIOR FOR POLYMERS

A. Reasons for inventing generalized Newtonian fluids -- behavior of polymer melts

B. Generalizing the GNF to three dimensions

C. Inventing relationships for viscosity vs. shear rate

D. Short primer on finding GNF parameters from data

E. Summary of GNF characteristics

Appendix 5-1: Fitting data with Excel

Problems

References

6. NORMAL STRESSES--ORDINARY BEHAVIOR FOR POLYMERS

A. Introduction

B. What are normal stresses

C. Origin of normal stresses in simple shear

D. The second normal-stress difference

E. Normal-stress coefficients and empirical findings

F. Transient rheological functions

D. Temperature effects and superposition of steady-flow data

Problems

References

7. EXPERIMENTAL METHODS

A. Measurement of viscosity

B. Normal stresses from shearing flows

C. Extensional rheology

D. Specialized geometries

E. Flow visualization and other rheo-optical methods

F. Micro and nano rheology

Appendix 7-1: Numerical derivatives

Appendix 7-2: Velocity-profile correction for non-Newtonian fluids

Appendix 7-3: Incorporation of slip into the velocity-profile correction-- the Mooney correction

Appendix 7-4: Normal stresses using the cone-and-plate geometry

Appendix 7-5: Desktop rheo-optical experiment

Problems

References

8. STRAIN, SMALL AND LARGE

A. Displacement

B. Infinitesimal strain

C. Hookean solids

D. Finite strain

E. The Lodge elastic fluid and variants

F. The Cauchy strain measure

G. Fixing up integral equations based on C and C-1

Appendix 8-1: The relaxation function

Appendix 8-2: Constant-rate extension of the LEF

Problems

References

9. MOLECULAR ORIGINS OF RHEOLOGICAL BEHAVIOR

A. Description of polymer molecules

B. The Rouse chain--a limited description of polymer behavior

C. Other chain-like models

D. Dealing with entanglements

E. Summary of predictions of molecular theory

Problems

References

10. ELEMENTARY POLYMER PROCESSING CONCEPTS

A. Simple laboratory processing methods

B. Elementary extrusion concepts

C. A downstream process--spinning

D. Summary

Appendix 10-1: Densities of melts at elevated temperatures

Problems

References

11. QUALITY-CONTROL RHEOLOGY

A. Examples of methods used by various industries

B. Test precision

Appendix 11-1: ASTM tests methods for rheological characterization

Problems

References

12. FLOW OF MODIFIED POLYMERS AND POLYMERS WITH SUPERMOLECULAR STRUCTURE

A. Polymers filled with particulates

B. Liquid crystallinity and rheology

C. Polymers with microphase separation in melts or solutions

D. Covalent crosslinking of polymers

Appendix 12-1: Van 't Hoff equation applied to gelation

Problems

References

ANSWERS TO SELECTED PROBLEMS
Montgomery T. Shaw, PhD, is the DiBenedetto Distinguished Professor Emeritus at the University of Connecticut in Storrs, Connecticut. He is a coauthor of Introduction to Polymer Viscoelasticity, Third Edition, also published by Wiley.